File: test_unary_ufuncs.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1509 lines) | stat: -rw-r--r-- 62,586 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
# Owner(s): ["module: tests"]

import torch
import numpy as np

import math
from numbers import Number
import random
import unittest

from torch._six import inf, nan
from torch.testing._internal.common_utils import (
    TestCase,
    run_tests,
    torch_to_numpy_dtype_dict,
    numpy_to_torch_dtype_dict,
    suppress_warnings,
    TEST_SCIPY,
    slowTest,
    skipIfNoSciPy,
    IS_WINDOWS,
    gradcheck,
    TEST_WITH_ASAN,
)
from torch.testing._internal.common_methods_invocations import (
    unary_ufuncs,
    generate_elementwise_unary_tensors,
    generate_elementwise_unary_small_value_tensors,
    generate_elementwise_unary_large_value_tensors,
    generate_elementwise_unary_extremal_value_tensors,
)
from torch.testing._internal.common_device_type import (
    instantiate_device_type_tests,
    ops,
    dtypes,
    onlyCPU,
    onlyNativeDeviceTypes,
    onlyCUDA,
    dtypesIfCUDA,
    precisionOverride,
    dtypesIfCPU,
)

from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
    floating_types_and,
    all_types_and_complex_and,
    integral_types_and,
    get_all_math_dtypes,
    complex_types,
    all_types_and,
    floating_and_complex_types_and,
)

if TEST_SCIPY:
    import scipy

# Refer [scipy reference filter]
# Filter operators for which the reference function
# is available in the current environment (for reference_numerics tests).
reference_filtered_ops = list(filter(lambda op: op.ref is not None, unary_ufuncs))

# Tests for unary "universal functions (ufuncs)" that accept a single
# tensor and have common properties like:
#   - they are elementwise functions
#   - the input shape is the output shape
#   - they typically have method and inplace variants
#   - they typically support the out kwarg
#   - they typically have NumPy or SciPy references

# See NumPy's universal function documentation
# (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
# about the concept of ufuncs.


# TODO: port test_unary_out_op_mem_overlap
# TODO: add test for inplace variants erroring on broadcasted inputs
class TestUnaryUfuncs(TestCase):
    exact_dtype = True

    @ops(
        [_fn for _fn in unary_ufuncs if _fn.domain != (None, None)],
        allowed_dtypes=floating_types_and(torch.bfloat16, torch.half),
    )
    def test_float_domains(self, device, dtype, op):
        eps = (1e-5, 1e-3, 1e-1, 1, 2, 10, 20, 50, 100)

        low, high = op.domain
        # NOTE: the following two loops are separated for readability
        if low is not None:
            low_tensor = torch.tensor(low, device=device, dtype=dtype)
            for epsilon in eps:
                lower_tensor = low_tensor - epsilon

                # Skips the test if the difference is not representable,
                #   which can occur if, for example, the difference is small
                #   and the dtype is imprecise (like bfloat16 is)
                if lower_tensor.item() == low_tensor.item():
                    continue

                result = op(lower_tensor)
                self.assertEqual(
                    result.item(),
                    float("nan"),
                    msg=(
                        "input of {0} outside lower domain boundary"
                        " {1} produced {2}, not nan!"
                    ).format(lower_tensor.item(), low, result.item()),
                )

        if high is not None:
            high_tensor = torch.tensor(high, device=device, dtype=dtype)
            for epsilon in eps:
                higher_tensor = high_tensor + epsilon

                # See above comment
                if higher_tensor.item() == high_tensor.item():
                    continue

                result = op(higher_tensor)
                self.assertEqual(
                    result.item(),
                    float("nan"),
                    msg=(
                        "input of {0} outside upper domain boundary"
                        " {1} produced {2}, not nan!"
                    ).format(higher_tensor.item(), high, result.item()),
                )

    # Helper for comparing torch tensors and numpy arrays
    # TODO: should this or assertEqual also validate that strides are equal?
    def assertEqualHelper(
        self, actual, expected, msg, *, dtype, exact_dtype=True, **kwargs
    ):
        assert isinstance(actual, torch.Tensor)

        # Some NumPy functions return scalars, not arrays
        if isinstance(expected, Number):
            self.assertEqual(actual.item(), expected, msg, **kwargs)
        elif isinstance(expected, np.ndarray):
            # Handles exact dtype comparisons between arrays and tensors
            if exact_dtype:
                if (
                    actual.dtype is torch.bfloat16
                    or expected.dtype != torch_to_numpy_dtype_dict[actual.dtype]
                ):
                    # Allows array dtype to be float32 when comparing with bfloat16 tensors
                    #   since NumPy doesn't support the bfloat16 dtype
                    # Also ops like scipy.special.erf, scipy.special.erfc, etc, promote float16
                    # to float32
                    if expected.dtype == np.float32:
                        assert actual.dtype in (
                            torch.float16,
                            torch.bfloat16,
                            torch.float32,
                        )
                    elif expected.dtype == np.float64:
                        assert actual.dtype in (
                            torch.float16,
                            torch.bfloat16,
                            torch.float32,
                            torch.float64,
                        )
                    else:
                        self.fail(
                            "Expected dtype {0} but got {1}!".format(
                                expected.dtype, actual.dtype
                            )
                        )

            self.assertEqual(
                actual,
                torch.from_numpy(expected).to(actual.dtype),
                msg,
                exact_device=False,
                **kwargs
            )
        else:
            self.assertEqual(actual, expected, msg, exact_device=False, **kwargs)

    # Tests that the function and its (array-accepting) reference produce the same
    #   values on given tensors
    def _test_reference_numerics(self, dtype, op, tensors, equal_nan=True):
        def _helper_reference_numerics(
            expected, actual, msg, exact_dtype, equal_nan=True
        ):
            if not torch.can_cast(
                numpy_to_torch_dtype_dict[expected.dtype.type], dtype
            ):
                exact_dtype = False

            if dtype in [torch.uint8, torch.int8, torch.bool]:
                # NOTE: For these dtypes, PyTorch computes in the default scalar type (float)
                # while NumPy computes in float16
                self.assertEqualHelper(
                    actual,
                    expected,
                    msg,
                    dtype=dtype,
                    exact_dtype=exact_dtype,
                    rtol=1e-3,
                    atol=1e-2,
                )
            elif dtype is torch.bfloat16:
                # Ref: https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_utils.py#L1149
                self.assertEqualHelper(
                    actual,
                    expected,
                    msg,
                    dtype=dtype,
                    exact_dtype=exact_dtype,
                    rtol=16e-3,
                    atol=1e-5,
                )

            else:
                self.assertEqualHelper(
                    actual,
                    expected,
                    msg,
                    dtype=dtype,
                    equal_nan=equal_nan,
                    exact_dtype=exact_dtype,
                )

        for t in tensors:
            t = t.input
            torch_kwargs, numpy_kwargs = op.sample_kwargs(t.device, dtype, t)
            if dtype is torch.bfloat16:
                a = t.cpu().to(torch.float32).numpy()
            elif dtype is torch.complex32:
                a = t.cpu().to(torch.complex64).numpy()
            else:
                a = t.cpu().numpy()

            actual = op(t, **torch_kwargs)
            expected = op.ref(a, **numpy_kwargs)

            # Crafts a custom error message for smaller, printable tensors
            if t.numel() < 10:
                msg = (
                    "Failed to produce expected results! Input tensor was"
                    " {0}, torch result is {1}, and reference result is"
                    " {2}."
                ).format(t, actual, expected)
            else:
                msg = None

            exact_dtype = True
            if isinstance(actual, torch.Tensor):
                _helper_reference_numerics(
                    expected, actual, msg, exact_dtype, equal_nan
                )
            else:
                for x, y in zip(expected, actual):
                    # testing multi-outputs results
                    _helper_reference_numerics(x, y, msg, exact_dtype, equal_nan)

    # Tests that the function and its (array-accepting) reference produce the same
    #   values on a range of tensors, including empty tensors, scalar tensors,
    #   1D tensors and a large 2D tensor with interesting and extremal values
    #   and noncontiguities.
    @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
    @suppress_warnings
    @ops(reference_filtered_ops)
    def test_reference_numerics_normal(self, device, dtype, op):
        tensors = generate_elementwise_unary_tensors(
            op, device=device, dtype=dtype, requires_grad=False
        )
        self._test_reference_numerics(dtype, op, tensors)

    @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
    @suppress_warnings
    @ops(reference_filtered_ops)
    def test_reference_numerics_small(self, device, dtype, op):
        if dtype in (torch.bool,):
            raise self.skipTest("bool has no small values")

        tensors = generate_elementwise_unary_small_value_tensors(
            op, device=device, dtype=dtype, requires_grad=False
        )
        self._test_reference_numerics(dtype, op, tensors)

    @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
    @suppress_warnings
    @ops(reference_filtered_ops)
    def test_reference_numerics_large(self, device, dtype, op):
        if dtype in (torch.bool, torch.uint8, torch.int8):
            raise self.skipTest("bool, uint8, and int8 dtypes have no large values")

        tensors = generate_elementwise_unary_large_value_tensors(
            op, device=device, dtype=dtype, requires_grad=False
        )
        self._test_reference_numerics(dtype, op, tensors)

    @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
    @suppress_warnings
    @ops(
        reference_filtered_ops,
        allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half),
    )
    def test_reference_numerics_extremal(self, device, dtype, op):
        tensors = generate_elementwise_unary_extremal_value_tensors(
            op, device=device, dtype=dtype, requires_grad=False
        )
        self._test_reference_numerics(dtype, op, tensors)

    # Tests for testing (non)contiguity consistency
    @ops(unary_ufuncs)
    def test_contig_vs_every_other(self, device, dtype, op):
        contig = make_tensor(
            (1026,), device=device, dtype=dtype, low=op.domain[0], high=op.domain[1]
        )
        non_contig = contig[::2]

        self.assertTrue(contig.is_contiguous())
        self.assertFalse(non_contig.is_contiguous())

        torch_kwargs, _ = op.sample_kwargs(device, dtype, non_contig)
        self.assertEqual(
            op(contig, **torch_kwargs)[::2], op(non_contig, **torch_kwargs)
        )

    @ops(unary_ufuncs)
    def test_contig_vs_transposed(self, device, dtype, op):
        contig = make_tensor(
            (789, 357), device=device, dtype=dtype, low=op.domain[0], high=op.domain[1]
        )
        non_contig = contig.T

        self.assertTrue(contig.is_contiguous())
        self.assertFalse(non_contig.is_contiguous())

        torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
        self.assertEqual(op(contig, **torch_kwargs).T, op(non_contig, **torch_kwargs))

    @ops(unary_ufuncs)
    def test_non_contig(self, device, dtype, op):
        shapes = [(5, 7), (1024,)]
        for shape in shapes:
            contig = make_tensor(
                shape, dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
            )
            non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
            non_contig.copy_(contig)

            self.assertTrue(contig.is_contiguous())
            self.assertFalse(non_contig.is_contiguous())

            torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
            self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))

    @ops(unary_ufuncs)
    def test_non_contig_index(self, device, dtype, op):
        contig = make_tensor(
            (2, 2, 1, 2),
            dtype=dtype,
            device=device,
            low=op.domain[0],
            high=op.domain[1],
        )
        non_contig = contig[:, 1, ...]
        contig = non_contig.contiguous()

        self.assertTrue(contig.is_contiguous())
        self.assertFalse(non_contig.is_contiguous())

        torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
        self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))

    @ops(unary_ufuncs)
    def test_non_contig_expand(self, device, dtype, op):
        shapes = [(1, 3), (1, 7), (5, 7)]
        for shape in shapes:
            contig = make_tensor(
                shape, dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
            )
            non_contig = contig.clone().expand(3, -1, -1)

            self.assertTrue(contig.is_contiguous())
            self.assertFalse(non_contig.is_contiguous())

            torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
            contig = op(contig, **torch_kwargs)
            non_contig = op(non_contig, **torch_kwargs)
            for i in range(3):
                self.assertEqual(
                    contig, non_contig[i], msg="non-contiguous expand[" + str(i) + "]"
                )

    @ops(unary_ufuncs)
    def test_contig_size1(self, device, dtype, op):
        contig = make_tensor(
            (5, 100), dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
        )
        contig = contig[:1, :50]
        contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
        contig2.copy_(contig)

        self.assertTrue(contig.is_contiguous())
        self.assertTrue(contig2.is_contiguous())

        torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
        self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))

    @ops(unary_ufuncs)
    def test_contig_size1_large_dim(self, device, dtype, op):
        contig = make_tensor(
            (5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4),
            dtype=dtype,
            device=device,
            low=op.domain[0],
            high=op.domain[1],
        )
        contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
        contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
        contig2.copy_(contig)

        self.assertTrue(contig.is_contiguous())
        self.assertTrue(contig2.is_contiguous())

        torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
        self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))

    # Tests that computation on a multiple batches is the same as
    # per-batch computation.
    @ops(unary_ufuncs)
    def test_batch_vs_slicing(self, device, dtype, op):
        input = make_tensor(
            (1024, 512), dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
        )

        torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
        actual = op(input, **torch_kwargs)
        expected = torch.stack([op(slice, **torch_kwargs) for slice in input])

        self.assertEqual(actual, expected)

    @dtypes(*all_types_and(torch.bool, torch.half))
    def test_nan_to_num(self, device, dtype):
        for contiguous in [False, True]:
            x = make_tensor((64, 64), low=0.0, high=100.0, dtype=dtype, device=device)

            if dtype.is_floating_point:
                # Add extremal values.
                extremals = [float("nan"), float("inf"), -float("inf")]
                for idx, extremal in zip(torch.randint(0, 63, (3,)), extremals):
                    x[idx, :] = extremal

            if not contiguous:
                x = x.T

            # With args
            nan = random.random()
            posinf = random.random() * 5
            neginf = random.random() * 10

            self.compare_with_numpy(
                lambda x: x.nan_to_num(nan=nan, posinf=posinf),
                lambda x: np.nan_to_num(x, nan=nan, posinf=posinf),
                x,
            )
            self.compare_with_numpy(
                lambda x: x.nan_to_num(posinf=posinf, neginf=neginf),
                lambda x: np.nan_to_num(x, posinf=posinf, neginf=neginf),
                x,
            )

            # Out Variant
            out = torch.empty_like(x)
            result = torch.nan_to_num(x)
            torch.nan_to_num(x, out=out)
            self.assertEqual(result, out)

            result = torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
            torch.nan_to_num(x, out=out, nan=nan, posinf=posinf, neginf=neginf)
            self.assertEqual(result, out)

    @onlyCPU
    def test_nan_to_num_bfloat16(self, device):
        def test_dtype(fn, input, dtype):
            input = input.detach().clone().to(dtype=dtype).requires_grad_(True)
            input2 = input.detach().clone().float().requires_grad_(True)
            out = fn(input)
            out.sum().backward()
            out2 = fn(input2)
            out2.sum().backward()
            self.assertEqual(out.dtype, dtype)
            self.assertEqual(input.grad.dtype, dtype)
            self.assertEqual(out, out2, exact_dtype=False)
            self.assertEqual(input.grad, input2.grad, exact_dtype=False)

        def func():
            return torch.nan_to_num

        shapes = [[1, 3, 6, 6], [1, 3, 6, 128], [1, 3, 256, 256]]
        for shape in shapes:
            x = torch.randn(shape, device=device)
            extremals = [float('nan'), float('inf'), -float('inf')]
            for id1, id2, extremal in zip(torch.randint(0, 2, (3,)), torch.randint(0, 5, (3,)), extremals):
                x[0, id1, id2, :] = extremal
            test_dtype(func(), x, torch.bfloat16)

    @dtypes(torch.cdouble)
    def test_complex_edge_values(self, device, dtype):
        # sqrt Test Reference: https://github.com/pytorch/pytorch/pull/47424
        x = torch.tensor(0.0 - 1.0e20j, dtype=dtype, device=device)
        self.compare_with_numpy(torch.sqrt, np.sqrt, x)
        # acos test reference: https://github.com/pytorch/pytorch/issue/42952
        # Skip on Windows, as CUDA acos  returns conjugate value
        # see https://github.com/pytorch/pytorch/issues/52299
        if not (IS_WINDOWS and dtype == torch.cdouble and "cuda" in device):
            self.compare_with_numpy(torch.acos, np.arccos, x)

        x = torch.tensor(
            (-1.0e60 if dtype == torch.cdouble else -1.0e20) - 4988429.2j,
            dtype=dtype,
            device=device,
        )
        self.compare_with_numpy(torch.sqrt, np.sqrt, x)

    @unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
    @dtypes(torch.float, torch.double)
    def test_digamma_special(self, device, dtype):
        # Based on SciPy test for the following special values.
        # Reference:
        # https://github.com/scipy/scipy/blob/3a8a3a1d4657254a6611e77e9c28feafa26e6645/scipy/special/tests/test_digamma.py#L22
        euler = 0.57721566490153286
        dataset = [
            (0.0, -0.0),
            (1, -euler),
            (0.5, -2 * math.log(2) - euler),
            (1 / 3, -math.pi / (2 * math.sqrt(3)) - 3 * math.log(3) / 2 - euler),
            (1 / 4, -math.pi / 2 - 3 * math.log(2) - euler),
            (
                1 / 6,
                -math.pi * math.sqrt(3) / 2
                - 2 * math.log(2)
                - 3 * math.log(3) / 2
                - euler,
            ),
            (
                1 / 8,
                -math.pi / 2
                - 4 * math.log(2)
                - (math.pi + math.log(2 + math.sqrt(2)) - math.log(2 - math.sqrt(2)))
                / math.sqrt(2)
                - euler,
            ),
        ]
        x = torch.tensor(dataset, device=device, dtype=dtype)
        self.compare_with_numpy(torch.digamma, scipy.special.digamma, x)

    @unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
    @dtypes(torch.float, torch.double)
    def test_digamma(self, device, dtype):
        # Tests pole behavior
        tensor = torch.tensor(
            [
                -0.999999994,
                -1.999999994,
                -2.0000000111,
                -100.99999994,
                0.000000111,
                -1931.99999994,
                -0.000000111,
                0,
                -0,
                -1,
                -2,
                -931,
            ],
            dtype=dtype,
            device=device,
        )
        self.compare_with_numpy(torch.digamma, scipy.special.digamma, tensor)

    @dtypes(*floating_types_and(torch.half))
    def test_frexp(self, device, dtype):
        input = make_tensor((50, 50), dtype=dtype, device=device)
        mantissa, exponent = torch.frexp(input)
        np_mantissa, np_exponent = np.frexp(input.cpu().numpy())

        self.assertEqual(mantissa, np_mantissa)
        self.assertEqual(exponent, np_exponent)

        # torch.frexp returns exponent in int32 to be compatible with np.frexp
        self.assertTrue(exponent.dtype == torch.int32)
        self.assertTrue(torch_to_numpy_dtype_dict[exponent.dtype] == np_exponent.dtype)

    def test_frexp_assert_raises(self, device):
        invalid_input_dtypes = integral_types_and(torch.bool) + complex_types()
        for dtype in invalid_input_dtypes:
            input = make_tensor((50, 50), dtype=dtype, device=device)
            with self.assertRaisesRegex(
                RuntimeError, r"torch\.frexp\(\) only supports floating-point dtypes"
            ):
                torch.frexp(input)

        for dtype in floating_types_and(torch.half):
            input = make_tensor((50, 50), dtype=dtype, device=device)

            dtypes = list(
                all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)
            )
            dtypes.remove(dtype)
            for mantissa_dtype in dtypes:
                mantissa = torch.empty_like(input, dtype=mantissa_dtype)
                exponent = torch.empty_like(input, dtype=torch.int)
                with self.assertRaisesRegex(
                    RuntimeError,
                    r"torch\.frexp\(\) expects mantissa to have dtype .+ but got .+",
                ):
                    torch.frexp(input, out=(mantissa, exponent))

            dtypes.append(dtype)
            dtypes.remove(torch.int)
            for exponent_dtype in dtypes:
                mantissa = torch.empty_like(input)
                exponent = torch.empty_like(input, dtype=exponent_dtype)
                with self.assertRaisesRegex(
                    RuntimeError,
                    r"torch\.frexp\(\) expects exponent to have int dtype but got .+",
                ):
                    torch.frexp(input, out=(mantissa, exponent))

    def test_polygamma_neg(self, device):
        with self.assertRaisesRegex(
            RuntimeError, r"polygamma\(n, x\) does not support negative n\."
        ):
            torch.polygamma(-1, torch.tensor([1.0, 2.0], device=device))

    # TODO resolve with opinfos
    @onlyCPU
    def test_op_invert(self, device):
        res = 0xFFFF - torch.arange(127, dtype=torch.int8)
        for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            a = torch.arange(127, dtype=dtype)
            self.assertEqual(res.to(dtype), ~a)

        self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True]))

        # test exceptions
        for dtype in (torch.half, torch.float, torch.double):
            a = torch.zeros(10, dtype=dtype)
            with self.assertRaises(TypeError):
                b = ~a

    @dtypes(torch.complex64, torch.complex128)
    def test_abs_angle_complex_to_float(self, device, dtype):
        # Constructs random complex values
        from random import random

        random_vals = []
        for multiplier in (-1, 1, -10, 10, -100, 100):
            for _ in range(10):
                random_vals.append(
                    complex(random() * multiplier, random() * multiplier)
                )

        for vals in (random_vals, []):
            a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
            t = torch.tensor(vals, device=device, dtype=dtype)

            for fn_name in ("abs", "angle"):
                torch_fn = getattr(torch, fn_name)
                np_fn = getattr(np, fn_name)

                # Tests function
                np_result = torch.from_numpy(np_fn(a))
                torch_result = torch_fn(t).cpu()
                self.assertEqual(np_result, torch_result, exact_dtype=True)

                # Tests float out
                float_dtype = (
                    torch.float32 if dtype is torch.complex64 else torch.float64
                )
                np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
                float_out = torch.empty_like(t, dtype=float_dtype)
                torch_fn(t, out=float_out)
                self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())

                # Tests float out (resized out)
                float_out = torch.empty(1, device=device, dtype=float_dtype)
                torch_fn(t, out=float_out)
                self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())

                # Tests complex out
                np_complex_out = np_fn(a).astype(torch_to_numpy_dtype_dict[dtype])
                complex_out = torch.empty_like(t)
                torch_fn(t, out=complex_out)
                self.assertEqual(torch.from_numpy(np_complex_out), complex_out.cpu())

                # Tests complex out (resized out)
                complex_out = torch.empty(0, device=device, dtype=dtype)
                torch_fn(t, out=complex_out)
                self.assertEqual(torch.from_numpy(np_complex_out), complex_out.cpu())

                # Tests long out behavior (expected failure)
                long_out = torch.empty(0, device=device, dtype=torch.long)
                with self.assertRaises(RuntimeError):
                    torch_fn(t, out=long_out)

                # Tests inplace
                if fn_name == "abs":
                    torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
                    np_fn(a, out=a)
                    if dtype.is_complex:
                        with self.assertRaisesRegex(
                            RuntimeError,
                            "In-place abs is not supported for complex tensors.",
                        ):
                            torch_inplace_method(t)
                        return
                    torch_inplace_method(t)
                    self.assertEqual(torch.from_numpy(a), t.cpu())

                # Note: angle does not have an in-place variant
                if fn_name == "angle":
                    with self.assertRaises(AttributeError):
                        torch_inplace_method = getattr(torch.Tensor, fn_name + "_")

    def check_internal_mem_overlap(
        self, inplace_op, num_inputs, dtype, device, expected_failure=False
    ):
        if isinstance(inplace_op, str):
            inplace_op = getattr(torch.Tensor, inplace_op)
        input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
        inputs = [input] + [torch.randn_like(input) for i in range(num_inputs - 1)]
        if not expected_failure:
            with self.assertRaisesRegex(RuntimeError, "single memory location"):
                inplace_op(*inputs)
        else:
            with self.assertRaises(AssertionError):
                with self.assertRaisesRegex(RuntimeError, "single memory location"):
                    inplace_op(*inputs)

    def unary_check_input_output_mem_overlap(
        self, data, sz, op, expected_failure=False
    ):
        def _test(op, output, input):
            output_exp = torch.empty_like(output)
            op(input, out=output_exp)
            self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)

        # output is identical to input:
        _test(op, output=data[0:sz], input=data[0:sz])
        # output and input are independent:
        _test(op, output=data[0:sz], input=data[sz : 2 * sz])
        # output partially overlaps with input:
        if not expected_failure:
            with self.assertRaisesRegex(RuntimeError, "unsupported operation"):
                _test(op, data[0:sz], data[1 : sz + 1])
        else:
            with self.assertRaises(AssertionError):
                with self.assertRaisesRegex(RuntimeError, "unsupported operation"):
                    _test(op, data[0:sz], data[1 : sz + 1])

    # TODO: run on non-native device types
    @dtypes(torch.double)
    def test_unary_out_op_mem_overlap(self, device, dtype):
        sz = 3
        doubles = torch.randn(2 * sz, dtype=dtype, device=device)
        positives = torch.randint(1, 100, (2 * sz,), device=device).double()
        ints = torch.randint(-100, 100, (2 * sz,), device=device)
        unary_mem_overlap_cases = [
            ("abs", doubles, True, True, "cpu"),
            ("abs", doubles, True, True, "cuda"),
            ("acos", doubles, True, True, "cpu"),
            ("acos", doubles, True, True, "cuda"),
            ("asin", doubles, True, True, "cpu"),
            ("asin", doubles, True, True, "cuda"),
            ("atan", doubles, True, True, "cpu"),
            ("atan", doubles, True, True, "cuda"),
            ("acosh", doubles, True, True, "cpu"),
            ("acosh", doubles, True, True, "cuda"),
            ("asinh", doubles, True, True, "cpu"),
            ("asinh", doubles, True, True, "cuda"),
            ("atanh", doubles, True, True, "cpu"),
            ("atanh", doubles, True, True, "cuda"),
            ("bitwise_not", ints, True, True, "cpu"),
            ("bitwise_not", ints, True, True, "cuda"),
            ("ceil", doubles, True, True, "cpu"),
            ("ceil", doubles, True, True, "cuda"),
            ("cos", doubles, True, True, "cpu"),
            ("cos", doubles, True, True, "cuda"),
            ("cosh", doubles, True, True, "cpu"),
            ("cosh", doubles, True, True, "cuda"),
            ("digamma", doubles, True, True, "cpu"),
            ("erf", doubles, True, True, "cpu"),
            ("erf", doubles, True, True, "cuda"),
            ("erfc", doubles, True, True, "cpu"),
            ("erfc", doubles, True, True, "cuda"),
            ("erfinv", doubles, True, True, "cpu"),
            ("erfinv", doubles, True, True, "cuda"),
            ("exp", doubles, True, True, "cpu"),
            ("exp", doubles, True, True, "cuda"),
            ("exp2", doubles, True, True, "cpu"),
            ("exp2", doubles, True, True, "cuda"),
            ("expm1", doubles, True, True, "cpu"),
            ("expm1", doubles, True, True, "cuda"),
            ("floor", doubles, True, True, "cpu"),
            ("floor", doubles, True, True, "cuda"),
            ("frac", doubles, True, True, "cpu"),
            ("frac", doubles, True, True, "cuda"),
            ("i0", doubles, True, True, "cpu"),
            ("i0", doubles, True, True, "cuda"),
            ("log", positives, True, True, "cpu"),
            ("log", positives, True, True, "cuda"),
            ("log10", positives, True, True, "cpu"),
            ("log10", positives, True, True, "cuda"),
            ("log1p", positives, True, True, "cpu"),
            ("log1p", positives, True, True, "cuda"),
            ("log2", positives, True, True, "cpu"),
            ("log2", positives, True, True, "cuda"),
            ("neg", doubles, True, True, "cpu"),
            ("neg", doubles, True, True, "cuda"),
            ("reciprocal", doubles, True, True, "cpu"),
            ("reciprocal", doubles, True, True, "cuda"),
            ("round", doubles, True, True, "cpu"),
            ("round", doubles, True, True, "cuda"),
            ("rsqrt", positives, True, True, "cpu"),
            ("rsqrt", positives, True, True, "cuda"),
            ("sin", doubles, True, True, "cpu"),
            ("sin", doubles, True, True, "cuda"),
            ("sinh", doubles, True, True, "cpu"),
            ("sinh", doubles, False, True, "cuda"),
            ("sigmoid", doubles, True, True, "cpu"),
            ("sigmoid", doubles, True, True, "cuda"),
            ("logit", doubles, True, True, "cpu"),
            ("logit", doubles, True, True, "cuda"),
            ("sqrt", doubles, True, True, "cpu"),
            ("sqrt", doubles, False, True, "cuda"),
            ("tan", doubles, True, True, "cpu"),
            ("tan", doubles, True, True, "cuda"),
            ("tanh", doubles, True, True, "cpu"),
            ("tanh", doubles, True, True, "cuda"),
            ("trunc", doubles, True, True, "cpu"),
            ("trunc", doubles, True, True, "cuda"),
        ]

        for (
            fn,
            inputs,
            has_input_output_mem_overlap_check,
            has_internal_mem_overlap_check,
            dev,
        ) in unary_mem_overlap_cases:
            if dev != device:
                continue
            out_fn = getattr(torch, fn)
            in_fn = getattr(torch.Tensor, fn + "_")

            self.unary_check_input_output_mem_overlap(
                inputs,
                sz,
                out_fn,
                expected_failure=not has_input_output_mem_overlap_check,
            )

            self.check_internal_mem_overlap(
                in_fn,
                1,
                dtype,
                dev,
                expected_failure=not has_internal_mem_overlap_check,
            )

    # TODO: opinfo hardshrink
    @onlyCPU
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_hardshrink(self, device, dtype):
        data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
        self.assertEqual(
            torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
            data.hardshrink(0.3),
        )
        self.assertEqual(
            torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
            data.hardshrink(0.5),
        )

        # test default lambd=0.5
        self.assertEqual(data.hardshrink(), data.hardshrink(0.5))

        # test non-contiguous case
        self.assertEqual(
            torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
            data.t().hardshrink(0.3),
        )

    @onlyCPU
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_hardshrink_edge_cases(self, device, dtype) -> None:
        def h(values, l_expected):
            for l, expected in l_expected.items():
                values_tensor = torch.tensor(
                    [float(v) for v in values], dtype=dtype, device=device
                )
                expected_tensor = torch.tensor(
                    [float(v) for v in expected], dtype=dtype, device=device
                )
                self.assertEqual(
                    expected_tensor == values_tensor.hardshrink(l),
                    torch.ones_like(values_tensor, dtype=torch.bool),
                )

        def test_helper(min, max):
            h(
                [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
                {
                    0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
                    min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
                    0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
                    1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
                    max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
                    inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                },
            )

        test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)

    @onlyCPU
    @slowTest
    @dtypes(torch.float)
    @unittest.skipIf(True, "Insufficient memory on linux.(2|4)xlarge")
    def test_exp_slow(self, device, dtype):
        # Test for https://github.com/pytorch/pytorch/issues/17271
        # This is pretty slow on my Macbook but it only takes a few
        # seconds on a beefy Xeon server
        a = torch.exp(torch.ones(2**31, dtype=dtype, device=device))
        b = torch.exp(torch.ones(1, dtype=dtype, device=device))
        self.assertEqual(a, b.expand(2**31))

    @precisionOverride(
        {torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
    )
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_hardswish(self, device, dtype):
        inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
        expectedOutput = np.multiply(
            inputValues, np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
        )

        inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
        expectedOutputTensor = torch.tensor(expectedOutput, dtype=dtype, device=device)

        # normal
        self.assertEqual(
            torch.nn.functional.hardswish(inputTensor), expectedOutputTensor
        )

        # inplace
        inputTensorCpy = inputTensor.clone().detach()
        torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
        self.assertEqual(inputTensorCpy, expectedOutputTensor)

    @precisionOverride(
        {torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
    )
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_hardsigmoid(self, device, dtype):
        inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
        expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0

        inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)

        # normal
        self.assertEqual(
            torch.nn.functional.hardsigmoid(inputTensor),
            torch.tensor(expectedOutput, dtype=dtype, device=device),
        )

        # inplace
        inputTensorCpy = inputTensor.clone().detach()
        self.assertEqual(
            torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
            torch.tensor(expectedOutput, dtype=dtype, device=device),
        )

    @precisionOverride(
        {torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
    )
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_hardsigmoid_backward(self, device, dtype):
        inputValues = [-3.0, 3.0, -2.0, 2.0, -6.0, 6.0]
        expectedValues = [0.0, 0.0, 1.0 / 6.0, 1.0 / 6.0, 0.0, 0.0]
        inputTensor = torch.tensor(
            inputValues, dtype=dtype, device=device
        ).requires_grad_()
        expetedTensor = torch.tensor(expectedValues, dtype=dtype, device=device)
        out = torch.nn.functional.hardsigmoid(inputTensor)
        out.backward(torch.ones_like(inputTensor))
        self.assertEqual(inputTensor.grad, expetedTensor)

    @skipIfNoSciPy
    @dtypes(torch.float, torch.double)
    def test_silu(self, device, dtype):
        input_np = np.random.randn(5, 8)
        special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
        input_np = np.concatenate((input_np, special_input), axis=0).astype(
            torch_to_numpy_dtype_dict[dtype]
        )
        expected_output_np = input_np * scipy.special.expit(input_np)

        expected_output = torch.from_numpy(expected_output_np).to(device)
        expected_output_noncontig = expected_output.transpose(0, 1)

        atol = 1e-6
        rtol = 1e-6

        input = torch.from_numpy(input_np).clone().contiguous().to(device)
        self.assertEqual(
            torch.nn.functional.silu(input), expected_output, atol=atol, rtol=rtol
        )
        self.assertEqual(
            torch.nn.functional.silu(input, inplace=True),
            expected_output,
            atol=atol,
            rtol=rtol,
        )

        input = torch.from_numpy(input_np).clone().to(device)
        input_noncontig = input.transpose(0, 1)
        self.assertEqual(
            torch.nn.functional.silu(input_noncontig),
            expected_output_noncontig,
            atol=atol,
            rtol=rtol,
        )
        self.assertEqual(
            torch.nn.functional.silu(input_noncontig, inplace=True),
            expected_output_noncontig,
            atol=atol,
            rtol=rtol,
        )

    # It is not obvious how to merge this into OpInfo becuase these inputs
    # succeed for gradcheck but are expected to fail for gradgradcheck
    @dtypes(torch.double)
    def test_sinc(self, device, dtype):
        # The derivative of sinc(x) at x=0 has to be special cased.
        # A naive computation will result in 0/0 -> NaN.
        # We also need to be careful when we are very close to 0, as the
        # derivative's denominator is squared, and there are some floats
        # that are positive and whose squares are zero.
        a = torch.tensor(
            [0.0, torch.finfo(torch.double).tiny, 1.0],
            dtype=dtype,
            requires_grad=True,
            device=device,
        )
        gradcheck(torch.sinc, a)

    @skipIfNoSciPy
    @dtypes(torch.float, torch.double)
    def test_mish(self, device, dtype):
        input_np = np.random.randn(5, 8)
        special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
        input_np = np.concatenate((input_np, special_input), axis=0).astype(
            torch_to_numpy_dtype_dict[dtype]
        )
        expected_output_np = input_np * np.tanh(np.log1p(np.exp(input_np)))

        expected_output = torch.from_numpy(expected_output_np).to(device)
        expected_output_noncontig = expected_output.transpose(0, 1)

        atol = 1e-6
        rtol = 1e-6

        input = torch.from_numpy(input_np).clone().contiguous().to(device)
        self.assertEqual(
            torch.nn.functional.mish(input), expected_output, atol=atol, rtol=rtol
        )
        self.assertEqual(
            torch.nn.functional.mish(input, inplace=True),
            expected_output,
            atol=atol,
            rtol=rtol,
        )

        input = torch.from_numpy(input_np).clone().to(device)
        input_noncontig = input.transpose(0, 1)
        self.assertEqual(
            torch.nn.functional.mish(input_noncontig),
            expected_output_noncontig,
            atol=atol,
            rtol=rtol,
        )
        self.assertEqual(
            torch.nn.functional.mish(input_noncontig, inplace=True),
            expected_output_noncontig,
            atol=atol,
            rtol=rtol,
        )

    # do ops like threshold need a test_unary(_nonufunc) test suite?
    @onlyCPU
    @dtypes(*get_all_math_dtypes("cpu"))
    def test_threshold(self, device, dtype):
        if dtype != torch.uint8 and dtype != torch.float16 and not dtype.is_complex:
            # 100 is wide enough to use AVX2 instructions for all types
            x = (
                torch.randn(100, dtype=torch.float, device=device)
                .sign()
                .to(dtype=dtype)
            )
            y = torch.threshold(x, 0, 0)
            self.assertTrue(y.le(0).any())

    def _helper_test_igamma(self, loglo, loghi, device, dtype, torch_fcn, scipy_fcn):
        exp1 = 2.71828182846
        vec1 = torch.logspace(
            loglo, loghi, steps=500, base=exp1, dtype=torch.float64, device=device
        ).unsqueeze(-1)
        vec1 = vec1.to(dtype)
        inputs = [
            (vec1, vec1.transpose(0, 1)),
            (vec1, vec1),  # for large number, it should approach 0.5
            (vec1, 0.5 * vec1),  # test for considerable ratio
            (vec1, 2.0 * vec1),
            (vec1[::2, :], vec1[::2, :]),  # contiguous/noncontiguous tests
            (vec1[::2, :], vec1[: vec1.shape[0] // 2, :]),
            (vec1[: vec1.shape[0] // 2, :], vec1[::2, :]),
        ]
        half_prec = dtype in [torch.bfloat16, torch.float16]
        for input0, input1 in inputs:
            actual = torch_fcn(input0, input1)
            if half_prec:
                input0 = input0.to(torch.float)
                input1 = input1.to(torch.float)
            expected = scipy_fcn(input0.cpu().numpy(), input1.cpu().numpy())
            expected = torch.from_numpy(expected).to(dtype)
            self.assertEqual(actual, expected)

    @dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
    @dtypes(torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @onlyNativeDeviceTypes
    def test_igamma_common(self, device, dtype):
        # test igamma for reasonable range of values
        loglo = -4  # approx 0.018
        loghi = 4  # approx 54.6
        self._helper_test_igamma(
            loglo, loghi, device, dtype, torch.igamma, scipy.special.gammainc
        )

    @dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
    @dtypes(torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @onlyNativeDeviceTypes
    def test_igammac_common(self, device, dtype):
        # test igammac for reasonable range of values
        loglo = -4  # approx 0.018
        loghi = 4  # approx 54.6
        self._helper_test_igamma(
            loglo, loghi, device, dtype, torch.igammac, scipy.special.gammaincc
        )

    @dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
    @dtypes(torch.float32, torch.float64)
    @onlyNativeDeviceTypes
    def test_igamma_edge_cases(self, device, dtype):
        tkwargs = {"dtype": dtype, "device": device}
        infs = torch.zeros((3,), **tkwargs) + float("inf")
        zeros = torch.zeros((3,), **tkwargs)
        ones = torch.ones((3,), **tkwargs)
        zero_to_large = torch.tensor([0.0, 1.0, 1e3], **tkwargs)
        small_to_inf = torch.tensor([1e-3, 1.0, float("inf")], **tkwargs)
        nans = torch.zeros((3,), **tkwargs) + float("nan")
        inpouts = [
            # (a    ,    x),       out
            ((zeros, small_to_inf), ones),
            ((small_to_inf, zeros), zeros),
            ((infs, zero_to_large), zeros),
            ((zero_to_large, infs), ones),
            ((zeros, zeros), nans),
            ((infs, infs), nans),
            ((-small_to_inf, small_to_inf), nans),
        ]
        for inputs, output in inpouts:
            input0, input1 = inputs
            calc = torch.igamma(input0, input1)
            if torch.all(torch.isnan(output)):
                self.assertTrue(torch.all(torch.isnan(calc)))
            else:
                self.assertEqual(calc, output)

    @dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
    @dtypes(torch.float32, torch.float64)
    @onlyNativeDeviceTypes
    def test_igammac_edge_cases(self, device, dtype):
        tkwargs = {"dtype": dtype, "device": device}
        infs = torch.zeros((3,), **tkwargs) + float("inf")
        zeros = torch.zeros((3,), **tkwargs)
        ones = torch.ones((3,), **tkwargs)
        zero_to_large = torch.tensor([0.0, 1.0, 1e3], **tkwargs)
        small_to_inf = torch.tensor([1e-3, 1.0, float("inf")], **tkwargs)
        nans = torch.zeros((3,), **tkwargs) + float("nan")
        inpouts = [
            # (a    ,    x),       out
            ((zeros, small_to_inf), zeros),
            ((small_to_inf, zeros), ones),
            ((infs, zero_to_large), ones),
            ((zero_to_large, infs), zeros),
            ((zeros, zeros), nans),
            ((infs, infs), nans),
            ((-small_to_inf, small_to_inf), nans),
        ]
        for inputs, output in inpouts:
            input0, input1 = inputs
            calc = torch.igammac(input0, input1)
            if torch.all(torch.isnan(output)):
                self.assertTrue(torch.all(torch.isnan(calc)))
            else:
                self.assertEqual(calc, output)

    def _i0_helper(self, t):
        # Test by comparing to scipy
        dtype = t.dtype
        actual = torch.i0(t)
        if dtype is torch.bfloat16:
            t = t.to(torch.float32)
        expected = scipy.special.i0(t.cpu().numpy())
        # Casting down for dtype float16 is required since scipy upcasts to float32
        if dtype is torch.bfloat16 or dtype is torch.float16:
            expected = torch.from_numpy(expected).to(dtype)
        self.assertEqual(actual, expected)

    def _i0_range_helper(self, range, device, dtype):
        # i0 tests are broken up by the domain for which the function does not overflow for each dtype
        # This is done to ensure that the function performs well across all possible input values, without worrying
        # about inf or nan possibilities
        for r in (range, -range):
            t = torch.rand(1000, device=device).to(dtype) * r
            self._i0_helper(t)

    @dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
    @dtypes(torch.bfloat16, torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_i0_range1(self, device, dtype):
        # This tests the domain for i0 for which float16 does not overflow
        # The domain is (-13.25, 13.25)
        self._i0_range_helper(13.25, device, dtype)

    @dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
    @dtypes(torch.bfloat16, torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_i0_range2(self, device, dtype):
        # This tests the domain for i0 for which float32 and bfloat16 does not overflow
        # The domain is (-88.5, 88.5)
        self._i0_range_helper(88.5, device, dtype)

    @dtypes(torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_i0_range3(self, device, dtype):
        # This tests the domain for i0 for which float64 does not overflow
        # The domain is (-709.75, 709.75)
        self._i0_range_helper(709.75, device, dtype)

    @dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
    @dtypes(torch.bfloat16, torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_i0_special(self, device, dtype):
        t = torch.tensor([], device=device, dtype=dtype)
        self._i0_helper(t)

        t = torch.tensor([inf, -inf, nan], device=device, dtype=dtype)
        self.assertTrue(torch.i0(t).isnan().all())

    @dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
    @dtypes(torch.bfloat16, torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_special_i0_i1_vs_scipy(self, device, dtype):
        def check_equal(t, torch_fn, scipy_fn):
            # Test by comparing to scipy
            actual = torch_fn(t)
            if dtype is torch.bfloat16:
                t = t.to(torch.float32)
            expected = scipy_fn(t.cpu().numpy())

            # Casting down for dtype float16 is required since scipy upcasts to float32
            if dtype is torch.bfloat16 or dtype is torch.float16:
                expected = torch.from_numpy(expected).to(dtype)
            self.assertEqual(actual, expected)

        t = torch.tensor([], device=device, dtype=dtype)
        check_equal(t, torch.i0, scipy.special.i0)
        check_equal(t, torch.special.i0e, scipy.special.i0e)
        if dtype not in [torch.half, torch.bfloat16]:
            check_equal(t, torch.special.i1, scipy.special.i1)
            check_equal(t, torch.special.i1e, scipy.special.i1e)

        range = (-1e7, 1e7)
        if dtype == torch.half:
            range = (-65000, 65000)

        t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
        check_equal(t, torch.i0, scipy.special.i0)
        check_equal(t, torch.special.i0e, scipy.special.i0e)
        if dtype not in [torch.half, torch.bfloat16]:
            check_equal(t, torch.special.i1, scipy.special.i1)
            check_equal(t, torch.special.i1e, scipy.special.i1e)

        # NaN, inf, -inf are tested in reference_numerics tests.
        info = torch.finfo(dtype)
        min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
        t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
        check_equal(t, torch.i0, scipy.special.i0)
        check_equal(t, torch.special.i0e, scipy.special.i0e)
        if dtype not in [torch.half, torch.bfloat16]:
            check_equal(t, torch.special.i1, scipy.special.i1)
            check_equal(t, torch.special.i1e, scipy.special.i1e)

    @dtypes(torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_special_ndtr_vs_scipy(self, device, dtype):
        def check_equal(t):
            # Test by comparing to scipy
            actual = torch.special.ndtr(t)
            expected = scipy.special.ndtr(t.cpu().numpy())
            self.assertEqual(actual, expected)

        range = (-10, 10)
        t = torch.linspace(*range, 1, device=device, dtype=dtype)
        check_equal(t)

        # Skip testing NaN, inf, -inf since they are tested in reference_numerics tests.
        info = torch.finfo(dtype)
        min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
        t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
        check_equal(t)

    @dtypes(torch.float32, torch.float64)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_special_log_ndtr_vs_scipy(self, device, dtype):
        def check_equal(t):
            # Test by comparing with scipy
            actual = torch.special.log_ndtr(t)
            expected = scipy.special.log_ndtr(t.cpu().numpy())
            self.assertEqual(actual, expected)

        # Skip testing NaN, inf, -inf since they are tested in reference_numerics tests.
        info = torch.finfo(dtype)
        min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
        t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
        check_equal(t)

    # TODO: allow large opinfo values to be opted-into via metadata
    @dtypes(torch.long)
    def test_abs_big_number(self, device, dtype):
        bignumber = 2**31 + 1
        res = torch.tensor([bignumber], device=device, dtype=dtype)
        self.assertGreater(res.abs()[0], 0)

    # TODO: add signed zero testing to opinfos
    @dtypes(torch.float, torch.double)
    def test_abs_signed_zero(self, device, dtype):
        # Both abs(0.0) and abs(-0.0) should result in 0.0
        size = 128 + 1  # pick a large enough number with remainder so that
        # both vectorized and nonvectorized op is tested
        inp = torch.zeros(size, device=device, dtype=dtype)
        inp[::2] = -0.0
        inp = inp.abs()
        for v in inp:
            self.assertGreater(math.copysign(1.0, v), 0.0)

    # TODO: update to compare against NumPy by rationalizing with OpInfo
    @onlyCUDA
    @dtypes(torch.float, torch.double)
    def test_abs_zero(self, device, dtype):
        # Both abs(0.0) and abs(-0.0) should result in 0.0
        abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
        for num in abs_zeros:
            self.assertGreater(math.copysign(1.0, num), 0.0)

    @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
    def test_isposinf_isneginf_non_boolean_output(self, device, dtype):
        # test non-boolean tensors as the `out=` parameters
        # boolean outputs are tested in the above testcases
        vals = (float("inf"), -float("inf"), 1.2)
        t = torch.tensor(vals, device=device)
        for torch_op in (torch.isposinf, torch.isneginf):
            out = torch.empty_like(t, dtype=dtype)
            with self.assertRaisesRegex(
                RuntimeError, "does not support non-boolean outputs"
            ):
                torch_op(t, out=out)

    def test_nonzero_empty(self, device):
        def assert_tuple_empty(tup, dim):
            self.assertEqual(dim, len(tup))
            for t in tup:
                self.assertEqual(torch.Size([0]), t.shape)

        x = torch.randn(0, 2, 0, 5, 0, device=device)
        y = torch.nonzero(x)
        z = torch.nonzero(x, as_tuple=True)

        self.assertEqual(0, y.numel())
        self.assertEqual(torch.Size([0, 5]), y.shape)
        assert_tuple_empty(z, 5)

        x = torch.tensor(0.5, device=device)
        y = torch.nonzero(x)
        # nonzero with as_tuple returns a
        # tuple of len 1 for a zero-dim tensor.
        # This is done to match Numpy behavior.
        z = torch.nonzero(x, as_tuple=True)
        self.assertEqual(1, len(z))
        self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])

        x = torch.zeros((), device=device)
        y = torch.nonzero(x)
        z = torch.nonzero(x, as_tuple=True)
        self.assertEqual(torch.Size([0, 0]), y.shape)
        self.assertEqual(1, len(z))
        self.assertEqual(torch.empty(0, dtype=torch.long), z[0])

    # TODO: rationalize with exp OpInfo
    @dtypes(*floating_and_complex_types_and(torch.bfloat16))
    @dtypesIfCUDA(*floating_and_complex_types_and(torch.half, torch.bfloat16))
    def test_exp(self, device, dtype):
        for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
            a = (
                torch.tensor(v, dtype=dtype, device=device)
                * torch.arange(18, device=device)
                / 3
                * math.pi
            )
            a = a.to(dtype)
            # bfloat16 overflows
            if dtype == torch.bfloat16:
                return
            self.compare_with_numpy(torch.exp, np.exp, a)

            if dtype.is_complex:
                inf_real_zero_imag_in = torch.tensor(
                    complex(float("inf"), 0), device=device, dtype=dtype
                )
                inf_real_zero_imag_out = torch.exp(inf_real_zero_imag_in).item()
                self.assertTrue(math.isinf(inf_real_zero_imag_out.real))
                if self.device_type == "cpu":
                    pass
                    # These are commented out because it cannot be consistently reproduced.
                    # This is incorrect. It should be zero. Need fix!
                    # https://github.com/pytorch/pytorch/issues/40590
                    # self.assertNotEqual(inf_real_zero_imag_out.imag, 0)
                    # This is incorrect. They should equal. Need fix!
                    # https://github.com/pytorch/pytorch/issues/40590
                    # with self.assertRaises(AssertionError):
                    #     self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
                else:
                    self.assertEqual(inf_real_zero_imag_out.imag, 0, atol=0, rtol=0)
                    self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)

                zero_real_inf_imag_in = torch.tensor(
                    complex(0, float("inf")), device=device, dtype=dtype
                )
                zero_real_inf_imag_out = torch.exp(zero_real_inf_imag_in).item()
                self.assertTrue(math.isnan(zero_real_inf_imag_out.real))
                self.assertTrue(math.isnan(zero_real_inf_imag_out.imag))
                # Ensure we are notified when NumPy changes its behavior
                self.compare_with_numpy(torch.exp, np.exp, zero_real_inf_imag_in)

                inf_real_imag_in = torch.tensor(
                    complex(float("inf"), float("inf")), device=device, dtype=dtype
                )
                inf_real_imag_out = torch.exp(inf_real_imag_in).item()
                if self.device_type == "cpu":
                    pass
                    # This is incorrect. Need fix! https://github.com/pytorch/pytorch/issues/40590
                    # This is commented out because it cannot be consistently reproduced.
                    # with self.assertRaises(AssertionError):
                    #     self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
                else:
                    self.assertTrue(math.isinf(inf_real_imag_out.real))
                    self.assertTrue(math.isnan(inf_real_imag_out.imag))
                    self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)

                inf_real_nan_imag_in = torch.tensor(
                    complex(float("inf"), float("nan")), device=device, dtype=dtype
                )
                inf_real_nan_imag_out = torch.exp(inf_real_nan_imag_in).item()
                if self.device_type == "cpu":
                    pass
                    # This is incorrect. It should be inf. Need fix! https://github.com/pytorch/pytorch/issues/40590
                    # This is commented out because it cannot be consistently reproduced.
                    # with self.assertRaises(AssertionError):
                    #     self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
                else:
                    self.assertTrue(math.isinf(inf_real_nan_imag_out.real))
                    self.assertTrue(math.isnan(inf_real_nan_imag_out.imag))
                    self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)

                nan_real_inf_imag_in = torch.tensor(
                    complex(float("nan"), float("inf")), device=device, dtype=dtype
                )
                nan_real_inf_imag_out = torch.exp(nan_real_inf_imag_in).item()
                self.assertTrue(math.isnan(nan_real_inf_imag_out.real))
                self.assertTrue(math.isnan(nan_real_inf_imag_out.imag))
                # Ensure we are notified when NumPy changes its behavior
                self.compare_with_numpy(torch.exp, np.exp, nan_real_inf_imag_in)


instantiate_device_type_tests(TestUnaryUfuncs, globals())

if __name__ == "__main__":
    run_tests()