1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
# Owner(s): ["module: nn"]
import unittest
import sys
import os
import subprocess
import torch
import torch.nn.utils.stateless as stateless
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import run_tests, TestCase
class MockModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(1, 1)
self.register_buffer('buffer', torch.ones(1))
def forward(self, x):
return self.l1(x) + self.buffer
class TestStatelessFunctionalAPI(TestCase):
def _run_call_with_mock_module(self, module, device='cpu', prefix=''):
x = torch.rand((1, 1)).to(device)
weight = torch.tensor([[1.0]], device=device)
bias = torch.tensor([0.0], device=device)
buffer = torch.tensor([0.0], device=device)
if prefix != '':
parameters = {f'{prefix}.l1.weight': weight,
f'{prefix}.l1.bias': bias,
f'{prefix}.buffer': buffer}
else:
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
to_check = module
if prefix != '':
to_check = getattr(module, prefix)
prev_weight = to_check.l1.weight.clone()
prev_buffer = to_check.buffer.clone()
# the parameters represent an identity function contrary to the
# existing params in module. So here we expect the result to be the
# same as the input if the weight swapping went well.
res = stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# check that the weight remain unmodified
cur_weight = to_check.l1.weight
cur_buffer = to_check.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
def test_functional_call(self):
module = MockModule()
self._run_call_with_mock_module(module)
def test_functional_call_with_jit(self):
module = MockModule()
jit_module = torch.jit.script(module)
with self.assertRaisesRegex(
RuntimeError,
r'used with Jitted modules'
):
self._run_call_with_mock_module(jit_module)
x = torch.rand((1, 1))
traced_module = torch.jit.trace(module, x)
with self.assertRaisesRegex(
RuntimeError,
r'used with Jitted modules'
):
self._run_call_with_mock_module(traced_module)
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
@unittest.skip("This doesn't work right now")
def test_functional_call_with_data_parallel(self):
module = MockModule()
module.cuda()
dp_module = torch.nn.DataParallel(module, [0, 1])
self._run_call_with_mock_module(dp_module, device='cuda', prefix='module')
def test_functional_call_with_gradient(self):
module = MockModule()
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]], requires_grad=True)
bias = torch.tensor([0.0], requires_grad=True)
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
res = stateless.functional_call(module, parameters, x)
# Check that a backward step calculates the gradient of the supplied parameters
res.backward()
self.assertIsNotNone(weight.grad)
self.assertIsNotNone(bias.grad)
self.assertIsNone(buffer.grad)
# Gradient was not calculated for the module stated and buffers
self.assertIsNone(module.l1.weight.grad)
self.assertIsNone(module.l1.bias.grad)
self.assertIsNone(module.buffer.grad)
def test_functional_batch_norm(self):
module = torch.nn.BatchNorm1d(10)
module.train() # Allow stats update
# lets replace the running_mean buffer and check if its correctly updated
x = torch.full((20, 10), 128.0)
rm = torch.zeros(10)
parameters = {'running_mean': rm}
prev_rm = module.running_mean.clone()
res = stateless.functional_call(module, parameters, x)
cur_rm = module.running_mean
self.assertEqual(cur_rm, prev_rm)
self.assertEqual(rm, torch.full((10,), 12.8))
# Now run functional without reparametrization and check that the module has
# been updated
res = stateless.functional_call(module, {}, x)
self.assertEqual(module.running_mean, torch.full((10,), 12.8))
def test_circular_references(self):
module = MockModule()
# Add a circular reference
module.l1.m = module
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]])
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.m.l1.weight': weight,
'l1.bias': bias,
'l1.m.buffer': buffer}
prev_weight = module.l1.weight.clone()
prev_buffer = module.buffer.clone()
res = stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# check that the weights remain unmodified and were correctly accesed
cur_weight = module.l1.weight
cur_buffer = module.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
def test_reparametrized_module_change_parametrization_original(self):
module = MockModule()
torch.nn.utils.parametrizations.spectral_norm(module.l1)
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
orig_sn_weight = module.l1.weight.clone()
x = torch.rand((1, 1))
# We substitute the parameter inside the parametrization
# the parametrization itself is not overwritten so it will be applied with a different
# value for the original tensor
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
'l1.bias': torch.tensor([0.0]),
'buffer': torch.tensor([0.0])}
res = stateless.functional_call(module, parameters, x)
self.assertEqual(x, res)
# verify that the spectral normalization is still applied
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
self.assertEqual(orig_sn_weight, module.l1.weight)
def test_reparamertize_module_fail_reset_to_original(self):
module = MockModule()
torch.nn.utils.parametrizations.spectral_norm(module.l1)
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
orig_sn_weight = module.l1.weight.clone()
# We substitute the parameter inside the parametrization
# the parametrization itself is not overwritten so it will be applied with a different
# value for the original tensor
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
'l1.bias': torch.tensor([0.0]),
'buffer': torch.tensor([0.0])}
with self.assertRaisesRegex(RuntimeError, "shapes cannot be multiplied"):
x = torch.rand((4, 5)) # to work, it should be of size (1, 1)
stateless.functional_call(module, parameters, x) # this call will fail because x is the wrong size
# verify that the spectral normalization is still applied
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
self.assertEqual(orig_sn_weight, module.l1.weight)
def test_tied_weights_warns(self):
module = MockModule()
module.tied_bias = module.l1.bias
module.register_buffer("tied_buffer", module.buffer)
weight = torch.tensor([[1.0]],)
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
self.assertNotWarn(lambda: stateless.functional_call(module, parameters, x))
# if tied values are the same tensors, shouldn't warn
parameters['tied_bias'] = bias
parameters['tied_buffer'] = buffer
self.assertNotWarn(lambda: stateless.functional_call(module, parameters, x))
del parameters['tied_bias']
del parameters['tied_buffer']
with self.assertWarnsOnceRegex(UserWarning, "functional_call was passed multiple values"):
parameters['tied_bias'] = torch.tensor([5.0])
stateless.functional_call(module, parameters, x)
del parameters['tied_bias']
with self.assertWarnsOnceRegex(UserWarning, "functional_call was passed multiple values"):
parameters['tied_buffer'] = torch.tensor([5.0])
stateless.functional_call(module, parameters, x)
def test_setattr(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer('foo', torch.zeros(()))
def forward(self, x):
self.foo = self.foo + 1
return x + self.foo
a = {'foo': torch.zeros(())}
mod = Foo()
stateless.functional_call(mod, a, torch.ones(()))
self.assertEqual(mod.foo, torch.zeros(()))
self.assertEqual(a['foo'], torch.ones(()))
class TestStatelessDeprecation(TestCase):
def test_private_stateless_warns(self):
script = """
import torch
import warnings
with warnings.catch_warnings(record=True) as w:
from torch.nn.utils import _stateless
exit(len(w))
"""
try:
subprocess.check_output(
[sys.executable, '-W', 'all', '-c', script],
stderr=subprocess.STDOUT,
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),)
except subprocess.CalledProcessError as e:
self.assertEqual(e.returncode, 1)
else:
self.assertTrue(False, "No warning was raised.")
class TestPythonOptimizeMode(TestCase):
def test_runs_with_optimize_flag(self):
script = """
import torch
"""
try:
subprocess.check_output(
[sys.executable, '-OO', '-c', script],
stderr=subprocess.STDOUT,
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),)
except subprocess.CalledProcessError as e:
self.assertFalse(e.returncode, "Import failed while running python in optimized mode")
if __name__ == '__main__':
run_tests()
|