1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
|
# Owner(s): ["module: type promotion"]
from functools import wraps
import itertools
import unittest
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, load_tests, make_tensor,
TEST_NUMPY, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict)
from torch.testing._internal.common_device_type import (instantiate_device_type_tests, onlyNativeDeviceTypes,
dtypes, onlyCPU, expectedFailureMeta, skipMeta)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, get_all_math_dtypes, floating_types, get_all_dtypes
)
from torch.testing._creation import (
float_to_corresponding_complex_type_map
)
import numpy as np
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# Not thread-safe decorator that runs the decorated test once with
# the default dtype being torch.float and again with the default dtype
# being torch.double.
def float_double_default_dtype(fn):
@wraps(fn)
def wrapped_fn(*args, **kwargs):
cur_dtype = torch.get_default_dtype()
try:
torch.set_default_dtype(torch.float)
fn(*args, **kwargs)
torch.set_default_dtype(torch.double)
fn(*args, **kwargs)
finally:
torch.set_default_dtype(cur_dtype)
return wrapped_fn
class TestTypePromotion(TestCase):
# In-place operations don't promote.
# `int+float -> float` but `int.add_(float)` is rejected as an error.
# Promoting inplace would require re-allocating and copying the memory of the
# tensor data, since element size could change.
@float_double_default_dtype
def test_inplace(self, device):
int_tensor = torch.ones([4, 4, 4], dtype=torch.int32, device=device)
self.assertRaisesRegex(RuntimeError, "can't be cast to", lambda: int_tensor.add_(1.5))
expected = torch.ones([4, 4, 4], dtype=torch.int32, device=device)
long_tensor = torch.ones([4, 4, 4], dtype=torch.int64, device=device)
int_tensor.add_(long_tensor)
int_tensor.add_(1)
three = expected + 2
self.assertEqual(int_tensor, three)
self.assertEqual(int_tensor.dtype, torch.int32)
bool_tensor = torch.tensor([1, 1, 1], dtype=torch.bool, device=device)
uint8_tensor = torch.tensor([1, 1, 1], dtype=torch.uint8, device=device)
# We treat bool as a separate category, which means uint8 cannot cast to bool.
self.assertRaisesRegex(RuntimeError, "can't be cast to", lambda: bool_tensor.add_(uint8_tensor))
# We allow demotion from signed to unsigned, unlike numpy, because:
# * We don't want the performance penalty of inspecting scalar values.
# * We don't want 'signed' to be considered a distinct 'category'
# in promotion rules.
# We don't want signed to be a separate category because if it was,
# uint16_tensor + 5 would result in a long_tensor, which is not what we want.
int16_tensor = torch.tensor([1, 1, 1], dtype=torch.int16, device=device)
uint8_tensor *= int16_tensor
@float_double_default_dtype
def test_unsigned(self, device):
dont_promote = torch.ones(3, dtype=torch.uint8, device=device) + 5
self.assertEqual(dont_promote.dtype, torch.uint8)
# some basic examples
@float_double_default_dtype
def test_int_promotion(self, device):
a = torch.ones([4, 4, 4], dtype=torch.int32, device=device)
b = torch.ones([4, 4, 4], dtype=torch.int64, device=device)
c = a + b
self.assertEqual(c, b + b)
self.assertEqual(c.dtype, torch.int64)
@float_double_default_dtype
def test_float_promotion(self, device):
def test_promotion(dtype_float, dtype_double):
a = torch.ones([4, 4, 4], dtype=dtype_float, device=device)
b = torch.ones([4, 4, 4], dtype=dtype_double, device=device)
c = a + b
self.assertEqual(c, b + b)
self.assertEqual(c.dtype, dtype_double)
c = b + a
self.assertEqual(c, b + b)
self.assertEqual(c.dtype, dtype_double)
test_promotion(torch.float, torch.double)
@float_double_default_dtype
def test_complex_promotion(self, device):
def test_promotion(dtype_float, dtype_double):
a = torch.ones([4, 4, 4], dtype=dtype_float, device=device)
b = torch.ones([4, 4, 4], dtype=dtype_double, device=device)
c = a + b
self.assertEqual(c, b + b)
self.assertEqual(c.dtype, dtype_double)
c = b + a
self.assertEqual(c, b + b)
self.assertEqual(c.dtype, dtype_double)
test_promotion(torch.complex64, torch.complex128)
a = torch.randn(3, dtype=torch.complex64, device=device)
self.assertEqual((a * 5).dtype, torch.complex64)
# not a "wrapped number"
other = torch.tensor(5.5, dtype=torch.double, device=device)
self.assertEqual((a + other).dtype, torch.complex64)
def make_scalar_tensor(dtype):
return make_tensor((), dtype=dtype, device=device)
def make_1d_tensor(dtype):
return make_tensor((3,), dtype=dtype, device=device)
def complex_scalar_tensor_test(s, t):
# As per type promotion rules,
# Complex Scalar and Float Tensor -> Complex Tensor with Value type of Float Tensor
# Complex Scalar and Integral Tensor -> Complex Tensor with Value type of Complex Scalar
if t.dtype.is_floating_point:
# defaults to return complex64 (for bfloat16)
expected_dtype = float_to_corresponding_complex_type_map.get(t.dtype, torch.complex64)
else: # integral tensor
if isinstance(s, torch.Tensor):
expected_dtype = s.dtype
else:
expected_dtype = float_to_corresponding_complex_type_map[torch.get_default_dtype()]
self.assertEqual((s * t).dtype, expected_dtype)
self.assertEqual((t * s).dtype, expected_dtype)
self.assertEqual(torch.result_type(s, t), expected_dtype)
self.assertEqual(torch.result_type(t, s), expected_dtype)
if torch.device(device).type != 'xla':
# chalf is not supported on XLA
s = make_scalar_tensor(dtype=torch.chalf)
# Same Value type
t = make_1d_tensor(dtype=torch.half)
# 0-D Tensor X 1-D Tensor
complex_scalar_tensor_test(s, t)
# Python Scalar X 1-D Tensor
complex_scalar_tensor_test(s.item(), t)
# Higher Value Type
t = make_1d_tensor(dtype=torch.float)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# Special Case
t = make_1d_tensor(dtype=torch.bfloat16)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# Integral Tensor
t = make_1d_tensor(dtype=torch.long)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# CFloat Scalar
s = make_scalar_tensor(dtype=torch.cfloat)
# Lower Value type than CFloat
t = make_1d_tensor(dtype=torch.half)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# Higher Value type than CFloat
t = make_1d_tensor(dtype=torch.double)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# Integral Tensor
t = make_1d_tensor(dtype=torch.long)
# 0-D Tensor X 1-D Tensor
complex_scalar_tensor_test(s, t)
# Python Scalar X 1-D Tensor
complex_scalar_tensor_test(s.item(), t)
# CDouble Scalar
s = make_scalar_tensor(dtype=torch.cdouble)
# Lower Value type than CDouble
t = make_1d_tensor(dtype=torch.float)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
# Special Case
t = make_1d_tensor(dtype=torch.bfloat16)
complex_scalar_tensor_test(s, t)
complex_scalar_tensor_test(s.item(), t)
@float_double_default_dtype
def test_complex_scalar_mult_tensor_promotion(self, device):
a = 1j * torch.ones(2, device=device)
a = a + 1j
b = torch.tensor([2j, 2j], device=device)
self.assertEqual(a, b)
self.assertEqual(a.dtype, b.dtype)
@float_double_default_dtype
def test_add_wrapped(self, device):
a = torch.ones([4, 4, 4], dtype=torch.int, device=device)
b = 1
c = a + b
self.assertEqual(c, a + a)
self.assertEqual(c.dtype, torch.int)
@float_double_default_dtype
def test_int_to_float(self, device):
a = torch.ones([4, 4, 4], dtype=torch.int32, device=device)
b = torch.ones([4, 4, 4], dtype=torch.float, device=device)
c = a + b
self.assertEqual(c.dtype, torch.float32)
# some examples from:
# https://github.com/pytorch/pytorch/issues/9515
@float_double_default_dtype
def test_from_issue(self, device):
a = torch.rand(3, dtype=torch.float32, device=device)
u = torch.tensor([0, 0, 1], dtype=torch.uint8, device=device)
self.assertEqual((a * 5).dtype, torch.float32)
self.assertEqual((u + 1).dtype, torch.uint8)
self.assertEqual((u + 1000).dtype, torch.uint8) # integer overflow
# not a "wrapped number"
other = torch.tensor(5.5, dtype=torch.double, device=device)
self.assertEqual((u + 5.5).dtype, torch.get_default_dtype())
self.assertEqual((u + other).dtype, torch.double)
# adding a 0-dim tensor to a float doesn't promote to double unless first
# type was integral.
self.assertEqual((a + other).dtype, torch.float32)
@float_double_default_dtype
def test_half(self, device):
half = torch.tensor(5.5, dtype=torch.float16, device=device)
self.assertEqual((half + 2.2).dtype, torch.float16)
self.assertEqual((half + 100000).dtype, torch.float16) # inf
default_tensor = torch.tensor(100000.0, device=device)
self.assertEqual((half + default_tensor).dtype, torch.get_default_dtype())
def test_bfloat16(self, device):
# with scalar
bf = torch.tensor(5.5, dtype=torch.bfloat16, device=device)
for scalar in (2.2, 5, 100000): # bf + 100000 is inf
self.assertEqual((bf + scalar).dtype, torch.bfloat16)
self.assertEqual(scalar + bf, bf + scalar)
for scalar in (complex(1, 1), complex(-2, 0), complex(0, -3)):
self.assertEqual((bf + scalar).dtype, torch.cfloat)
self.assertEqual(bf + scalar, scalar + bf)
# with tensor
for dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
t = torch.tensor(1, dtype=dtype, device=device)
self.assertEqual(bf + t, t + bf)
if dtype in (torch.float16, torch.float32, torch.float64, torch.cfloat, torch.cdouble):
# Handles bfloat16 x float16 -> float32 promotion
expected_dtype = dtype if dtype != torch.half else torch.float32
elif dtype is torch.chalf:
expected_dtype = torch.cfloat
elif dtype in (torch.bool, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64, torch.bfloat16):
expected_dtype = torch.bfloat16
else:
raise AssertionError(f'Missing dtype {dtype} not tested.')
self.assertEqual(torch.promote_types(dtype, torch.bfloat16), expected_dtype)
self.assertEqual(torch.promote_types(torch.bfloat16, dtype), expected_dtype)
self.assertEqual((bf + t).dtype, expected_dtype)
@onlyNativeDeviceTypes
def test_complex_half(self, device):
# with scalar
chalf = torch.tensor(5.5, dtype=torch.chalf, device=device)
for scalar in (2.2, 5, 100000): # chalf + 100000 is inf
self.assertEqual((chalf * scalar).dtype, torch.chalf)
self.assertEqual(scalar * chalf, chalf * scalar)
for scalar in (complex(1, 1), complex(-2, 0), complex(0, -3)):
self.assertEqual((chalf * scalar).dtype, torch.chalf)
self.assertEqual(chalf * scalar, scalar * chalf)
# with tensor
dtypes = all_types_and_complex_and(torch.chalf, torch.half, torch.bfloat16, torch.bool)
for dtype in dtypes:
t = torch.tensor(1, dtype=dtype, device=device)
self.assertEqual(chalf * t, t * chalf)
if dtype in (torch.float16, torch.chalf):
expected_dtype = torch.chalf
elif dtype in (torch.float, torch.double, torch.bfloat16):
expected_dtype = torch.cdouble if dtype is torch.double else torch.cfloat
elif dtype in (torch.cfloat, torch.cdouble):
expected_dtype = dtype
elif dtype in (torch.bool, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64):
expected_dtype = torch.chalf
else:
raise AssertionError(f'Missing dtype {dtype} not tested.')
self.assertEqual(torch.promote_types(dtype, torch.chalf), expected_dtype)
self.assertEqual(torch.promote_types(torch.chalf, dtype), expected_dtype)
self.assertEqual((chalf * t).dtype, expected_dtype)
@float_double_default_dtype
def test_alternate_result(self, device):
x = torch.tensor([1, 1, 1, 1], dtype=torch.float, device=device)
o = torch.tensor([0, 0, 0, 0], dtype=torch.long, device=device)
self.assertRaisesRegex(RuntimeError,
"can't be cast to",
lambda: torch.add(x, x, out=o))
d = torch.tensor([1, 1, 1, 1], dtype=torch.double, device=device)
torch.add(x, x, out=d)
self.assertEqual(d.dtype, torch.double)
x = x.to(torch.double)
self.assertEqual(x + x, d)
@float_double_default_dtype
def test_mixed_type_backward(self, device):
f = torch.ones([3, 3], dtype=torch.float, requires_grad=True, device=device)
ten = torch.tensor([10.], dtype=torch.double, device=device)
tens = f * ten
s = (tens + 2).sum()
s.backward()
expected = f.grad.to(torch.double)
self.assertEqual(tens, expected)
# If we don't convert the returned grad_input to the actual input type
# we get an error like:
# RuntimeError: Function SubBackward0 returned an invalid gradient at index 0 - expected type \
# torch.FloatTensor but got torch.DoubleTensor
f_dtypes = [torch.float, torch.double]
if self.device_type == 'cuda':
f_dtypes = f_dtypes + [torch.half]
i_dtypes = [torch.int, torch.long]
for func in [torch.add, torch.sub, torch.rsub, torch.mul, torch.div]:
for dtype1, dtype2 in itertools.product(f_dtypes, f_dtypes + i_dtypes):
x = torch.ones(10, requires_grad=True, dtype=dtype1, device=device)
y = torch.ones(10, dtype=dtype2, device=device)
func(x, y).sum().backward()
def _get_test_tensor(self, device, dtype, remove_zeros=False):
shape = [5, 5, 5]
if dtype == torch.bool:
tensor = torch.randint(int(remove_zeros), 2, shape, device=device, dtype=dtype)
elif dtype.is_floating_point or dtype.is_complex:
# "_th_normal_ not supported on CPUType for Half" so simpler create and convert
tensor = torch.randn(shape, device=device)
tensor = tensor.to(dtype)
if remove_zeros:
tensor[torch.abs(tensor) < 0.05] = 5
else:
tensor = torch.randint(-5 if dtype.is_signed else 0, 10, shape, device=device, dtype=dtype)
if remove_zeros:
tensor[tensor == 0] = 5
return tensor
# verifies that torch.<op>(first, second) is the same as
# torch.<op>(first.to(common_dtype), second.to(common_dtype)) in cases where that should hold.
@float_double_default_dtype
def test_many_promotions(self, device):
# Can also include half on CPU in cases where it will be promoted to a
# supported dtype
dtypes1 = get_all_math_dtypes('cuda')
dtypes2 = get_all_math_dtypes(device)
ops = [torch.add, torch.sub, torch.mul, torch.div, torch.rsub]
for dt1, dt2 in itertools.product(dtypes1, dtypes2):
for op, non_contiguous in itertools.product(ops, [True, False]):
common_dtype = torch.promote_types(dt1, dt2)
if common_dtype == torch.half and self.device_type == 'cpu':
continue
if op == torch.sub and common_dtype != torch.bool:
# Subtraction, the `-` operator, with a bool tensor is not supported.
continue
first = self._get_test_tensor(device, dt1)
second = self._get_test_tensor(device, dt2, op == torch.div)
# test ops with non-contiguous tensors
if non_contiguous:
first = first.transpose(0, 2)
second = second.transpose(2, 1)
self.assertNotEqual(first.stride(), second.stride(),
msg="some non-contiguous issues could be missed if tensors have same strides")
self.assertEqual(not first.is_contiguous(), non_contiguous)
self.assertEqual(not second.is_contiguous(), non_contiguous)
result = op(first, second)
expected = op(first.to(common_dtype), second.to(common_dtype))
self.assertEqual(result.dtype, expected.dtype, msg='{} with {}, {}'.format(op.__name__, dt1, dt2))
self.assertEqual(result, expected, msg='{} with {}, {}'.format(op.__name__, dt1, dt2))
@float_double_default_dtype
def test_non_promoting_ops(self, device):
x = torch.ones(4, dtype=torch.double, device=device)
with self.assertRaises(RuntimeError):
torch.lerp(x, torch.ones(4, dtype=torch.float, device=device), 1)
@float_double_default_dtype
def test_alpha_mismatch(self, device):
x = torch.ones(4, dtype=torch.int, device=device)
err = 'alpha must not be'
self.assertRaisesRegex(RuntimeError, err,
lambda: torch.add(x, x, alpha=1.1))
x = x.to(torch.bool)
self.assertRaisesRegex(RuntimeError, err,
lambda: torch.add(x, x, alpha=1.1))
self.assertEqual(x + x, torch.add(x, x, alpha=True))
@float_double_default_dtype
def test_booleans(self, device):
onedim = torch.tensor([True], device=device)
self.assertEqual(onedim + onedim, onedim)
self.assertEqual(onedim + True, onedim)
self.assertEqual(torch.add(True, True), True)
self.assertEqual(torch.add(False, False), False)
self.assertEqual(torch.add(False, True), True)
self.assertRaisesRegex(RuntimeError, "Boolean alpha only supported",
lambda: torch.add(1, 1, alpha=True))
self.assertEqual(torch.add(torch.tensor(True, device=device),
torch.tensor(True, device=device), True),
torch.tensor(True, device=device))
@float_double_default_dtype
def test_create_bool_tensors(self, device):
expected = torch.tensor([0], dtype=torch.int64, device=device)
self.assertEqual(torch.arange(False, True, device=device), expected)
self.assertEqual(torch.arange(True, device=device), expected)
expected = torch.tensor([0, 0.5], dtype=torch.get_default_dtype(), device=device)
self.assertEqual(torch.arange(False, True, 0.5, device=device), expected)
expected = torch.ones(0, dtype=torch.int64, device=device)
self.assertEqual(torch.arange(False, False, device=device), expected)
bool_tensor_lin = torch.linspace(False, True, steps=100, device=device)
int_tensor_lin = torch.linspace(0, 1, steps=100, device=device)
self.assertEqual(bool_tensor_lin, int_tensor_lin)
bool_tensor_log = torch.linspace(False, True, steps=100, device=device)
int_tensor_log = torch.linspace(0, 1, steps=100, device=device)
self.assertEqual(bool_tensor_log, int_tensor_log)
# this seems like odd behavior but ints also create float tensors, numpy doesn't have this function.
self.assertEqual(torch.scalar_tensor(False, device=device), torch.tensor(0., device=device))
@dtypes(*itertools.product(all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool),
all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool)))
def test_result_type(self, device, dtypes):
"Test result_type for tensor vs tensor and scalar vs scalar."
def _get_dtype(x):
"Get the dtype of x if x is a tensor. If x is a scalar, get its corresponding dtype if it were a tensor."
if torch.is_tensor(x):
return x.dtype
elif isinstance(x, bool):
return torch.bool
elif isinstance(x, int):
return torch.int64
elif isinstance(x, float):
return torch.float32
elif isinstance(x, complex):
return torch.complex64
else:
raise AssertionError(f"Unkonwn type {x}")
# tensor against tensor
a_tensor = torch.tensor((0, 1), device=device, dtype=dtypes[0])
a_single_tensor = torch.tensor(1, device=device, dtype=dtypes[0])
a_scalar = a_single_tensor.item()
b_tensor = torch.tensor((1, 0), device=device, dtype=dtypes[1])
b_single_tensor = torch.tensor(1, device=device, dtype=dtypes[1])
b_scalar = b_single_tensor.item()
combo = ((a_tensor, a_single_tensor, a_scalar), (b_tensor, b_single_tensor, b_scalar))
for a, b in itertools.product(*combo):
dtype_a = _get_dtype(a)
dtype_b = _get_dtype(b)
try:
result = a + b
except RuntimeError:
with self.assertRaises(RuntimeError):
torch.promote_types(dtype_a, dtype_b)
with self.assertRaises(RuntimeError):
torch.result_type(a, b)
else:
dtype_res = _get_dtype(result)
if a is a_scalar and b is b_scalar and dtype_a == torch.bool and dtype_b == torch.bool:
# special case: in Python, True + True is an integer
self.assertEqual(dtype_res, torch.int64, f"a == {a}, b == {b}")
else:
self.assertEqual(dtype_res, torch.result_type(a, b), f"a == {a}, b == {b}")
if a is a_scalar and b is b_scalar: # Python internal type determination is good enough in this case
continue
if any(a is a0 and b is b0 for a0, b0 in zip(*combo)): # a and b belong to the same class
self.assertEqual(dtype_res, torch.promote_types(dtype_a, dtype_b), f"a == {a}, b == {b}")
# Spot check some result type for tensor against scalar (including single-element tensor).
@float_double_default_dtype
def test_result_type_tensor_vs_scalar(self, device):
def _test_spot(a, b, res_dtype):
self.assertEqual(torch.result_type(a, b), res_dtype)
self.assertEqual(torch.result_type(b, a), res_dtype)
_test_spot(torch.tensor([1, 2], dtype=torch.half, device=device),
torch.tensor(1, dtype=torch.long, device=device), torch.half)
_test_spot(torch.tensor(1, dtype=torch.float, device=device),
torch.tensor([1, 2], dtype=torch.double, device=device), torch.double)
_test_spot(torch.tensor(1, dtype=torch.int, device=device), 1, torch.int)
_test_spot(torch.tensor(1, device=device), 1., torch.get_default_dtype())
_test_spot(torch.tensor(1, dtype=torch.long, device=device),
torch.tensor([1, 1], dtype=torch.int, device=device), torch.int)
_test_spot(torch.tensor([1., 1.], dtype=torch.float, device=device), 1., torch.float)
_test_spot(torch.tensor([1., 1.], dtype=torch.complex64, device=device),
torch.tensor(1., dtype=torch.complex128, device=device), torch.complex64)
_test_spot(torch.tensor([1., 1.], dtype=torch.complex128, device=device),
torch.tensor(1., dtype=torch.complex64, device=device), torch.complex128)
_test_spot(torch.tensor([1, 1], dtype=torch.bool, device=device), 1., torch.get_default_dtype())
@float_double_default_dtype
def test_can_cast(self, device):
self.assertTrue(torch.can_cast(torch.double, torch.float))
self.assertFalse(torch.can_cast(torch.float, torch.int))
@float_double_default_dtype
def test_comparison_ops_with_type_promotion(self, device):
value_for_type = {
torch.uint8: (1 << 5),
torch.int8: (1 << 5),
torch.int16: (1 << 10),
torch.int32: (1 << 20),
torch.int64: (1 << 35),
torch.float16: (1 << 10),
torch.float32: (1 << 20),
torch.float64: (1 << 35),
torch.complex64: (1 << 20),
torch.complex128: (1 << 35)
}
comparison_ops = [
dict(
name="lt",
out_op=lambda x, y, d: torch.lt(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.lt(x, y),
compare_op=lambda x, y: x < y,
),
dict(
name="le",
out_op=lambda x, y, d: torch.le(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.le(x, y),
compare_op=lambda x, y: x <= y,
),
dict(
name="gt",
out_op=lambda x, y, d: torch.gt(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.gt(x, y),
compare_op=lambda x, y: x > y,
),
dict(
name="ge",
out_op=lambda x, y, d: torch.ge(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.ge(x, y),
compare_op=lambda x, y: x >= y,
),
dict(
name="eq",
out_op=lambda x, y, d: torch.eq(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.eq(x, y),
compare_op=lambda x, y: x == y,
),
dict(
name="ne",
out_op=lambda x, y, d: torch.ne(x, y, out=torch.empty(0, dtype=torch.bool, device=d)),
ret_op=lambda x, y: torch.ne(x, y),
compare_op=lambda x, y: x != y,
),
]
for op in comparison_ops:
for dt1 in get_all_math_dtypes(device):
for dt2 in get_all_math_dtypes(device):
if (dt1.is_complex or dt2.is_complex) and not (op["name"] == "eq" or op["name"] == "ne"):
continue
val1 = value_for_type[dt1]
val2 = value_for_type[dt2]
t1 = torch.tensor([val1], dtype=dt1, device=device)
t2 = torch.tensor([val2], dtype=dt2, device=device)
expected = torch.tensor([op["compare_op"](val1, val2)], dtype=torch.bool)
out_res = op["out_op"](t1, t2, device)
self.assertEqual(out_res, expected)
self.assertTrue(out_res.dtype == torch.bool)
self.assertTrue(t1.dtype == dt1)
self.assertTrue(t2.dtype == dt2)
out_res = op["ret_op"](t1, t2)
self.assertEqual(out_res, expected)
self.assertTrue(out_res.dtype == torch.bool)
self.assertTrue(t1.dtype == dt1)
self.assertTrue(t2.dtype == dt2)
# test that comparing a zero dim tensor with another zero dim tensor has type promotion behavior
t1 = torch.tensor(val1, dtype=dt1, device=device)
t2 = torch.tensor(val2, dtype=dt2, device=device)
expected = torch.tensor(op["compare_op"](val1, val2), dtype=torch.bool)
out_res = op["out_op"](t1, t2, device)
self.assertEqual(out_res, expected)
self.assertTrue(out_res.dtype == torch.bool)
self.assertTrue(t1.dtype == dt1)
self.assertTrue(t2.dtype == dt2)
out_res = op["ret_op"](t1, t2)
self.assertEqual(out_res, expected)
self.assertTrue(out_res.dtype == torch.bool)
self.assertTrue(t1.dtype == dt1)
self.assertTrue(t2.dtype == dt2)
# XLA tests fail for self.assertRaises for complex dtypes
@onlyNativeDeviceTypes
def test_complex_assertraises(self, device):
comparison_ops = [
dict(name="lt", compare_op=lambda x, y: x < y, ),
dict(name="le", compare_op=lambda x, y: x <= y, ),
dict(name="gt", compare_op=lambda x, y: x > y, ),
dict(name="ge", compare_op=lambda x, y: x >= y, ),
dict(name="eq", compare_op=lambda x, y: x == y, ),
dict(name="ne", compare_op=lambda x, y: x != y, ),
]
for op in comparison_ops:
is_cuda = torch.device(device).type == 'cuda'
dtypes = get_all_dtypes(include_half=is_cuda,
include_bfloat16=False, include_bool=False,
include_complex32=True)
for dt1, dt2 in itertools.product(dtypes, dtypes):
if (dt1.is_complex or dt2.is_complex) and not (op["name"] == "eq" or op["name"] == "ne"):
u = torch.tensor([1], dtype=dt1, device=device)
v = torch.tensor([2], dtype=dt2, device=device)
self.assertRaises(RuntimeError, lambda: torch.tensor([op["compare_op"](u, v)], dtype=torch.bool))
@float_double_default_dtype
def test_lt_with_type_promotion(self, device):
for dt in get_all_math_dtypes(device):
x = torch.tensor([0], dtype=dt, device=device)
expected = torch.tensor([True], dtype=torch.bool, device=device)
if dt.is_complex:
continue
actual = x < 0.5
self.assertTrue(actual, expected)
self.assertTrue(actual.dtype == torch.bool)
actual = x < torch.tensor(0.5, device=device)
self.assertTrue(actual, expected)
self.assertTrue(actual.dtype == torch.bool)
x = torch.tensor(0, dtype=dt, device=device)
expected = torch.tensor(True, dtype=torch.bool, device=device)
actual = x < 0.5
self.assertTrue(actual, expected)
self.assertTrue(actual.dtype == torch.bool)
actual = x < torch.tensor(0.5, device=device)
self.assertTrue(actual, expected)
self.assertTrue(actual.dtype == torch.bool)
@float_double_default_dtype
def test_promote_types(self, device):
self.assertEqual(torch.promote_types(torch.float, torch.int), torch.float)
self.assertEqual(torch.promote_types(torch.float, torch.double), torch.double)
self.assertEqual(torch.promote_types(torch.int, torch.uint8), torch.int)
@float_double_default_dtype
def test_promote_self(self, device):
for dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.chalf, torch.bool):
self.assertEqual(torch.promote_types(dtype, dtype), dtype)
@expectedFailureMeta
@float_double_default_dtype
def test_indexing_fail(self, device):
# https://github.com/pytorch/pytorch/issues/28010
a = torch.ones(5, 2, dtype=torch.double, device=device)
b = torch.zeros(5, dtype=torch.int, device=device)
with self.assertRaises(RuntimeError):
a[:, [1]] = b.unsqueeze(-1)
@float_double_default_dtype
def test_indexing(self, device):
x = torch.ones(5, 2, dtype=torch.double, device=device)
y = torch.zeros(5, dtype=torch.double, device=device)
x[:, [1]] = y.unsqueeze(-1)
expected = torch.tensor([(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)], dtype=torch.double, device=device)
self.assertEqual(x, expected)
# https://github.com/pytorch/pytorch/issues/27824
tmp = torch.ones(9, 9, dtype=torch.float, device=device)
mask = torch.ones(10, 10, dtype=torch.uint8, device=device)
result = tmp + mask[1:, 1:]
expected = torch.full([9, 9], 2., dtype=torch.float, device=device).fill_(2.)
self.assertEqual(result, expected)
@float_double_default_dtype
def test_transpose(self, device):
# https://github.com/pytorch/pytorch/issues/28502
a = torch.tensor([[True, True], [False, True]], device=device)
self.assertEqual(a.t() == 0, a.t() == False) # noqa: E712
@dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
@float_double_default_dtype
def test_div_promotion(self, device, dtype):
for op in (torch.div, torch.true_divide):
dividend = (torch.randn(5, device=device) * 100).to(dtype)
divisor = torch.arange(1, 6, device=device).to(dtype)
# Tests tensor/tensor division
casting_result = dividend.to(torch.get_default_dtype()) / divisor.to(torch.get_default_dtype())
self.assertEqual(casting_result, op(dividend, divisor))
# Tests tensor/scalar division
casting_result = dividend.to(torch.get_default_dtype()) / 2
self.assertEqual(casting_result, op(dividend, 2.))
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double,
torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def test_div_promotion_out(self, device, dtype):
for op in (torch.div, torch.true_divide):
dividend = (torch.randn(5, device=device) * 100).to(dtype)
divisor = torch.arange(1, 6, device=device).to(dtype)
# Tests that requests for an integer quotient fail
if not dtype.is_floating_point:
integral_quotient = torch.empty(5, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
op(dividend, divisor, out=integral_quotient)
with self.assertRaises(RuntimeError):
op(dividend, 2, out=integral_quotient)
else:
# Tests that requests for a floating quotient succeed
floating_quotient = torch.empty(5, device=device, dtype=dtype)
div_result = dividend / divisor
self.assertEqual(div_result,
op(dividend, divisor, out=floating_quotient))
self.assertEqual(dividend / 2,
op(dividend, 2, out=floating_quotient))
@dtypes(torch.float, torch.double,
torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def test_div_promotion_inplace(self, device, dtype):
for op in (torch.Tensor.div_, torch.Tensor.true_divide_):
dividend = (torch.randn(5, device=device) * 100).to(dtype)
divisor = torch.arange(1, 6, device=device).to(dtype)
# Tests that requests for an integer quotient fail
if not dtype.is_floating_point:
with self.assertRaises(RuntimeError):
op(dividend, divisor)
with self.assertRaises(RuntimeError):
op(dividend, 2)
else:
# Tests that requests for a floating quotient succeed
div_result = dividend.clone().div_(divisor)
self.assertEqual(div_result, op(dividend.clone(), divisor))
self.assertEqual(dividend.clone().div_(2), op(dividend.clone(), 2))
def _test_sparse_op_input_tensors(self, device, dtype, coalesced, zeros=True):
t = self._get_test_tensor(device, dtype, not zeros)
if zeros and dtype != torch.bool:
# ensure sparsity. Bool should already have sufficient sparsity.
mask = self._get_test_tensor(device, torch.bool)
t = t * mask
if coalesced:
s = t.to_sparse()
else:
s = t.to_sparse()
indices = torch.cat((s.indices(), s.indices()), 1)
values = torch.cat((s.values(), s.values()), 0)
s = torch.sparse_coo_tensor(indices=indices, values=values, size=s.size(), dtype=dtype, device=device)
t = s.to_dense()
self.assertEqual(s.is_coalesced(), coalesced)
self.assertEqual(s.dtype, dtype)
self.assertEqual(t.dtype, s.dtype)
return t, s
def _get_precision(self, dtype, coalesced):
if dtype == torch.half and not coalesced:
# very low precision for uncoalesced float16 sparse tensors since
# ops like (s1 + s2).to_dense() will add four low-precision
# floating point values.
return 5e-2
if dtype == torch.half:
return 1e-3
# uses default
return None
def _test_sparse_op(self, op_name, inplace, dtype1, dtype2, device, coalesced):
if dtype1.is_complex or dtype2.is_complex:
return
suffix = '_' if inplace else ''
err = "{} {}({}, {})".format(" coalesced" if coalesced else "uncoalesced", op_name + suffix, dtype1, dtype2)
def op(t1, t2, suf=None):
suf = suffix if suf is None else suf
return getattr(t1, op_name + suf)(t2)
add_sub = op_name == 'add' or op_name == 'sub'
(dense1, sparse1) = self._test_sparse_op_input_tensors(device, dtype1, coalesced)
(dense2, sparse2) = self._test_sparse_op_input_tensors(device, dtype2, coalesced, op_name != 'div')
common_dtype = torch.result_type(dense1, dense2)
if self.device_type == 'cpu' and common_dtype == torch.half:
self.assertRaises(RuntimeError, lambda: op(s1, d2))
# Skip inplace tests that would fail due to inability to cast to the output type.
# Some of these would also raise errors due to not being a supported op.
if inplace and not torch.can_cast(common_dtype, dtype1):
self.assertRaises(RuntimeError, lambda: op(dense1, sparse2))
self.assertRaises(RuntimeError, lambda: op(sparse1, sparse2))
self.assertRaises(RuntimeError, lambda: op(sparse1, dense2))
return
expected = op(dense1.clone(), dense2)
precision = self._get_precision(expected.dtype, coalesced)
rtol = None if precision is None else 0
test_tensors = [expected, dense1, sparse1, dense2, sparse2]
e, d1, s1, d2, s2 = [x.clone() for x in test_tensors] if inplace else test_tensors
# Test op(sparse, sparse)
if op_name != 'div':
sparse = op(s1, s2)
self.assertEqual(sparse.dtype, e.dtype)
self.assertEqual(e, sparse.to_dense(), atol=precision, rtol=rtol, msg=err)
else:
# sparse division only supports division by a scalar
self.assertRaises(RuntimeError, lambda: op(s1, s2).to_dense())
# Test op(dense, sparse)
if add_sub or op_name == 'mul':
if inplace:
e, d1, s1, d2, s2 = [x.clone() for x in test_tensors]
dense_sparse = op(d1, s2)
dense_sparse = dense_sparse.to_dense() if dense_sparse.is_sparse else dense_sparse
self.assertEqual(e, dense_sparse, atol=precision, rtol=rtol, msg=err)
else:
# sparse division only supports division by a scalar
# mul: Didn't find kernel to dispatch to for operator 'aten::_nnz'
self.assertRaises(RuntimeError, lambda: op(d1, s2))
# Test op(sparse, dense) not supported for all ops but 'mul'.
# add(sparse, dense) is not supported. Use add(dense, sparse) instead.
# sparse division only supports division by a scalar
if op_name != 'mul':
self.assertRaises(RuntimeError, lambda: op(s1, d2))
else:
# No type promotions for inplace operations, hence suf=''
op(s1, d2, suf='')
# Test op(sparse, scalar)
if not add_sub and not (self.device_type == 'cpu' and dtype1 == torch.half):
if inplace:
e, d1, s1, d2, s2 = [x.clone() for x in test_tensors]
scalar = d2.view(d2.numel())[0].item()
sparse = op(s1, scalar)
dense_scalar = op(d1, scalar)
self.assertEqual(sparse.dtype, dense_scalar.dtype)
self.assertEqual(dense_scalar, sparse.to_dense(), atol=precision, rtol=rtol, msg=err)
else:
# add(sparse, dense) is not supported. Use add(dense, sparse) instead.
# "mul_cpu" / "div_cpu" not implemented for 'Half'
self.assertRaises(RuntimeError, lambda: op(s1, d2.view(d2.numel())[0].item()))
def _run_all_tests_for_sparse_op(self, op_name, device, dtypes):
for dtype1, dtype2 in itertools.product(dtypes, dtypes):
for inplace, coalesced in itertools.product([True, False], [True, False]):
self._test_sparse_op(op_name, inplace, dtype1, dtype2, device, coalesced)
@onlyNativeDeviceTypes
def test_sparse_add(self, device):
self._run_all_tests_for_sparse_op('add', device,
dtypes=get_all_math_dtypes(device))
@onlyNativeDeviceTypes
def test_sparse_mul(self, device):
self._run_all_tests_for_sparse_op('mul', device,
dtypes=get_all_math_dtypes(device))
@onlyNativeDeviceTypes
def test_sparse_div(self, device):
self._run_all_tests_for_sparse_op('div', device,
dtypes=(torch.float32, torch.float64,
torch.complex64, torch.complex128))
@onlyNativeDeviceTypes
def test_sparse_sub(self, device):
self._run_all_tests_for_sparse_op('sub', device,
dtypes=get_all_math_dtypes(device))
@onlyNativeDeviceTypes
@dtypes(torch.bool, torch.short, torch.uint8, torch.int, torch.long)
@float_double_default_dtype
def test_sparse_div_promotion(self, device, dtype):
for op in (torch.div, torch.true_divide):
dividend = torch.randn(5, device=device).to(dtype)
divisor = 2
dividend_sparse = dividend.to_sparse()
casting_result = dividend.to(torch.get_default_dtype()) / 2
self.assertEqual(casting_result, op(dividend_sparse, 2).to_dense())
@onlyNativeDeviceTypes
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
def test_integer_addcdiv_deprecated(self, device, dtype):
t = torch.tensor(1, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, '^Integer division.+is no longer supported.+'):
torch.addcdiv(t, t, t)
with self.assertRaisesRegex(RuntimeError, '^Integer division.+is no longer supported.+'):
torch.addcdiv(t, t, t, out=t)
with self.assertRaisesRegex(RuntimeError, '^Integer division.+is no longer supported+'):
t.addcdiv_(t, t)
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@float_double_default_dtype
@onlyCPU
@dtypes(*list(itertools.product(set(numpy_to_torch_dtype_dict.values()),
set(numpy_to_torch_dtype_dict.values()))))
def test_numpy_array_binary_ufunc_promotion(self, device, dtypes):
import operator
np_type = torch_to_numpy_dtype_dict[dtypes[0]]
torch_type = dtypes[1]
t = torch.tensor((1,), device=device, dtype=torch_type)
a = np.array((1,), dtype=np_type)
a_as_t = torch.from_numpy(a).to(device=device)
for np_first in (True, False):
for op in (operator.add, torch.add):
# Acquires results of binary ufunc type promotion.
try:
actual = op(a, t) if np_first else op(t, a)
except Exception as e:
actual = e
try:
expected = op(a_as_t, t) if np_first else op(t, a_as_t)
except Exception as e:
expected = e
same_result = (type(expected) == type(actual)) and expected == actual
# Note: An "undesired failure," as opposed to an "expected failure"
# is both expected (we know the test will fail) and
# undesirable (if PyTorch was working properly the test would
# not fail). This test is affected by three issues (see below)
# that will cause undesired failures. It detects when these
# issues will occur and updates this bool accordingly.
undesired_failure = False
# A NumPy array as the first argument to the plus operator
# or as any argument to torch.add is not working as
# intended.
# See https://github.com/pytorch/pytorch/issues/36363.
if np_first and op is operator.add:
undesired_failure = True
if op is torch.add:
undesired_failure = True
# Expects the same result if undesired_failure is false
# and a different result otherwise.
# Note: These cases prettyprint the failing inputs to make
# debugging test failures easier.
if undesired_failure and same_result:
msg = ("Failure: {0} == {1}. "
"torch type was {2}. NumPy type was {3}. np_first is {4} "
"default type is {5}.").format(actual, expected,
torch_type, np_type,
np_first,
torch.get_default_dtype())
self.fail(msg)
if not undesired_failure and not same_result:
msg = ("Failure: {0} != {1}. "
"torch type was {2}. NumPy type was {3}. np_first is {4} "
"default type is {5}.").format(actual, expected,
torch_type, np_type,
np_first,
torch.get_default_dtype())
self.fail(msg)
@onlyNativeDeviceTypes
def test_cat_different_dtypes(self, device):
dtypes = all_types_and_complex_and(torch.half, torch.bool)
for x_dtype, y_dtype in itertools.product(dtypes, dtypes):
x_vals, y_vals = [1, 2, 3], [4, 5, 6]
x = torch.tensor(x_vals, device=device, dtype=x_dtype)
y = torch.tensor(y_vals, device=device, dtype=y_dtype)
if x_dtype is torch.bool:
x_vals = [1, 1, 1]
if y_dtype is torch.bool:
y_vals = [1, 1, 1]
res_dtype = torch.result_type(x, y)
expected_res = torch.tensor(x_vals + y_vals, device=device, dtype=res_dtype)
res = torch.cat([x, y])
self.assertEqual(res, expected_res, exact_dtype=True)
# cat: full and an empty tensor.
y = torch.tensor([], device=device, dtype=y_dtype)
res_dtype = torch.result_type(x, y)
expected_res = torch.tensor(x_vals + [], device=device, dtype=res_dtype)
res = torch.cat([x, y])
self.assertEqual(res, expected_res, exact_dtype=True)
@onlyNativeDeviceTypes
def test_cat_out_different_dtypes(self, device):
dtypes = all_types_and_complex_and(torch.half)
for x_dtype, y_dtype, out_dtype in itertools.product(dtypes, dtypes, dtypes):
out = torch.zeros(6, device=device, dtype=out_dtype)
x = torch.tensor([1, 2, 3], device=device, dtype=x_dtype)
y = torch.tensor([4, 5, 6], device=device, dtype=y_dtype)
expected_out = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=out_dtype)
if (((x_dtype.is_floating_point or y_dtype.is_floating_point)
and not (out_dtype.is_floating_point or out_dtype.is_complex))
or ((x_dtype.is_complex or y_dtype.is_complex) and not out_dtype.is_complex)):
# This combinations do not support type conversion to a different class out type
with self.assertRaises(RuntimeError):
torch.cat([x, y], out=out)
else:
torch.cat([x, y], out=out)
self.assertEqual(out, expected_out, exact_dtype=True)
# Verfies that unary ops require matching out types
@onlyNativeDeviceTypes
@dtypes(*itertools.product((torch.int64,
torch.float32, torch.float64,
torch.complex64, torch.complex128),
(torch.int64,
torch.float32, torch.float64,
torch.complex64, torch.complex128)))
def test_unary_op_out_casting(self, device, dtypes):
t = torch.tensor((1), dtype=dtypes[0], device=device)
out = torch.empty(0, dtype=dtypes[1], device=device)
ops = (torch.neg, torch.floor, torch.ceil)
float_and_int_only_ops = {torch.floor, torch.ceil}
real_only_ops = {torch.floor, torch.ceil}
for op in ops:
if dtypes[0] is not dtypes[1]:
with self.assertRaises(RuntimeError):
op(t, out=out)
elif op in real_only_ops and dtypes[0].is_complex:
with self.assertRaises(RuntimeError):
op(t, out=out)
elif (
op in float_and_int_only_ops
and (not dtypes[0].is_floating_point and not dtypes[0].is_complex)
and (not (dtypes[0] == torch.int64 and dtypes[1] == torch.int64))
and device != "meta"
):
with self.assertRaises(RuntimeError):
op(t, out=out)
else:
self.assertEqual(op(t, out=out), op(t))
self.assertEqual(op(t, out=out), out)
# Verifies that the out= argument doesn't affect the computation, that
# is, out = op(...) and op(..., out=out) produce the same result.
@onlyNativeDeviceTypes
@skipMeta
def test_computation_ignores_out(self, device):
t = torch.tensor(33000, dtype=torch.float16, device=device)
out = torch.empty(0, dtype=torch.float64, device=device)
result = torch.add(t, t, out=out)
self.assertEqual(result, t + t, exact_dtype=False)
self.assertNotEqual(result, t.double() + t, exact_dtype=False)
a = torch.tensor(1.5, dtype=torch.float16, device=device)
b = torch.tensor(.666, dtype=torch.float16, device=device)
result = torch.true_divide(a, b, out=out)
self.assertEqual(result, a / b, exact_dtype=False)
self.assertNotEqual(result, a.double() / a, exact_dtype=False)
a = torch.tensor(5, dtype=torch.uint8, device=device)
b = torch.tensor(8, dtype=torch.uint8, device=device)
result = torch.sub(a, b, out=out)
self.assertEqual(result, a - b, exact_dtype=False)
self.assertNotEqual(result, a.double() - b, exact_dtype=False)
@onlyNativeDeviceTypes
@dtypes(*itertools.product((torch.bool, torch.int, torch.float, torch.double), repeat=3))
def test_clamp_type_promotion(self, device, dtypes):
dtype0, dtype1, dtype2 = dtypes
S = 4
def make_tensor(size, dtype):
if dtype == torch.bool:
return torch.randint(2, size, dtype=dtype, device=device)
elif dtype == torch.int:
return torch.randint(10, size, dtype=dtype, device=device)
else:
return torch.randn(size, dtype=dtype, device=device)
min_t = make_tensor((S,), dtype1)
max_t = make_tensor((S,), dtype2)
mins = (min_t, min_t[0], min_t[0].item())
maxs = (max_t, max_t[0], max_t[0].item())
inp = make_tensor((S,), dtype0)
for min_v, max_v in itertools.product(mins, maxs):
if type(max_v) != type(min_v):
continue
if isinstance(min_v, torch.Tensor) and min_v.ndim == 0 and max_v.ndim == 0:
continue # 0d tensors go to scalar overload, and it's tested separately
def expected_type(inp, max, min):
arg1, arg2 = max, min
if isinstance(max, torch.Tensor) and max.ndim == 0:
# first do a maybe dimensional boundary
arg1, arg2 = min, max
exp_type = torch.result_type(inp, arg1)
inp_new = torch.empty_like(inp, dtype=exp_type)
return torch.result_type(inp_new, arg2)
exp_type = expected_type(inp, min_v, max_v)
if exp_type != torch.bool:
actual = torch.clamp(inp, min_v, max_v)
inps = list(map(lambda x: x.to(exp_type) if isinstance(x, torch.Tensor) else x,
(inp, min_v, max_v)))
expected = torch.clamp(inps[0], inps[1], inps[2])
self.assertEqual(actual, expected)
if inp.dtype in floating_types() or exp_type == inp.dtype:
actual = torch.clamp_(inp, min_v, max_v)
self.assertEqual(actual, expected, exact_dtype=False)
for val in mins:
def expected_type(inp, val):
return torch.result_type(inp, val)
exp_type = expected_type(inp, val)
if exp_type != torch.bool:
actual = torch.clamp_min(inp, val)
inps = list(map(lambda x: x.to(exp_type) if isinstance(x, torch.Tensor) else x,
(inp, val)))
expected = torch.clamp_min(inps[0], inps[1])
self.assertEqual(actual.dtype, exp_type)
self.assertEqual(actual, expected)
if inp.dtype == exp_type:
actual = torch.clamp_min_(inp, val)
self.assertEqual(actual, expected)
actual = torch.clamp_max(inp, val)
expected = torch.clamp_max(inps[0], inps[1])
self.assertEqual(actual, expected)
if inp.dtype in floating_types() or exp_type == inp.dtype:
actual = torch.clamp_max_(inp, val)
self.assertEqual(actual, expected, exact_dtype=False)
instantiate_device_type_tests(TestTypePromotion, globals())
if __name__ == '__main__':
run_tests()
|