1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
# Owner(s): ["module: unknown"]
import io
import numpy as np
import os
import shutil
import sys
import unittest
import uuid
TEST_TENSORBOARD = True
try:
import tensorboard.summary.writer.event_file_writer # noqa: F401
from tensorboard.compat.proto.summary_pb2 import Summary
except ImportError:
TEST_TENSORBOARD = False
HAS_TORCHVISION = True
try:
import torchvision
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
TEST_CAFFE2 = True
try:
import caffe2.python.caffe2_pybind11_state as _caffe2_pybind11_state # noqa: F401
from caffe2.python import brew, cnn, core, workspace
from caffe2.python.model_helper import ModelHelper
except ImportError:
TEST_CAFFE2 = False
skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
TEST_MATPLOTLIB = True
try:
import matplotlib
if os.environ.get('DISPLAY', '') == '':
matplotlib.use('Agg')
import matplotlib.pyplot as plt
except ImportError:
TEST_MATPLOTLIB = False
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_CROSSREF
def tensor_N(shape, dtype=float):
numel = np.prod(shape)
x = (np.arange(numel, dtype=dtype)).reshape(shape)
return x
class BaseTestCase(TestCase):
""" Base class used for all TensorBoard tests """
def setUp(self):
if not TEST_TENSORBOARD:
return self.skipTest("Skip the test since TensorBoard is not installed")
if TEST_WITH_CROSSREF:
return self.skipTest("Don't run TensorBoard tests with crossref")
self.temp_dirs = []
def createSummaryWriter(self):
temp_dir = str(uuid.uuid4())
self.temp_dirs.append(temp_dir)
return SummaryWriter(temp_dir)
def tearDown(self):
super(BaseTestCase, self).tearDown()
# Remove directories created by SummaryWriter
for temp_dir in self.temp_dirs:
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
if TEST_TENSORBOARD:
from tensorboard.compat.proto.graph_pb2 import GraphDef
from torch.utils.tensorboard import summary, SummaryWriter
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
from torch.utils.tensorboard._convert_np import make_np
from torch.utils.tensorboard._pytorch_graph import graph
from google.protobuf import text_format
from PIL import Image
if TEST_TENSORBOARD and TEST_CAFFE2:
from torch.utils.tensorboard import _caffe2_graph as c2_graph
class TestTensorBoardPyTorchNumpy(BaseTestCase):
def test_pytorch_np(self):
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
for tensor in tensors:
# regular tensor
self.assertIsInstance(make_np(tensor), np.ndarray)
# CUDA tensor
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
# regular variable
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
# CUDA variable
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
# python primitive type
self.assertIsInstance(make_np(0), np.ndarray)
self.assertIsInstance(make_np(0.1), np.ndarray)
def test_pytorch_autograd_np(self):
x = torch.autograd.Variable(torch.empty(1))
self.assertIsInstance(make_np(x), np.ndarray)
def test_pytorch_write(self):
with self.createSummaryWriter() as w:
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
def test_pytorch_histogram(self):
with self.createSummaryWriter() as w:
w.add_histogram('float histogram', torch.rand((50,)))
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
def test_pytorch_histogram_raw(self):
with self.createSummaryWriter() as w:
num = 50
floats = make_np(torch.rand((num,)))
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
counts, limits = np.histogram(floats, bins)
sum_sq = floats.dot(floats).item()
w.add_histogram_raw('float histogram raw',
min=floats.min().item(),
max=floats.max().item(),
num=num,
sum=floats.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = make_np(torch.randint(0, 100, (num,)))
bins = [0, 25, 50, 75, 100]
counts, limits = np.histogram(ints, bins)
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = torch.tensor(range(0, 100)).float()
nbins = 100
counts = torch.histc(ints, bins=nbins, min=0, max=99)
limits = torch.tensor(range(nbins))
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits.tolist(),
bucket_counts=counts.tolist())
class TestTensorBoardUtils(BaseTestCase):
def test_to_HWC(self):
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'chw')
self.assertEqual(converted.shape, (32, 32, 3))
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'nchw')
self.assertEqual(converted.shape, (64, 256, 3))
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'hw')
self.assertEqual(converted.shape, (32, 32, 3))
def test_convert_to_HWC_dtype_remains_same(self):
# test to ensure convert_to_HWC restores the dtype of input np array and
# thus the scale_factor calculated for the image is 1
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
tensor = make_np(test_image)
tensor = convert_to_HWC(tensor, 'NCHW')
scale_factor = summary._calc_scale_factor(tensor)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
def test_prepare_video(self):
# At each timeframe, the sum over all other
# dimensions of the video should be the same.
shapes = [
(16, 30, 3, 28, 28),
(36, 30, 3, 28, 28),
(19, 29, 3, 23, 19),
(3, 3, 3, 3, 3)
]
for s in shapes:
V_input = np.random.random(s)
V_after = _prepare_video(np.copy(V_input))
total_frame = s[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
def test_numpy_vid_uint8(self):
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
V_after = _prepare_video(np.copy(V_input)) * 255
total_frame = V_input.shape[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
true_positive_counts = [75, 64, 21, 5, 0]
false_positive_counts = [150, 105, 18, 0, 0]
true_negative_counts = [0, 45, 132, 150, 150]
false_negative_counts = [0, 11, 54, 70, 75]
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
class TestTensorBoardWriter(BaseTestCase):
def test_writer(self):
with self.createSummaryWriter() as writer:
sample_rate = 44100
n_iter = 0
writer.add_hparams(
{'lr': 0.1, 'bsize': 1},
{'hparam/accuracy': 10, 'hparam/loss': 10}
)
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
writer.add_scalar('data/new_style', 0.2, n_iter, new_style=True)
writer.add_scalars('data/scalar_group', {
"xsinx": n_iter * np.sin(n_iter),
"xcosx": n_iter * np.cos(n_iter),
"arctanx": np.arctan(n_iter)
}, n_iter)
x = np.zeros((32, 3, 64, 64)) # output from network
writer.add_images('Image', x, n_iter) # Tensor
writer.add_image_with_boxes('imagebox',
np.zeros((3, 64, 64)),
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
n_iter)
x = np.zeros(sample_rate * 2)
writer.add_audio('myAudio', x, n_iter)
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
100), n_iter) # needs tensorboard 0.4RC or later
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
false_positive_counts,
true_negative_counts,
false_negative_counts,
precision,
recall, n_iter)
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f)
class TestTensorBoardSummaryWriter(BaseTestCase):
def test_summary_writer_ctx(self):
# after using a SummaryWriter as a ctx it should be closed
with self.createSummaryWriter() as writer:
writer.add_scalar('test', 1)
self.assertIs(writer.file_writer, None)
def test_summary_writer_close(self):
# Opening and closing SummaryWriter a lot should not run into
# OSError: [Errno 24] Too many open files
passed = True
try:
writer = self.createSummaryWriter()
writer.close()
except OSError:
passed = False
self.assertTrue(passed)
def test_pathlib(self):
import pathlib
p = pathlib.Path('./pathlibtest' + str(uuid.uuid4()))
with SummaryWriter(p) as writer:
writer.add_scalar('test', 1)
import shutil
shutil.rmtree(str(p))
class TestTensorBoardEmbedding(BaseTestCase):
def test_embedding(self):
w = self.createSummaryWriter()
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
all_labels = torch.tensor([33., 44., 55.])
all_images = torch.zeros(3, 3, 5, 5)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
# assert...
def test_embedding_64(self):
w = self.createSummaryWriter()
all_features = torch.tensor([[1., 2., 3.], [5., 4., 1.], [3., 7., 7.]])
all_labels = torch.tensor([33., 44., 55.])
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
class TestTensorBoardSummary(BaseTestCase):
def test_uint8_image(self):
'''
Tests that uint8 image (pixel values in [0, 255]) is not changed
'''
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
def test_float32_image(self):
'''
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
to [0, 255]
'''
test_image = np.random.rand(3, 32, 32).astype(np.float32)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255')
def test_list_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
def test_empty_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
def test_image_with_boxes(self):
self.assertTrue(compare_image_proto(summary.image_boxes('dummy',
tensor_N(shape=(3, 32, 32)),
np.array([[10, 10, 40, 40]])),
self))
def test_image_with_one_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(1, 8, 8)),
dataformats='CHW'),
self)) # noqa: E131
def test_image_with_one_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 1, 8, 8)),
dataformats='NCHW'),
self)) # noqa: E131
def test_image_with_3_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 3, 8, 8)),
dataformats='NCHW'),
self)) # noqa: E131
def test_image_without_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(8, 8)),
dataformats='HW'),
self)) # noqa: E131
def test_video(self):
try:
import moviepy # noqa: F401
except ImportError:
return
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
def test_audio(self):
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
def test_text(self):
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
def test_histogram_auto(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
def test_histogram_fd(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
def test_histogram_doane(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
def test_custom_scalars(self):
layout = {
'Taiwan': {
'twse': ['Multiline', ['twse/0050', 'twse/2330']]
},
'USA': {
'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]
}
}
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
def test_hparams_smoke(self):
hp = {'lr': 0.1, 'bsize': 4}
mt = {'accuracy': 0.1, 'loss': 10}
summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
hp = {'use_magic': True, 'init_string': "42"}
mt = {'accuracy': 0.1, 'loss': 10}
summary.hparams(hp, mt)
mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)}
summary.hparams(hp, mt)
def test_hparams_wrong_parameter(self):
with self.assertRaises(TypeError):
summary.hparams([], {})
with self.assertRaises(TypeError):
summary.hparams({}, [])
with self.assertRaises(ValueError):
res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0})
# metric data is used in writer.py so the code path is different, which leads to different exception type.
with self.assertRaises(NotImplementedError):
with self.createSummaryWriter() as writer:
writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
def test_hparams_number(self):
hp = {'lr': 0.1}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_bool(self):
hp = {'bool_var': True}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_string(self):
hp = {'string_var': "hi"}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_domain_discrete(self):
hp = {"lr": 0.1, "bool_var": True, "string_var": "hi"}
mt = {"accuracy": 0.1}
hp_domain = {"lr": [0.1], "bool_var": [True], "string_var": ["hi"]}
# hparam_domain_discrete keys needs to be subset of hparam_dict keys
with self.assertRaises(TypeError):
summary.hparams(hp, mt, hparam_domain_discrete={"wrong_key": []})
# hparam_domain_discrete values needs to be same type as hparam_dict values
with self.assertRaises(TypeError):
summary.hparams(hp, mt, hparam_domain_discrete={"lr": [True]})
# only smoke test. Because protobuf map serialization is nondeterministic.
summary.hparams(hp, mt, hparam_domain_discrete=hp_domain)
def test_mesh(self):
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None)
self.assertTrue(compare_proto(mesh, self))
def test_scalar_new_style(self):
scalar = summary.scalar('test_scalar', 1.0, new_style=True)
self.assertTrue(compare_proto(scalar, self))
with self.assertRaises(AssertionError):
summary.scalar('test_scalar2', torch.Tensor([1, 2, 3]), new_style=True)
def remove_whitespace(string):
return string.replace(' ', '').replace('\t', '').replace('\n', '')
def get_expected_file(function_ptr):
module_id = function_ptr.__class__.__module__
test_file = sys.modules[module_id].__file__
# Look for the .py file (since __file__ could be pyc).
test_file = ".".join(test_file.split('.')[:-1]) + '.py'
# Use realpath to follow symlinks appropriately.
test_dir = os.path.dirname(os.path.realpath(test_file))
functionName = function_ptr.id().split('.')[-1]
return os.path.join(test_dir,
"expect",
'TestTensorBoard.' + functionName + ".expect")
def read_expected_content(function_ptr):
expected_file = get_expected_file(function_ptr)
assert os.path.exists(expected_file)
with open(expected_file, "r") as f:
return f.read()
def compare_image_proto(actual_proto, function_ptr):
expected_str = read_expected_content(function_ptr)
expected_proto = Summary()
text_format.Parse(expected_str, expected_proto)
[actual, expected] = [actual_proto.value[0], expected_proto.value[0]]
actual_img = Image.open(io.BytesIO(actual.image.encoded_image_string))
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
return (
actual.tag == expected.tag and
actual.image.height == expected.image.height and
actual.image.width == expected.image.width and
actual.image.colorspace == expected.image.colorspace and
actual_img == expected_img
)
def compare_proto(str_to_compare, function_ptr):
expected = read_expected_content(function_ptr)
str_to_compare = str(str_to_compare)
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
def write_proto(str_to_compare, function_ptr):
expected_file = get_expected_file(function_ptr)
with open(expected_file, 'w') as f:
f.write(str(str_to_compare))
class TestTensorBoardPytorchGraph(BaseTestCase):
def test_pytorch_graph(self):
dummy_input = (torch.zeros(1, 3),)
class myLinear(torch.nn.Module):
def __init__(self):
super(myLinear, self).__init__()
self.l = torch.nn.Linear(3, 5)
def forward(self, x):
return self.l(x)
with self.createSummaryWriter() as w:
w.add_graph(myLinear(), dummy_input)
actual_proto, _ = graph(myLinear(), dummy_input)
expected_str = read_expected_content(self)
expected_proto = GraphDef()
text_format.Parse(expected_str, expected_proto)
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
for i in range(len(expected_proto.node)):
expected_node = expected_proto.node[i]
actual_node = actual_proto.node[i]
self.assertEqual(expected_node.name, actual_node.name)
self.assertEqual(expected_node.op, actual_node.op)
self.assertEqual(expected_node.input, actual_node.input)
self.assertEqual(expected_node.device, actual_node.device)
self.assertEqual(
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
def test_nested_nn_squential(self):
dummy_input = torch.randn(2, 3)
class InnerNNSquential(torch.nn.Module):
def __init__(self, dim1, dim2):
super().__init__()
self.inner_nn_squential = torch.nn.Sequential(
torch.nn.Linear(dim1, dim2),
torch.nn.Linear(dim2, dim1),
)
def forward(self, x):
x = self.inner_nn_squential(x)
return x
class OuterNNSquential(torch.nn.Module):
def __init__(self, dim1=3, dim2=4, depth=2):
super().__init__()
layers = []
for _ in range(depth):
layers.append(InnerNNSquential(dim1, dim2))
self.outer_nn_squential = torch.nn.Sequential(*layers)
def forward(self, x):
x = self.outer_nn_squential(x)
return x
with self.createSummaryWriter() as w:
w.add_graph(OuterNNSquential(), dummy_input)
actual_proto, _ = graph(OuterNNSquential(), dummy_input)
expected_str = read_expected_content(self)
expected_proto = GraphDef()
text_format.Parse(expected_str, expected_proto)
self.assertEqual(len(expected_proto.node), len(actual_proto.node))
for i in range(len(expected_proto.node)):
expected_node = expected_proto.node[i]
actual_node = actual_proto.node[i]
self.assertEqual(expected_node.name, actual_node.name)
self.assertEqual(expected_node.op, actual_node.op)
self.assertEqual(expected_node.input, actual_node.input)
self.assertEqual(expected_node.device, actual_node.device)
self.assertEqual(
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
def test_pytorch_graph_dict_input(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(3, 5)
def forward(self, x):
return self.l(x)
class ModelDict(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(3, 5)
def forward(self, x):
return {"out": self.l(x)}
dummy_input = torch.zeros(1, 3)
with self.createSummaryWriter() as w:
w.add_graph(Model(), dummy_input)
with self.createSummaryWriter() as w:
w.add_graph(Model(), dummy_input, use_strict_trace=True)
# expect error: Encountering a dict at the output of the tracer...
with self.assertRaises(RuntimeError):
with self.createSummaryWriter() as w:
w.add_graph(ModelDict(), dummy_input, use_strict_trace=True)
with self.createSummaryWriter() as w:
w.add_graph(ModelDict(), dummy_input, use_strict_trace=False)
def test_mlp_graph(self):
dummy_input = (torch.zeros(2, 1, 28, 28),)
# This MLP class with the above input is expected
# to fail JIT optimizations as seen at
# https://github.com/pytorch/pytorch/issues/18903
#
# However, it should not raise an error during
# the add_graph call and still continue.
class myMLP(torch.nn.Module):
def __init__(self):
super(myMLP, self).__init__()
self.input_len = 1 * 28 * 28
self.fc1 = torch.nn.Linear(self.input_len, 1200)
self.fc2 = torch.nn.Linear(1200, 1200)
self.fc3 = torch.nn.Linear(1200, 10)
def forward(self, x, update_batch_stats=True):
h = torch.nn.functional.relu(
self.fc1(x.view(-1, self.input_len)))
h = self.fc2(h)
h = torch.nn.functional.relu(h)
h = self.fc3(h)
return h
with self.createSummaryWriter() as w:
w.add_graph(myMLP(), dummy_input)
def test_wrong_input_size(self):
with self.assertRaises(RuntimeError) as e_info:
dummy_input = torch.rand(1, 9)
model = torch.nn.Linear(3, 5)
with self.createSummaryWriter() as w:
w.add_graph(model, dummy_input) # error
@skipIfNoTorchVision
def test_torchvision_smoke(self):
model_input_shapes = {
'alexnet': (2, 3, 224, 224),
'resnet34': (2, 3, 224, 224),
'resnet152': (2, 3, 224, 224),
'densenet121': (2, 3, 224, 224),
'vgg16': (2, 3, 224, 224),
'vgg19': (2, 3, 224, 224),
'vgg16_bn': (2, 3, 224, 224),
'vgg19_bn': (2, 3, 224, 224),
'mobilenet_v2': (2, 3, 224, 224),
}
for model_name, input_shape in model_input_shapes.items():
with self.createSummaryWriter() as w:
model = getattr(torchvision.models, model_name)()
w.add_graph(model, torch.zeros(input_shape))
class TestTensorBoardFigure(BaseTestCase):
@skipIfNoMatplotlib
def test_figure(self):
writer = self.createSummaryWriter()
figure, axes = plt.figure(), plt.gca()
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
axes.add_patch(circle1)
axes.add_patch(circle2)
plt.axis('scaled')
plt.tight_layout()
writer.add_figure("add_figure/figure", figure, 0, close=False)
self.assertTrue(plt.fignum_exists(figure.number))
writer.add_figure("add_figure/figure", figure, 1)
if matplotlib.__version__ != '3.3.0':
self.assertFalse(plt.fignum_exists(figure.number))
else:
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
writer.close()
@skipIfNoMatplotlib
def test_figure_list(self):
writer = self.createSummaryWriter()
figures = []
for i in range(5):
figure = plt.figure()
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
plt.xlabel("X")
plt.xlabel("Y")
plt.legend()
plt.tight_layout()
figures.append(figure)
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa: F812
writer.add_figure("add_figure/figure_list", figures, 1)
if matplotlib.__version__ != '3.3.0':
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa: F812
else:
print("Skipping fignum_exists, see https://github.com/matplotlib/matplotlib/issues/18163")
writer.close()
class TestTensorBoardNumpy(BaseTestCase):
def test_scalar(self):
res = make_np(1.1)
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(1 << 64 - 1) # uint64_max
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float16(1.00000087))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float128(1.00008 + 9))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.int64(100000000000))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
@skipIfNoCaffe2
def test_caffe2_np(self):
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
self.assertIsInstance(make_np('testBlob'), np.ndarray)
@skipIfNoCaffe2
def test_caffe2_np_expect_fail(self):
with self.assertRaises(RuntimeError):
res = make_np('This_blob_does_not_exist')
def test_pytorch_np_expect_fail(self):
with self.assertRaises(NotImplementedError):
res = make_np({'pytorch': 1.0})
@skipIfNoCaffe2
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
def test_caffe2_simple_model(self):
model = ModelHelper(name="mnist")
# how come those inputs don't break the forward pass =.=a
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
model.param_init_net.RunAllOnMKL()
model.AddGradientOperators([loss], skip=1)
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
@skipIfNoCaffe2
def test_caffe2_simple_cnnmodel(self):
model = cnn.CNNModelHelper("NCHW", name="overfeat")
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
relu1 = model.Relu(conv1, conv1)
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
with core.NameScope("classifier"):
fc = model.FC(pool1, "fc", 4096, 1000)
pred = model.Softmax(fc, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss(xent, "loss")
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
if __name__ == '__main__':
run_tests()
|