File: test_vmap.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2507 lines) | stat: -rw-r--r-- 103,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
# Owner(s): ["module: vmap"]

from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn.functional as F
from torch import Tensor
from torch._vmap_internals import vmap
import functools
import itertools
import warnings
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
    skipCUDAIfNoMagma
import types


FALLBACK_REGEX = r'There is a performance drop'

class EnableVmapFallbackWarnings:
    def __enter__(self):
        self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled()
        torch._C._debug_only_display_vmap_fallback_warnings(True)

    def __exit__(self, *ignored):
        torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state)

class TestVmapAPI(TestCase):
    def test_non_tensor_output_raises(self):
        with self.assertRaisesRegex(ValueError, "got type <class 'float'> as the return"):
            output = vmap(lambda x: 3.14)(torch.ones(3))

        def multiple_outputs(x):
            return x, 3

        with self.assertRaisesRegex(ValueError, "got type <class 'int'> for return 1"):
            vmap(multiple_outputs)(torch.ones(3))

    def test_different_map_dim_size_raises(self):
        x = torch.randn(2)
        y = torch.randn(3)
        expected_msg = 'Expected all tensors to have the same size in the mapped dimension'
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(torch.mul)(x, y)
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})

    def test_func_with_no_inputs(self):
        expected_msg = 'got no inputs'

        def foo():
            return torch.randn(3)

        def bar(x):
            return torch.randn(3)

        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(foo)()

        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(bar)()

    def test_constant_function(self):
        output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3))
        self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14]))

    def test_single_input(self):
        x = torch.randn(2, 3)

        def square(x):
            return x * x

        output = vmap(square)(x)
        self.assertEqual(output, x * x)

    def test_multiple_inputs(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)
        output = vmap(torch.mul)(x, y)
        self.assertEqual(output, x * y)

    def test_multiple_outputs(self):
        def foo(x):
            return x * x, x * x * x

        x = torch.randn(3)
        outputs = vmap(foo)(x)
        self.assertEqual(outputs[0], x * x)
        self.assertEqual(outputs[1], x * x * x)

    def test_multiple_outputs_error_cases(self):
        # This is the same thing as
        # def returns_tuple_of_tensors(x):
        #     return x, x
        def returns_tuple_of_tensors(x):
            return (x, x)

        def returns_list_of_two_tensors(x):
            return [x, x]

        def returns_list_of_one_tensor(x):
            return [x]

        x = torch.randn(3)

        # should not throw
        vmap(returns_tuple_of_tensors)(x)

        # jax supports these, but we don't yet
        msg = "must only return Tensors, got type <class 'list'>"
        with self.assertRaisesRegex(ValueError, msg):
            vmap(returns_list_of_two_tensors)(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(returns_list_of_one_tensor)(x)

    def test_nested_with_same_map_dim(self):
        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        output = vmap(vmap(torch.mul))(x, y)
        self.assertEqual(output, x * y)

        output = vmap(vmap(vmap(torch.mul)))(x, y)
        self.assertEqual(output, x * y)

    def test_nested_with_different_map_dim(self):
        x = torch.randn(2, 3)
        y = torch.randn(5, 3)
        output = vmap(lambda x: vmap(lambda y: x * y)(y))(x)
        self.assertEqual(output.shape, (2, 5, 3))
        self.assertEqual(output, x.view(2, 1, 3) * y)

        z = torch.randn(7, 3)
        output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x)
        self.assertEqual(output.shape, (2, 5, 7, 3))
        self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z)

    def test_noop_in_inner_vmap(self):
        x = torch.randn(3)
        y = torch.randn(5)
        output = vmap(lambda x: vmap(lambda y: x)(y))(x)
        self.assertEqual(output, x.view(3, 1).expand(3, 5))

    def test_unsupported_op_err_msg(self):
        # Unsupported view op
        tensor = torch.randn(2, 3)
        msg = (
            r"Batching rule not implemented for aten::.+; the "
            r"fallback path doesn't work on out= or view ops"
        )
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(torch.ravel)(tensor)

        def out_op(x, y):
            return torch.abs(x, out=y)

        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(out_op)(tensor, tensor)

        tensor = torch.randn(2)
        # The fallback doesn't support TensorList
        with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
            vmap(lambda t: torch.atleast_1d([t]))(tensor)

        # Don't support non-tensor returns. This is a limitation of vmap;
        # functions that don't return tensors must be special cased
        with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
            vmap(torch.Tensor.item)(tensor)

    def test_nonzero_out_dims(self):
        # Basic test
        tensor = torch.randn(2, 3)
        result = vmap(lambda x: x, out_dims=1)(tensor)
        self.assertEqual(result, tensor.permute(1, 0))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # Test that the batch dimension gets permuted to dim 2
        tensor = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x: x, out_dims=2)(tensor)
        self.assertEqual(result, tensor.permute(1, 2, 0, 3))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # negative out_dim
        tensor = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x: x, out_dims=-1)(tensor)
        self.assertEqual(result, tensor.permute(1, 2, 3, 0))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # check that out_dims works on ALL outputs
        tensor = torch.randn(2, 3, 5, 7)
        other = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other)
        self.assertEqual(result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3)))

        # use out_dims with the maximum vmap-able tensor dims (64 dims)
        ndims = 64
        shape = [2] + [1] * (ndims - 1)
        expected_shape = [1, 1, 2] + [1] * (ndims - 3)
        tensor = torch.randn(shape)
        result = vmap(lambda x: x, out_dims=2)(tensor)
        self.assertEqual(result.shape, expected_shape)

        # test something that is not the identity function
        def foo(x, y):
            return x, x * y, x * y * y
        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        result = vmap(foo, out_dims=1)(x, y)
        self.assertEqual(
            result,
            (x.permute(1, 0, 2), (x * y).permute(1, 0, 2), (x * y * y).permute(1, 0, 2)))

    def test_multiple_out_dims(self):
        def foo(x):
            return x, x

        def bar(x, y):
            return x, x, x, x * y

        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        result = vmap(foo, out_dims=(0, 1))(x)
        self.assertEqual(result, (x, x.permute(1, 0, 2)))

        result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y)
        expected = (
            x.permute(1, 2, 0),
            x,
            x.permute(1, 0, 2),
            (x * y).permute(1, 2, 0),
        )
        self.assertEqual(result, expected)

    def test_nested_out_dims(self):
        y = torch.randn(2, 3, 5, 7)

        # Inner vmap has non-zero out_dim
        result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y)
        self.assertEqual(result.shape, (2, 5, 3, 7))
        self.assertEqual(result, y.permute(0, 2, 1, 3))

        # all vmaps have non-zero out_dim
        result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y)
        self.assertEqual(result.shape, (5, 2, 3, 7))
        self.assertEqual(result, y.permute(2, 0, 1, 3))

        # throwing in some negative out_dims
        result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y)
        self.assertEqual(result.shape, (5, 7, 3, 2))
        self.assertEqual(result, y.permute(2, 3, 1, 0))

        # testing fn that isn't the identity
        x = torch.randn(2, 3)
        y = torch.randn(5, 3)
        result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y)
        self.assertEqual(result.shape, (3, 2, 5))
        self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0))

    def test_out_dims_edge_case(self):
        def foo(x):
            return x

        # Test that we accept out_dims=(1,) for a function with one output.
        tensor = torch.randn(2, 3)
        expected = vmap(foo, out_dims=1)(tensor)
        result = vmap(foo, out_dims=(1,))(tensor)
        self.assertEqual(result, expected)

    def test_out_dims_must_be_int_or_tuple_of_int_err_msg(self):
        msg = '`out_dims` must be an int or a tuple of int'
        tensor = torch.randn(2, 3)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims='lol')(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=('lol',))(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=None)(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=(None,))(tensor)

    def test_out_dims_and_num_outputs_mismatch_err_msg(self):
        msg = '`out_dims` must have one dim per output'
        x = torch.randn(2, 3, 5)

        # Too many out_dims
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=(0, 0))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x)

        # Too few out_dims
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x), out_dims=(0,))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x, x), out_dims=(0, 0))(x)

    def test_out_dim_out_of_bounds_err_msg(self):
        # TODO(rzou): This error message isn't that great. It comes straight
        # from maybe_wrap_dim. Consider doing a try-catch-(add some context) to
        # the error message in the future in C++
        msg = 'Dimension out of range'
        x = torch.randn(2, 3, 5)
        with self.assertRaisesRegex(IndexError, msg):
            vmap(lambda x: x, out_dims=3)(x)
        with self.assertRaisesRegex(IndexError, msg):
            vmap(lambda x: x, out_dims=-4)(x)

    def test_non_zero_in_dims(self):
        tensor = torch.randn(2, 3, 5)

        # Implicit out_dims = 0; vmap will move the batch dim to the front.
        output = vmap(lambda x: x, (1,))(tensor)
        self.assertEqual(output, tensor.permute(1, 0, 2))
        self.assertEqual(output.data_ptr(), tensor.data_ptr())

        x = torch.randn(2, 3)
        y = torch.randn(3, 2)
        output = vmap(torch.mul, (0, 1))(x, y)
        self.assertEqual(output, x * y.t())
        output = vmap(torch.mul, (1, 0))(x, y)
        self.assertEqual(output, x.t() * y)

    def test_none_in_dims(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        # None in_dim for a Tensor means we don't map over it
        output = vmap(torch.mul, (0, None))(x, y)
        self.assertEqual(output.shape, (2, 2, 3))
        self.assertEqual(output, x.view(2, 1, 3) * y)

        # None in_dim for non-tensor arguments
        output = vmap(torch.mul, (0, None))(x, 2)
        self.assertEqual(output, x * 2)

    def test_nested_non_default_in_dims(self):
        x = torch.rand(5, 2, 3)
        y = torch.rand(3, 5, 2)
        result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y)
        self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1))

    def test_non_default_in_dims_out_dims(self):
        x = torch.randn(2, 3, 5)

        # Same in_dim as out_dim, vmap over identity
        result = vmap(lambda x: x, in_dims=1, out_dims=1)(x)
        self.assertEqual(result, x)
        self.assertEqual(result.data_ptr(), x.data_ptr())

        # Different in_dim from out_dim, vmap over identity
        result = vmap(lambda x: x, in_dims=2, out_dims=1)(x)
        self.assertEqual(result.shape, (2, 5, 3))
        self.assertEqual(result, x.transpose(1, 2))
        self.assertEqual(result.data_ptr(), x.data_ptr())

        def foo(x):
            return x * 2

        # Same in_dim as out_dim, vmap over operation
        result = vmap(foo, in_dims=1, out_dims=1)(x)
        self.assertEqual(result, x * 2)

        # Different in_dim as out_dim, vmap over operation
        result = vmap(foo, in_dims=2, out_dims=1)(x)
        self.assertEqual(result.shape, (2, 5, 3))
        self.assertEqual(result, (x * 2).transpose(1, 2))

        # Basic nested test.
        result = vmap(vmap(foo, 1, 1), 1, 1)(x)
        self.assertEqual(result, x * 2)

    def test_accepts_nested_inputs(self):
        B0 = 2
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        # Single layer of nesting
        out = vmap(lambda z: z[0] + z[1])((x, y))
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y))
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
        self.assertEqual(out, x + y)

        out = vmap(lambda z: z[0] + z[1])([x, y])
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y])
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y])
        self.assertEqual(out, x + y)

        out = vmap(lambda z: z['x'] + z['y'])({'x': x, 'y': y})
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z['x'] + z['y'], in_dims=(0,))({'x': x, 'y': y})
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
        self.assertEqual(out, x + y)

        # Multiple layers of nesting
        out_fn = vmap(lambda z: z['x'][0] + z['x'][1][0] + z['y'][0] + z['y'][1])
        out = out_fn({'x': [x, (x,)], 'y': [y, y]})
        self.assertEqual(out, x + x + y + y)

    def test_in_dims_wrong_type_err_msg(self):
        x = torch.randn(3)
        y = torch.randn(3)
        msg = r'expected `in_dims` to be int or a \(potentially nested\) tuple'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, [0, 0])(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, set({0, 0}))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, 'lol')(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y])
        # The following should not throw
        vmap(torch.mul, (0, 0))(x, y)

    def test_not_enough_in_dims_err_msg(self):
        x = torch.randn(3)
        y = torch.randn(3)
        msg = r'in_dims is not compatible with the structure of `inputs`'

        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, (0,))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, (0, 0, 0))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y])
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y])
        # The following should not throw
        vmap(torch.mul, (0, 0))(x, y)

    def test_integer_in_dim_but_not_tensor_input_err_msg(self):
        def foo(xy):
            return xy[0] * xy[1]

        def bar(x, yz):
            return x * yz[0] * yz[1]

        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        # the following are errors in jax (and will always be errors)
        msg = 'Got in_dim=0 for an input but the input is of type'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.sum)(x, 0)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.sum, (0, 0))(x, 0)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1])
        # The following should not throw
        vmap(torch.sum, (0, None))(x, 0)

    def test_in_dim_not_in_tensor_err_msg(self):
        def foo(x):
            return x * x

        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        msg = r'Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo)(torch.randn([]))
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(0,))(torch.randn([]))
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(-1,))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(2,))(y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y])
        # the following should not throw
        vmap(foo, in_dims=(0,))(torch.randn(2, 3))
        vmap(foo, in_dims=(1,))(torch.randn(2, 3))

    def test_fallback_does_not_warn_by_default(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.atan2
        x = torch.randn(11)
        y = torch.randn(11)
        with warnings.catch_warnings(record=True) as wa:
            result = vmap(op)(x, y)
            # The single warning here is the "vmap is experimental"
            # warning, not a warning from the vmap fallback path.
            self.assertEqual(len(wa), 1)

    def test_fallback_warns_when_warnings_are_enabled(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.atan2
        x = torch.randn(11)
        y = torch.randn(11)
        with warnings.catch_warnings(record=True) as wa:
            with EnableVmapFallbackWarnings():
                result = vmap(op)(x, y)
            self.assertEqual(len(wa), 2)
            self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)

    def _assert_uses_vmap_fallback(self, vmap_args, inputs):
        with warnings.catch_warnings(record=True) as wa:
            with EnableVmapFallbackWarnings():
                result = vmap(*vmap_args)(*inputs)
            self.assertEqual(len(wa), 2)
            self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)

    def test_fallback_zero_dim(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.atan2
        x = torch.randn(11)
        y = torch.randn(11)
        self._assert_uses_vmap_fallback((op,), (x, y))

        B0, B1 = 0, 3
        x = torch.randn(B0, 11)
        y = torch.randn(11)

        msg = 'The fallback path does not support vmap over dims of size 0'

        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (0, None))(x, y)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (None, 0))(y, x)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(x, x)

        x = torch.randn(B0, B1, 11)
        y = torch.randn(B1, 11)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (0, None))(x, y)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (None, 0))(y, x)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(x, x)

    def test_fallback_atan2(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.atan2

        x = torch.randn(5, 7, 11)
        y = torch.randn(5, 7, 11)

        self._assert_uses_vmap_fallback((op,), (x, y))

        # fallback on torch.atan2
        x = torch.randn(7, 11, 5)
        y = torch.randn(5, 7, 11)
        result = vmap(op, (2, 0))(x, y)
        self.assertEqual(result, op(x.permute(2, 0, 1), y))

        # fallback on torch.atan2, nested vmap
        x = torch.randn(7, 11, 5)
        y = torch.randn(5, 7, 11)
        result = vmap(vmap(op), (2, 0))(x, y)
        self.assertEqual(result, op(x.permute(2, 0, 1), y))

        # big batch size (total 10000)
        x = torch.randn(100, 10, 10, 5)
        y = torch.randn(100, 10, 10)
        result = vmap(vmap(vmap(op)))(x, y)
        self.assertEqual(result, op(x, y.view(100, 10, 10, 1)))

    def test_fallback_masked_fill(self):
        # NB: One day we will implement a batching rule for masked_fill
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        def run_test(batch_size):
            B0 = batch_size
            x = torch.randn(B0, 7, 11, 13)
            dim = 0
            index = torch.tensor([0, 4, 2])
            values = torch.randn(B0, 3, 13)

            self._assert_uses_vmap_fallback((torch.index_add, (0, None, None, 0)), (x, dim, index, values))

            result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values)
            expected = torch.index_add(
                x, dim + 1, index, values.view(B0, 3, 1, 13))
            self.assertEqual(result, expected)

        run_test(batch_size=5)
        run_test(batch_size=1237)

    def test_fallback_multiple_returns(self):
        # NB: One day we will implement a batching rule for torch.var_mean
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        B0, B1, B2 = 2, 3, 1237
        tensor = torch.randn(B0, 10)

        self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,))

        # fallback correctness on torch.var_mean
        result = vmap(torch.var_mean)(tensor)
        expected = torch.var_mean(tensor, dim=1)
        self.assertEqual(result, expected)

        # nested vmap
        tensor = torch.randn(B0, B1, 10)
        result = vmap(vmap(torch.var_mean))(tensor)
        expected = torch.var_mean(tensor, dim=2)
        self.assertEqual(result, expected)

        # big batch size, nested vmap
        tensor = torch.randn(B0, B1, B2, 10)
        result = vmap(vmap(vmap(torch.var_mean)))(tensor)
        expected = torch.var_mean(tensor, dim=3)
        self.assertEqual(result, expected)

    def test_inplace_fallback_unary(self):
        # Test the in-place fallback on an in-place method that takes no
        # additional Tensor arguments. This is the simplest case of the fallback.
        # NB: One day we will implement a batching rule for acos_.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.acos_
        B0, B1, B2 = 2, 3, 10000

        x = torch.randn(B0, 5)
        self._assert_uses_vmap_fallback((op,), (x,))

        # Single vmap
        x_orig = torch.rand(B0, 5)
        x = x_orig.clone()
        result = vmap(op)(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

        # Single vmap + different out_dim produces a view(!)
        x_orig = torch.rand(B0, 5)
        x = x_orig.clone()
        result = vmap(op, out_dims=(1,))(x)
        self.assertTrue(result._base is x)
        self.assertEqual(result, x_orig.t().acos())

        # Nested vmap
        x_orig = torch.randn(B0, B1, 5)
        x = x_orig.clone()
        result = vmap(vmap(op))(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

        # Nested vmap, large batch size
        x_orig = torch.randn(B0, B1, B2, 5)
        x = x_orig.clone()
        result = vmap(vmap(vmap(op)))(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

    def test_inplace_fallback_nary_same_levels(self):
        # NB: One day we will implement a batching rule for atan2_
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.atan2_
        outplace_op = torch.atan2

        x = torch.randn(5, 7, 11)
        y = torch.randn(5, 7, 11)
        self._assert_uses_vmap_fallback((op,), (x, y))

        # Single vmap
        B0 = 5
        x_orig = torch.randn(7, 11, B0)
        x = x_orig.clone()
        y = torch.randn(B0, 7, 11)
        vmap(op, (2, 0))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2)))

        # Nested vmap
        B0, B1 = 5, 7
        x_orig = torch.randn(B1, 11, B0)
        x = x_orig.clone()
        y = torch.randn(B0, B1, 11)
        vmap(vmap(op), (2, 0))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0])))

        # big batch size (total 10000)
        B0, B1, B2 = 100, 10, 10
        x_orig = torch.randn(B0, B1, B2, 5)
        x = x_orig.clone()
        y = torch.randn(B0, B1, B2)
        result = vmap(vmap(vmap(op)))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1)))

    def test_inplace_fallback_nary_different_levels(self):
        # NB: One day we will implement a batching rule for atan2_
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.atan2_
        outplace_op = torch.atan2
        B0, B1, B2 = 2, 3, 5

        x = torch.rand(B0, 7)
        y = torch.rand(7)
        self._assert_uses_vmap_fallback((op, (0, None)), (x, y))

        # op(left, right): All of the levels in right are found in left
        x_orig = torch.rand(B0, 7)
        x = x_orig.clone()
        y = torch.rand(7)
        vmap(op, in_dims=(0, None))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y))

        x_orig = torch.rand(B0, B1, 7)
        x = x_orig.clone()
        y = torch.rand(B0, 7)
        vmap(vmap(op, in_dims=(0, None)))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7)))

        # op(left, right): Some of the levels in right are not found in left
        msg = r'vmap: aten::atan2_\(self, \*extra_args\) is not possible'
        x = torch.rand(7)
        y = torch.rand(B0, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(x, y)

        x = torch.rand(B1, 7)
        y = torch.rand(B0, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y)

        x = torch.rand(B1, 7)
        y = torch.rand(7, B0)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y)

        x = torch.rand(B0, 7)
        y = torch.rand(B0, B1, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(None, 0)))(x, y)

    def test_backward_unsupported_interaction(self):
        x = torch.randn(3, requires_grad=True)
        y = torch.randn(5)
        grad = torch.randn_like(x)
        err_msg = r'backward\(\) called inside torch.vmap'

        def backward_on_vmapped_tensor(x):
            x.sum().backward()

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(backward_on_vmapped_tensor)(x)

        def backward_with_vmapped_grad(x, grad):
            x.backward(grad)

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(backward_with_vmapped_grad)(x, grad)

        def completely_unrelated_backward(y):
            x.sum().backward()

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(completely_unrelated_backward)(y)

    def test_grad_unsupported_interaction(self):
        input_tensor = torch.randn(3, requires_grad=True)
        err_msg = 'autograd.grad.* called inside torch.vmap'

        captured = torch.randn(3, requires_grad=True)

        def output_to_grad_is_vmapped(input_tensor):
            output = (captured * input_tensor).sum()
            return torch.autograd.grad([output], [captured])[0]

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(output_to_grad_is_vmapped)(input_tensor)

        output = (input_tensor ** 2).sum()

        def input_to_grad_is_vmapped(input_tensor):
            return torch.autograd.grad([output], [input_tensor])[0]

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(input_to_grad_is_vmapped)(input_tensor)

    def test_batched_gradient_basic(self):
        N = 3
        x = torch.randn(N, requires_grad=True)
        y = torch.randn(N)

        def vjp_mul(v):
            return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0]

        batched_v = torch.eye(N)
        jacobian = vmap(vjp_mul)(batched_v)
        self.assertEqual(jacobian, torch.diagflat(y))

    def test_functools_partial(self):
        x = torch.randn(3)
        y = torch.randn(2, 3)
        result = vmap(functools.partial(torch.mul, x))(y)
        self.assertEqual(result, x * y)

    def test_nn_module(self):
        tensor = torch.randn(2, 3)
        model = torch.nn.Linear(3, 3, bias=False)
        result = vmap(model)(tensor)
        self.assertEqual(result, model(tensor))

    def test_fallback_with_undefined_grad(self):
        B0 = 7
        x = torch.randn(2, 3, 4, 5, requires_grad=True)
        weight = torch.randn(3, 3, 1, 1)
        v = torch.randn(B0, 2, 3, 4, 5)

        def get_vjp(v):
            result = torch.nn.functional.conv2d(x, weight)
            grad_x, = torch.autograd.grad(result, x, v)
            return grad_x

        # Runs vmap(get_vjp)(v), which should not error out.
        # The backward formula for convolution returns an undefined
        # Tensor for grad_bias because the original bias does not exist.
        #
        # In the future we'll probably add a batching rule for convolution
        # backward. When this happens, we should modify this test to use a
        # different op (and/or create and use a dummy operator) to avoid bitrot.
        self._assert_uses_vmap_fallback([get_vjp], [v])

def slice_inputs(inputs, bdims, i):
    result = []
    for inp, bdim in zip(inputs, bdims):
        if bdim is None:
            result.append(inp)
        else:
            result.append(inp.select(bdim, i))
    return tuple(result)


def reference_vmap(op, inputs, in_dims=0, out_dims=0):
    if isinstance(in_dims, int):
        in_dims = (in_dims,) * len(inputs)
    bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None]
    assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes)
    bdim_size = bdim_sizes[0]
    results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size))

    assert len(results) > 0
    op_has_single_return = not isinstance(results[0], tuple)
    if op_has_single_return:
        assert all(isinstance(result, torch.Tensor) for result in results)
        if isinstance(out_dims, int):
            out_dims = (out_dims,) * 1
        return torch.stack(results, dim=out_dims[0])

    assert all(isinstance(result, tuple) for result in results)
    num_returns = len(results[0])
    assert all(len(result) == num_returns for result in results)
    if isinstance(out_dims, int):
        out_dims = (out_dims,) * num_returns
    return tuple(torch.stack(result_shards, out_dim)
                 for result_shards, out_dim in zip(zip(*results), out_dims))


class TensorFactory:
    @staticmethod
    def rand(size, device='cpu', dtype=torch.float):
        return torch.rand(size, device=device, dtype=dtype)

    @staticmethod
    def randn(size, device='cpu', dtype=torch.float):
        return torch.randn(size, device=device, dtype=dtype)

    @staticmethod
    def randp1(size, device='cpu', dtype=torch.float):
        return torch.rand(size, device=device, dtype=dtype) + 1

# Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a
# (slow) sequential map+stack fallback.
#
# check_view: Test if the first returned output is a view of the first input
# check_propagates_grad: Test if the operation propagates gradients.
def _vmap_test(self, op, inputs, in_dims=0, out_dims=0,
               check_view=False, check_propagates_grad=True):
    result = vmap(op, in_dims, out_dims)(*inputs)
    reference_result = reference_vmap(op, inputs, in_dims, out_dims)
    self.assertEqual(result, reference_result)
    op_has_single_return = not isinstance(result, tuple)

    if check_view:
        result_as_tuple = (result,) if op_has_single_return else result
        for output in result_as_tuple:
            input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base
            self.assertTrue(output._base is input0_base,
                            msg="result was not a view of the first input!")

    if not check_propagates_grad:
        return
    # Assuming input[0] is a floating-point tensor. Check if the vmap
    # operation propagates the requires_grad flag to the zeroth output.
    # Some vmap operators are implemented in a way that assumes that
    # they are composite with respect to autograd. If the operator ever is
    # changed to not be composite with respect to autograd, then the
    # following check should fail.
    inputs_clone = list(inputs)
    inputs_clone[0] = inputs[0].clone().requires_grad_()
    result = vmap(op, in_dims, out_dims)(*inputs_clone)
    result_as_tuple = (result,) if op_has_single_return else result
    self.assertTrue(result[0].requires_grad)

def should_allow_vmap_fallback_usage(fn):
    return getattr(fn, '_allow_vmap_fallback_usage', False)

def allowVmapFallbackUsage(fn):
    fn._allow_vmap_fallback_usage = True
    return fn

# All tests of TestVmapBase check that the slow vmap fallback is never invoked.
# This is so that we can incrementally add batching rules for operators to
# replace the slow vmap fallback path for said operators. To skip this check,
# please use the allowVmapFallbackUsage decorator.
#
# NB: Don't add tests to TestVmapBase directly, unless you want them to run
# on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators.
#
# NB: TestVmapBase is a nested class. This prevents test runners from picking
# it up and running it.
class Namespace:
    class TestVmapBase(TestCase):
        def __init__(self, method_name='runTest'):
            super().__init__(method_name)

            test_method = getattr(self, method_name, None)
            if test_method is None:
                return

            if not should_allow_vmap_fallback_usage(test_method):
                setattr(self, method_name,
                        self._wrap_method_with_vmap_fallback_check(test_method))

        def _wrap_method_with_vmap_fallback_check(self, method):
            msg = (
                'Expected the test to not invoke the vmap fallback path, i.e., '
                'all of the operators being tested in this test should have batching '
                'rules implemented. If you are intentionally testing something to '
                'do with the fallback path, use allowVmapFallbackUsage. Otherwise, '
                'please make sure that batching rules are implemented for the '
                'operator(s) being tested.'
            )

            @functools.wraps(method)
            def wrapper(self, *args, **kwargs):
                with warnings.catch_warnings(record=True) as wa:
                    warnings.simplefilter('always')
                    with EnableVmapFallbackWarnings():
                        method(*args, **kwargs)
                    for captured_warning in wa:
                        self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg)
            return types.MethodType(wrapper, self)

        @allowVmapFallbackUsage
        def test_vmap_fallback_check_ok(self):
            # One day we'll implement a batching rule for torch.var_mean.
            # When that happens, please change the example to use an
            # operator that doesn't have a batching rule implemented.
            op_using_fallback = torch.var_mean
            vmap(op_using_fallback)(torch.rand(3))

        def test_vmap_fallback_check(self):
            @self._wrap_method_with_vmap_fallback_check
            def no_fallback(self):
                pass

            # One day we'll implement a batching rule for torch.var_mean.
            # When that happens, please change the example to use an
            # operator that doesn't have a batching rule implemented.
            op_using_fallback = torch.var_mean

            @self._wrap_method_with_vmap_fallback_check
            def uses_fallback(self):
                vmap(op_using_fallback)(torch.rand(3))

            no_fallback(self)

            with self.assertRaises(AssertionError):
                uses_fallback(self)


class TestVmapOperators(Namespace.TestVmapBase):
    def _vmap_test(self, *args, **kwargs):
        return _vmap_test(self, *args, **kwargs)

    def _vmap_view_test(self, *args, **kwargs):
        self._vmap_test(*args, **kwargs, check_view=True)

    def _test_unary(self, op, getter, device, *args, **kwargs):
        test = functools.partial(self._vmap_test, *args, **kwargs)
        B0, B1 = 7, 11

        # Single vmap, various in_dims / out_dims
        test(op, [getter([B0, 3], device)])
        test(op, [getter([2, 5, B0, 3], device)], in_dims=2)
        test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2)

        # Doubly nested vmap
        test(vmap(op), [getter([B0, B1], device)])
        test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2)
        test(vmap(op, in_dims=2), [getter([2, 5, B0, B1, 3], device)],
             in_dims=2, out_dims=2)

    def test_unary_pointwise_ops(self):
        cases = [
            (torch.abs, TensorFactory.randn),
            (torch.acos, TensorFactory.rand),
            (torch.asin, TensorFactory.rand),
            (torch.atan, TensorFactory.rand),
            (torch.ceil, TensorFactory.randn),
            (torch.cos, TensorFactory.rand),
            (torch.cosh, TensorFactory.rand),
            (torch.digamma, TensorFactory.rand),
            (torch.exp, TensorFactory.randn),
            (torch.expm1, TensorFactory.randn),
            (torch.floor, TensorFactory.randn),
            (torch.frac, TensorFactory.randn),
            (torch.lgamma, TensorFactory.rand),
            (torch.log, TensorFactory.randp1),
            (torch.log10, TensorFactory.randp1),
            (torch.log1p, TensorFactory.randp1),
            (torch.log2, TensorFactory.randp1),
            (torch.neg, TensorFactory.randn),
            (torch.reciprocal, TensorFactory.randp1),
            (torch.relu, TensorFactory.randn),
            (torch.round, TensorFactory.randn),
            (torch.rsqrt, TensorFactory.randp1),
            (torch.sigmoid, TensorFactory.randn),
            (torch.sign, TensorFactory.randn),
            (torch.sin, TensorFactory.rand),
            (torch.sinh, TensorFactory.rand),
            (torch.sqrt, TensorFactory.rand),
            (torch.tan, TensorFactory.rand),
            (torch.tanh, TensorFactory.rand),
            (torch.trunc, TensorFactory.randn),
        ]
        for op, getter in cases:
            self._test_unary(op, getter, 'cpu')

    def test_clone(self):
        # Some basic tests
        self._test_unary(lambda x: x.clone(), TensorFactory.randn, 'cpu')
        self._test_unary(lambda x: x.clone(memory_format=torch.preserve_format),
                         TensorFactory.randn, 'cpu')
        self._test_unary(lambda x: x.clone(memory_format=torch.contiguous_format),
                         TensorFactory.randn, 'cpu')

        # Test that the per-examples are contiguous when using torch.contiguous_format
        def clone_contiguous(x):
            return x.clone(memory_format=torch.contiguous_format)

        B0, B1 = 3, 5
        x = torch.randn(2, B0, 7)
        y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x)
        self.assertTrue(y.movedim(1, 0).is_contiguous())
        self.assertTrue(y[:, 0, :].is_contiguous())

        x = torch.randn(2, B0, 7, B1)
        y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x)
        self.assertTrue(y.is_contiguous())
        self.assertTrue(y[0][0].is_contiguous())


        msg = r'only supported with memory_format torch.preserve_format or torch.contiguous_format'
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))(torch.randn(B0))

    def test_binary_pointwise_ops(self):
        def get_number(getter):
            return getter([]).item()

        def make_case(op, input_getter=TensorFactory.randn):
            return (op, input_getter)

        cases = [
            # Basic arithmetic
            make_case(torch.add),
            make_case(lambda x, y: x + y),
            make_case(torch.sub),
            make_case(lambda x, y: x - y),
            make_case(torch.mul),
            make_case(lambda x, y: x * y),
            make_case(torch.div, input_getter=TensorFactory.randp1),
            make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1),
            make_case(torch.pow, input_getter=TensorFactory.randp1),
            make_case(lambda x, y: x ** y, input_getter=TensorFactory.randp1),
        ]
        test = self._vmap_test

        for op, getter in cases:
            device = 'cpu'
            B0, B1 = 7, 11

            # Single vmap: op(Tensor, Tensor)
            test(op, (getter([B0, 3], device), getter([B0, 3], device)))
            test(op, (getter([B0], device), getter([B0, 2, 3], device)))
            test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
            test(op, (getter([B0], device), getter([2, B0, 3], device)),
                 in_dims=(0, 1), out_dims=1)
            test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
            test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None))

            # Nested vmap: op(Tensor, Tensor)
            test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
            test(vmap(op, in_dims=(None, 0)),
                 (getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))

            # Python number overload: op(Tensor, Number) (and vice-versa)
            number = get_number(getter)
            self._test_unary(lambda t: op(t, number), getter, device)
            number = get_number(getter)
            self._test_unary(lambda t: op(number, t), getter, device)

            # Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor)
            test(op, (getter([B0], device), getter([B0], device, dtype=torch.double)))
            test(op, (getter([B0], device, dtype=torch.double), getter([B0], device)))
            test(op, (getter([B0], device), getter([B0], device)))

            # Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa)
            test(op, (getter([B0, 2], device), getter([B0], device, torch.double)))
            test(op, (getter([B0], device, torch.double), getter([B0, 2], device)))

            if not torch.cuda.is_available():
                continue

            # TODO(rzou): fix the following
            # # Test cross-device scalars
            # number = get_number(getter)
            # self._test_unary(lambda t: op(t, number), getter, device='cuda')
            # self._test_unary(lambda t: op(number, t), getter, device='cuda')
            # self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda')

    def test_as_strided(self):
        def _test(sizes, strides, offset, tensor, lambd):
            result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor)
            expected = vmap(lambd)(tensor)
            self.assertTrue(result._base is expected._base)
            self.assertEqual(result, expected)

        # single vmap test
        B0 = 5
        tensors = [
            # contiguous
            torch.randn(B0, 2, 3),
            # non-contiguous
            torch.randn(B0, 3, 2).transpose(1, 2),
            # non-zero storage offset
            torch.randn(2, B0, 2, 3)[1],
            # non-contiguous strides, zero storage offset
            torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0],
            # non-contiguous strides, non-zero storage offset
            torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1],
        ]

        for x in tensors:
            S0, S1 = x.stride()[1:]
            offset = x.storage_offset()

            # Broadcast
            _test([5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3))
            # transpose
            _test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1))
            # select
            _test([2], [S0], offset + S1, x, lambda x: x[:, 1])

        # Nested vmap test
        B1 = 7
        x = torch.randn(B1, B0, 2, 3)
        S0, S1 = x.stride()[2:]
        result = vmap(vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1)(x)
        expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x)
        self.assertTrue(result._base is expected._base)
        self.assertEqual(result, expected)

        # Check that mal-formatted size/strides doesn't crash
        with self.assertRaisesRegex(RuntimeError, 'size and stride must have the same length'):
            x = torch.randn(B0, 2, 3).transpose(0, 1)
            vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x)

        # Sanity check #1: we require the batch dims to be at the front of the
        # tensor (in memory layout).
        msg = 'batch dims being vmapped over are at the front of the tensor'
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(2, B0, 3).transpose(0, 1)
            vmap(lambda x: x.as_strided([2, 3], [B0 * 3, 1]))(x)
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 2, 3, B1).movedim(3, 1)
            vmap(vmap(lambda x: x.as_strided([2, 3], [B1 * 3, B1])))(x)

        # All the Sanity check #2{a,b,c} cases check that
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # doesn't index memory that is out of bounds of xs[i]. This condition
        # is important to the correctness of the as_strided batching rule
        # (see NOTE: [When will the as_strided_batching_rule fail?])

        # Sanity check #2a: The maximum indexable location of
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is less than or equal to the maximum indexable location of xs[i].
        msg = 'This is not supported inside of vmap'
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 3)
            vmap(lambda x: x.as_strided([3], [1], 1))(x)
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 3, 5)
            vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x)
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, B1, 3, 5)
            vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x)

        # Sanity check #2b: The min indexable location of
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is greater than or equal to the min indexable location of xs[i].
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(2, B0, 3)[1]
            vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x)

        # Sanity check #2c:
        # xs[i] is a zero-dim tensor, but
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is not
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 0, 3)
            vmap(lambda x: x.as_strided([3], [1]))(x)

    def test_bmm(self):
        op = torch.bmm
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = "Shape mismatch"
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3)))
        test(vmap(op), (torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)), in_dims=(None, 0))

    def test_cat(self):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Quick hack b/c vmap can't accept a list of tensors as an argument
        def get_op(dim):
            def op(*tensors):
                return torch.cat(tensors, dim=dim)
            return op

        test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3)))
        test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0))
        test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2))
        test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2))
        test(vmap(get_op(0), in_dims=(0, None)),
             (torch.rand(B1, 2), torch.rand(B0, 3)), in_dims=(None, 0))
        test(vmap(get_op(0), in_dims=(0, 0)),
             (torch.rand(B1, 2), torch.rand(B0, B1, 3)), in_dims=(None, 0))

    def test_conj(self):
        op = torch.conj

        def run_test(dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)
            B0, B1 = 7, 11
            test = self._vmap_test

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3])])
            test(op, [get([2, 5, B0, 3])], in_dims=2)
            test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1])])
            test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        # correctness tests
        run_test(torch.float)
        run_test(torch.cfloat)

        # check that torch.conj on a non-complex tensor returns the same tensor
        real_tensor = torch.randn(3)
        result = vmap(op)(real_tensor)
        self.assertEqual(result.data_ptr(), real_tensor.data_ptr())

    def test_contiguous(self):
        op = Tensor.contiguous

        self._test_unary(op, TensorFactory.randn, 'cpu')

        # check that contiguous returns the original tensor if the per-examples
        # are already contiguous
        B0 = 3
        x = torch.randn(B0, 2, 5, 7)
        x = x.movedim(0, 2)
        result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x)
        self.assertTrue(result is x)

        msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
        tensor = torch.randn(B0, 3)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(op, memory_format=torch.channels_last))(tensor)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor)

    def test_stride(self):
        B0 = 3

        x = torch.randn(B0, 2, 5, 7)

        def foo(x):
            assert x.stride() == (7 * 5, 7, 1)
            return x

        vmap(foo)(x)

        x = torch.randn(2, B0, 5, 7).movedim(1, 0)

        def bar(x):
            assert x.stride() == (7 * 5 * B0, 7, 1)
            return x

        vmap(bar)(x)

    def test_chunk(self):
        test = self._vmap_view_test
        op = torch.chunk
        B0, B1, B2 = 7, 11, 13

        # tests for torch.split(self, split_size: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 4, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_clamp(self):
        clamp_cases = (
            (lambda t: t.clamp(min=-0.5), TensorFactory.randn),
            (lambda t: t.clamp(max=0.5), TensorFactory.randn),
            (lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn),
            (lambda t: t.clamp_min(min=-0.5), TensorFactory.randn),
            (lambda t: t.clamp_max(max=0.5), TensorFactory.randn),
        )
        for op, getter in clamp_cases:
            self._test_unary(op, getter, 'cpu')

    def test_comparison_ops(self):
        test = functools.partial(self._vmap_test, check_propagates_grad=False)

        getter = TensorFactory.randn
        B0, B1 = 7, 11

        ops = (
            torch.eq, lambda x, y: x == y,
            torch.gt, lambda x, y: x > y,
            torch.ge, lambda x, y: x >= y,
            torch.le, lambda x, y: x <= y,
            torch.lt, lambda x, y: x < y,
            torch.ne, lambda x, y: x != y,
        )

        for op in ops:
            # Single vmap: op(Tensor, Tensor)
            test(op, (getter([B0, 3]), getter([B0, 3])))
            test(op, (getter([B0]), getter([B0, 2, 3])))
            test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1))
            test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1)
            test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None))
            test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None))

            # Nested vmap: op(Tensor, Tensor)
            test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3])))
            test(vmap(op, in_dims=(None, 0)),
                 (getter([B0, 2, 3]), getter([B1, 3])), in_dims=(0, None))

            # test number as inputs
            number = getter([]).item()
            self._test_unary(lambda t: op(t, number), getter, 'cpu', check_propagates_grad=False)

    def test_diagonal(self):
        tensor = torch.randn(3, 5, 7, 11, 13)
        test = self._vmap_view_test
        op = torch.diagonal
        test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None))
        test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None))
        test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None))
        test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1)
        test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1)
        test(vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3),
             (tensor,), in_dims=1, out_dims=1)

    def test_dot(self):
        op = torch.dot
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = "Shape mismatch"
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 5), torch.rand(5)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(5), torch.rand(B1, B0, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 5), torch.rand(B0, 5)))
        test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 5), torch.rand(B0, 5)), in_dims=(None, 0))

    def test_expand_as(self):
        op = torch.Tensor.expand_as
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5)))
        test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None))
        test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
        test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5)))
        test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)), in_dims=(0, 1))
        test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None))
        test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5)))

    def test_fill_and_zero_inplace(self):
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B0, B1 = 7, 11
        ops = (
            lambda t: t.fill_(0.1),
            lambda t: t.fill_(torch.tensor(0.2)),
            lambda t: t.zero_(),
        )

        for op in ops:
            # Single vmap, various in_dims / out_dims
            test(op, [TensorFactory.randn([B0, 3])])
            test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2)
            test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [TensorFactory.randn([B0, B1])])
            test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2)
            test(vmap(op, in_dims=2), [TensorFactory.randn([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        # test when value is a batched tensor for fill_ operator
        B0, B1 = 3, 5
        test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)])

        with self.assertRaisesRegex(RuntimeError,
                                    r"output with shape .+ doesn't match the broadcast shape"):
            # Runtime Error is thrown when the tensor being written to isn't being vmapped over
            vmap(Tensor.fill_, (None, 0))(TensorFactory.randn([B0, B1]),
                                          TensorFactory.randn([B0]))

    def _test_complex_views(self, op, dtypes):
        test = self._vmap_view_test

        def run_test(op, dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)

            B0, B1 = 7, 11

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3])])
            test(op, [get([3, B0])], in_dims=1)
            test(op, [get([2, 5, B0, 3])], in_dims=2)
            test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1])])
            test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        for dtype in dtypes:
            run_test(op, dtype)

    def test_real(self):
        self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble])

    def test_imag(self):
        self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble])

    def test_view_as_real(self):
        self._test_complex_views(torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble])

    def test_view_as_complex(self):
        def run_test(dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)

            op = torch.view_as_complex
            test = self._vmap_view_test
            B0, B1 = 7, 11

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3, 2])])
            test(op, [get([2, 5, B0, 3, 2])], in_dims=2)
            test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1, 2])])
            test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])],
                 in_dims=2, out_dims=2)

            # Interesting case #1: Batch dim directly before dim of size 2
            test(op, [get([3, B0, 2])], in_dims=1)
            test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2)

            # Interesting case #2: Batch dim at end of tensor, success cases
            # view_as_complex requires that the dim with size 2 have stride 1
            # in order for the view to function propertly
            test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1)
            test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)])
            test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)])

            # Interesting case #3: Batch dim at end of tensor, failure cases
            msg = "Tensor must have a last dimension with stride 1"
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op, in_dims=1)(get([2, B0]))
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1]))

            # Invalid input: no dimension of size 2
            msg = 'Input tensor must have one or more dimensions'
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op)(get([B0]))
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(vmap(op))(get([B0, B1]))

            # Invalid input: Batch dim has size 2, but the logical last dim does
            # not have size 2
            msg = 'Tensor must have a last dimension of size 2'
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op, in_dims=1)(get([3, 2]))

        for dtype in [torch.float, torch.double]:
            run_test(dtype)

    def test_is_complex(self):
        ctensor = torch.randn(3, dtype=torch.cfloat)
        tensor = torch.randn(3)

        def foo(x):
            if x.is_complex():
                return torch.tensor(1)
            else:
                return torch.tensor(0)

        self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1]))
        self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0]))

    def test_is_floating_point(self):
        float_tensor = torch.tensor([1., 2., 3.])
        long_tensor = torch.tensor([1, 2, 3])

        def foo(x):
            if x.is_floating_point():
                return torch.tensor(1)
            else:
                return torch.tensor(0)

        self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1]))
        self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0]))

    def test_is_contiguous(self):
        def foo(x):
            if x.is_contiguous():
                return torch.tensor(1.)
            else:
                return torch.tensor(0.)

        B0, B1 = 3, 5

        # Single batch dim
        contig = torch.randn(B0, 2, 7)
        self.assertEqual(vmap(foo)(contig), torch.ones(B0))

        noncontig = torch.randn(2, B0, 7)
        self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0))

        noncontig = torch.randn(2, B0, 7).movedim(1, 0)
        self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0))

        noncontig = torch.randn(2, 7, B0)
        self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0))

        # Multiple batch dims
        contig = torch.randn(B0, B1, 3)
        self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))

        contig = torch.randn(B1, B0, 3)
        self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1))

        contig = torch.randn(B1, B0, 3).movedim(0, 1)
        self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))

        noncontig = torch.randn(B0, 3, B1)
        self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1))

        # is_contiguous on empty tensor is True
        def bar(x):
            assert x.is_contiguous()
            return x

        vmap(bar)(torch.randn(B0, 0, 3))
        vmap(bar, in_dims=1)(torch.randn(0, B0, 3))
        vmap(bar)(torch.randn(B0, 0, 3).mT)

        # is_contiguous with other memory formats
        def baz(x, memory_format):
            x.is_contiguous(memory_format=memory_format)
            return x

        msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
        tensor = torch.randn(B0, 2, 7, 3)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor)

    def test_movedim(self):
        op = torch.movedim
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13

        # movedim(tensor, int, int) variant
        test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), 0, 1), in_dims=(2, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), 0, 1), in_dims=(2, None, None))

        # movedim(tensor, intlist, intlist) variant
        test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None))
        test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]), in_dims=(2, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]), in_dims=(2, None, None))

    def test_mm(self):
        op = torch.mm
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = "Shape mismatch"
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5, 2)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5, 2)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2)))
        test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))

    def test_mv(self):
        op = torch.mv
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = "Shape mismatch"
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5)))
        test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 5), torch.rand(B0, 5)), in_dims=(None, 0))

    def test_narrow(self):
        op = torch.narrow
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13

        test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None))
        test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None))
        test(vmap(op, in_dims=(0, None, None, None)),
             (torch.rand(B1, 2, B0, 5), 1, 0, 0), in_dims=(2, None, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), -1, 2, 3), in_dims=(2, None, None, None))

    def test_new_empty(self):
        # Empty is non-deterministic so we just check that the shape of the
        # output tensor is what we expect and that the vmap fallback isn't used.
        op = Tensor.new_empty

        B0, B1 = 7, 11

        result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0))
        self.assertEqual(result.shape, [B0, 2, 3])

        result = vmap(lambda x: op(x, []))(torch.randn(B0))
        self.assertEqual(result.shape, [B0])

        result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1))
        self.assertEqual(result.shape, [B0, B1, 2, 3])

    def test_new_empty_strided(self):
        # Empty is non-deterministic so we just check that the size and shape
        # of the output are what we expect and that the vmap fallback isn't used
        B0, B1 = 7, 11

        def _test_single_vmap(size, stride, B0):
            x = torch.randn(B0)
            result = vmap(lambda x: x.new_empty_strided(size, stride))(x)
            S = torch.empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0] + size)
            self.assertEqual(result.stride(), [S] + stride)

        def _test_double_vmap(size, stride, B0, B1):
            x = torch.randn(B0, B1)
            result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x)
            S = torch.empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0, B1] + size)
            self.assertEqual(result.stride(), [B1 * S, S] + stride)

            x = torch.randn(B1, B0)
            result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)(x)
            S = x.new_empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0, B1] + size)
            self.assertEqual(result.stride(), [B1 * S, S] + stride)

        # contiguous case
        _test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0)
        _test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1)

        # expanded
        _test_single_vmap([2, 3, 5], [0, 5, 1], B0)
        _test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1)

        # some of these cases are pretty strange, just verifying that if
        # empty_strided allows them then BatchedTensor.new_empty_strided
        # can as well
        for shape in [[2, 3, 4], [0, 2, 0]]:
            for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]:
                _test_single_vmap(shape, strides, B0)
                _test_double_vmap(shape, strides, B0, B1)

    def test_new_zeros(self):
        op = Tensor.new_zeros
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B0, B1 = 7, 11

        test(lambda x: op(x, 2, 3), (torch.rand(B0),))
        test(lambda x: op(x, []), (torch.rand(B0),))
        test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),))

    def test_select(self):
        op = torch.select
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None))
        test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)

    def test_stack(self):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Quick hack b/c vmap can't accept a list of tensors as an argument
        def get_op(dim):
            def op(*tensors):
                return torch.stack(tensors, dim=dim)
            return op

        test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3)))
        test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0))
        test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
        test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
        test(vmap(get_op(0), in_dims=(0, None)),
             (torch.rand(B1, 2), torch.rand(B0, 2)), in_dims=(None, 0))
        test(vmap(get_op(0), in_dims=(0, 0)),
             (torch.rand(B1, 2), torch.rand(B0, B1, 2)), in_dims=(None, 0))


    def test_slice(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(lambda t: t[0:1], (torch.rand(B0, 3, 5),))
        test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2)
        test(vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2)
        test(vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2),
             (torch.rand(3, 5, B0, B1, B2),), in_dims=2)

    def test_squeeze(self):
        test = self._vmap_view_test
        op = torch.squeeze
        B0, B1 = 1, 11
        test(op, (torch.rand(B0),))
        test(op, (torch.rand(B0, 3, 5),))
        test(op, (torch.rand(1, B0, 5),), in_dims=1)
        test(op, (torch.rand(B0, 0, 1, 5, 1),))
        test(op, (torch.rand(B0, 1, 1, 1, 1),))
        test(vmap(op), (torch.rand(B0, B1, 1),))
        test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2)

    def test_sum_dim(self):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Single vmap, various in_dims / out_dims
        test(lambda x: x.sum(()), [torch.randn([B0])])
        test(lambda x: x.sum(0), [torch.randn([B0])])
        test(lambda x: x.sum(-1), [torch.randn([B0])])
        test(lambda x: x.sum(0), [torch.randn([B0, 3])])
        test(lambda x: x.sum(-1), [torch.randn([2, 5, B0, 3])], in_dims=2)
        test(lambda x: x.sum(2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)

        # Doubly nested vmap
        test(vmap(lambda x: x.sum(())), [torch.randn([B0, B1])])
        test(vmap(lambda x: x.sum(0)), [torch.randn([B0, B1])])
        test(vmap(lambda x: x.sum(-1)), [torch.randn([B0, B1])])
        test(vmap(lambda x: x.sum(-2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2)
        test(vmap(lambda x: x.sum(2), in_dims=2), [torch.randn([2, 5, B0, B1, 3])],
             in_dims=2, out_dims=2)

    def test_reshape(self):
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        op = torch.reshape
        test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True)
        test(op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False)
        test(vmap(lambda t: t.reshape([-1])), (torch.rand(B0, B1, 2, 5),), check_view=True)
        test(vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1),
             (torch.rand(3, B1, 2, B2, 5, B0),), in_dims=5, check_view=False)

    def test_reshape_as(self):
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.reshape_as
        test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True)
        test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0), check_view=True)
        test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None), check_view=True)

        test(op, (torch.rand(2, B0, 5), torch.rand(1, 1, 10)), in_dims=(1, None), check_view=False)

        test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)), check_view=True)
        test(vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)),
             (torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)),
             in_dims=(5, 0), check_view=False)

    def test_result_type(self):
        def scalar_tensor_with_dtype(op):
            def wrapped(*args, **kwargs):
                dtype = op(*args, **kwargs)
                return torch.ones([], dtype=dtype)
            return wrapped

        test = self._vmap_test
        op = scalar_tensor_with_dtype(torch.result_type)

        B0 = 2

        test(op, (torch.randn(B0), torch.randn(B0, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)),
             check_propagates_grad=False)

        test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False)
        test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False)

        test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0),),
             check_propagates_grad=False)
        test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
             (torch.randn(B0),), check_propagates_grad=False)

        test(op, (torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)),
             check_propagates_grad=False)

        test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False)
        test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False)

        test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0, 2),),
             check_propagates_grad=False)
        test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
             (torch.randn(B0, 2),), check_propagates_grad=False)

        test(op, (torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)),
             check_propagates_grad=False)

    def test_tensor_split(self):
        test = self._vmap_view_test
        op = torch.tensor_split
        B0, B1, B2 = 7, 11, 13

        # tests for torch.tensor_split(self, indices_or_sections: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

        # tests for torch.tensor_split(self, indices_or_sections: List[int], dim)
        test(op, (torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_split(self):
        test = self._vmap_view_test
        op = torch.split
        B0, B1, B2 = 7, 11, 13

        # tests for torch.split(self, split_size: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

        # tests for torch.split(self, split_size: List[int], dim)
        test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_trace(self):
        op = torch.trace
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13

        test(op, (torch.rand(B0, 2, 5),))
        test(op, (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

    def test_transpose(self):
        op = torch.transpose
        test = self._vmap_view_test

        B0, B1, B2 = 7, 11, 13
        test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),))
        test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),))
        test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),))
        test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

        # Special case: scalar tensor
        for dim1, dim2 in itertools.product([0, -1], [0, -1]):
            x = torch.rand(B0)
            result = vmap(lambda x: op(x, dim1, dim2))(x)
            self.assertTrue(result is x)

    def test_t(self):
        op = torch.t
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5),))
        test(op, (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

    def test_T_numpy(self):
        def op(t):
            return t.T

        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 3, 5),))
        test(op, (torch.rand(B0),))
        test(op, (torch.rand(2, B0, 3, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2)

    def test_to(self):
        test = self._vmap_test
        B0, B1 = 7, 11

        test(lambda t: t.to('cpu'), (torch.rand(B0),))
        test(lambda t: t.to(torch.double), (torch.rand(B0),))
        test(lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)))
        test(lambda t, o: t.to(o),
             (torch.rand(B0), torch.randn(B0, dtype=torch.float64)),
             in_dims=(0, None))
        test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),))

        # also test some casting methods
        test(lambda t: t.double(), (torch.rand(B0),))
        test(lambda t: t.float(), (torch.rand(B0),))
        test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False)
        test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False)

    def test_unfold(self):
        op = torch.Tensor.unfold
        test = self._vmap_view_test
        B0, B1, B2 = 3, 2, 5

        test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None))
        test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None))
        test(vmap(op, in_dims=(0, None, None, None)),
             (torch.rand(B1, 7, B0, 11), 1, 5, 1), in_dims=(2, None, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
             (torch.rand(B1, 7, B0, 11, B2), -1, 2, 4), in_dims=(2, None, None, None))

    def test_unbind(self):
        test = self._vmap_view_test
        op = torch.unbind
        B0, B1, B2 = 7, 11, 13

        test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None))
        test(op, (torch.rand(B0, 2, 0),))
        test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, 1023, B0, 5), 1),
             in_dims=(2, None))
        test(vmap(vmap(lambda t: op(t, dim=1), in_dims=2)),
             (torch.rand(B1, 2, B0, 32, B2),), in_dims=2)

    def test_view(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.view

        # We should error out if the view would produce an incorrect result
        with self.assertRaises(RuntimeError):
            vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10])

        test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None))
        test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None))
        test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),))
        test(vmap(vmap(lambda t: t.reshape([-1])), in_dims=1),
             (torch.rand(B2, B0, B1, 3, 2, 5),), in_dims=1)

    def test_view_as(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.view_as

        # We should error out if the view would produce an incorrect result
        with self.assertRaises(RuntimeError):
            vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10))

        test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)))
        test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0))
        test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None))

        test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None))

        test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)))
        test(vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)),
             (torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)),
             in_dims=(2, 0))

    def test_no_random_op_support(self):
        B0 = 2

        captured = torch.rand(3)

        random_ops = [
            # out-of-place on BatchedTensor
            (torch.bernoulli, (torch.rand(B0, 1),)),
            (lambda t: torch.bernoulli(t, p=0.5), (torch.rand(B0, 1),)),
            (lambda t: torch.multinomial(t, 2), (torch.rand(B0, 3),)),
            (torch.normal, (torch.randn(B0, 1), torch.randn(B0, 1))),
            (lambda t: torch.normal(t, 1.), (torch.randn(B0, 1),)),
            (lambda t: torch.normal(0., t), (torch.randn(B0, 1),)),
            (torch.poisson, (torch.rand(B0, 1),)),
            (torch.rand_like, (torch.rand(B0, 1),)),
            (torch.randn_like, (torch.rand(B0, 1),)),
            (lambda t: torch.randint_like(t, 2), (torch.rand(B0, 1),)),
            (lambda t: torch.randint_like(t, 0, 2), (torch.rand(B0, 1),)),

            # out-of-place on captured tensor
            (lambda t: torch.bernoulli(captured), (torch.rand(B0),)),
            (lambda t: torch.bernoulli(captured, p=0.5), (torch.rand(B0),)),
            (lambda t: torch.multinomial(captured, 2), (torch.rand(B0),)),
            (lambda t: torch.normal(captured, captured), (torch.randn(B0),)),
            (lambda t: torch.normal(captured, 1.), (torch.randn(B0),)),
            (lambda t: torch.normal(0., captured), (torch.randn(B0),)),
            (lambda t: torch.poisson(captured), (torch.rand(B0),)),
            (lambda t: torch.rand_like(captured), (torch.rand(B0),)),
            (lambda t: torch.randn_like(captured) , (torch.rand(B0),)),
            (lambda t: torch.randint_like(captured, 2), (torch.rand(B0),)),
            (lambda t: torch.randint_like(captured, 0, 2), (torch.rand(B0),)),

            # in-place on BatchedTensor
            (lambda t: t.bernoulli_(), (torch.randn(B0, 1),)),
            (lambda t: t.cauchy_(), (torch.randn(B0, 1),)),
            (lambda t: t.exponential_(), (torch.randn(B0, 1),)),
            (lambda t: t.geometric_(0.5), (torch.randn(B0, 1),)),
            (lambda t: t.log_normal_(), (torch.randn(B0, 1),)),
            (lambda t: t.normal_(), (torch.randn(B0, 1),)),
            (lambda t: t.random_(), (torch.randn(B0, 1),)),
            (lambda t: t.random_(0, 2), (torch.randn(B0, 1),)),
            (lambda t: t.random_(2), (torch.randn(B0, 1),)),
            (lambda t: t.uniform_(), (torch.randn(B0, 1),)),

            # in-place on captured tensor
            (lambda t: captured.bernoulli_(), (torch.randn(B0),)),
            (lambda t: captured.cauchy_(), (torch.randn(B0),)),
            (lambda t: captured.exponential_(), (torch.randn(B0),)),
            (lambda t: captured.geometric_(0.5), (torch.randn(B0),)),
            (lambda t: captured.log_normal_(), (torch.randn(B0),)),
            (lambda t: captured.normal_(), (torch.randn(B0),)),
            (lambda t: captured.random_(), (torch.randn(B0),)),
            (lambda t: captured.random_(0, 2), (torch.randn(B0),)),
            (lambda t: captured.random_(2), (torch.randn(B0),)),
            (lambda t: captured.uniform_(), (torch.randn(B0),)),

            # factory functions
            (lambda t: torch.rand(1), (torch.randn(B0),)),
            (lambda t: torch.randn(1), (torch.randn(B0),)),
            (lambda t: torch.randint(5, [1]), (torch.randn(B0),)),
            (lambda t: torch.randperm(5), (torch.randn(B0),)),
        ]
        for op, args in random_ops:
            with self.assertRaisesRegex(RuntimeError,
                                        'vmap: We do not yet support calling random operations'):
                vmap(op)(*args)

def construct_v(output, batch_size):
    return torch.randn(batch_size, *output.shape,
                       dtype=output.dtype, device=output.device)

def as_tuple(x):
    if isinstance(x, tuple):
        return x
    elif isinstance(x, list):
        return tuple(x)
    else:
        return x,

def differentiable(args):
    return tuple(arg for arg in as_tuple(args)
                 if isinstance(arg, torch.Tensor) and arg.requires_grad)

def _get_rand_no_zeros(*args, **kwargs):
    requires_grad = kwargs.get('requires_grad', False)
    kwargs_without_requires_grad = kwargs.copy()
    kwargs_without_requires_grad['requires_grad'] = False
    result = torch.rand(*args, **kwargs_without_requires_grad)
    return result.clamp_min_(0.1).requires_grad_(requires_grad)

class TestVmapBatchedGradient(Namespace.TestVmapBase):
    def _vmap_test(self, *args, **kwargs):
        return _vmap_test(self, *args, **kwargs)

    # Tests batched gradient computation of outputs = op(*args, **kwargs)
    # by comparing it to a sequential map+stack fallback.
    #
    # output_process_fn: a function that maps the outputs to the part
    #       that should be differentiated.
    # batch_size: the batch dim size for the batched grad
    def _batched_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
        if kwargs is None:
            kwargs = {}
        outputs = op(*args, **kwargs)
        outputs = differentiable(output_process_fn(outputs))
        batched_vectors = tuple(construct_v(out, batch_size) for out in outputs)

        def vector_jacobian_product(*vectors):
            return torch.autograd.grad(outputs, differentiable(args), vectors,
                                       retain_graph=True)
        self._vmap_test(vector_jacobian_product, batched_vectors,
                        check_propagates_grad=False)

    # Tests batched second grad computation of outputs = op(*args, **kwargs).
    # by comparing it to a sequential map+stack fallback.
    #
    # output_process_fn: a function that maps the outputs to the part
    #       that should be differentiated.
    # batch_size: the batch dim size for the batched grad
    #
    # NB: we only test computing batched gradients in the second gradient
    # computation. One specific use case that does this is computing the hessian
    # matrix of a scalar-valued function; this is useful in Bayesian Logistic
    # Regression.
    # It might be useful to have a test that computes batched first gradients and
    # then uses those to compute batched second gradients in the future.
    def _batched_grad_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
        if kwargs is None:
            kwargs = {}
        outputs = op(*args, **kwargs)
        outputs = differentiable(output_process_fn(outputs))
        ones = tuple(torch.ones_like(out) for out in outputs)
        # Same thing as summing together all of the outputs and calling .backward()
        first_grads = torch.autograd.grad(outputs, differentiable(args), ones,
                                          create_graph=True)
        first_grads = differentiable(first_grads)
        self.assertNotEqual(
            len(first_grads), 0, "None of the first grads depend on the input!")

        batched_vectors = tuple(construct_v(grad, batch_size) for grad in first_grads)

        def vector_hessian_product(*vectors):
            outputs = torch.autograd.grad(first_grads, differentiable(args), vectors,
                                          retain_graph=True, allow_unused=True)
            outputs = tuple(out for out in outputs if out is not None)
            assert len(outputs) > 0
            return outputs

        self._vmap_test(vector_hessian_product, batched_vectors,
                        check_propagates_grad=False)

    def _test_arithmetic(self, op, device, test_grad_grad=True):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        scalar = 3.14
        self._batched_grad_test(op, (x, y))
        self._batched_grad_test(op, (scalar, y))
        self._batched_grad_test(op, (x, scalar))

        if test_grad_grad:
            self._batched_grad_grad_test(op, (x, y))

    def test_add(self, device):
        self._test_arithmetic(torch.add, device, test_grad_grad=False)
        self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False)

    def test_sub(self, device):
        self._test_arithmetic(torch.sub, device, test_grad_grad=False)
        self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False)

    def test_mul(self, device):
        self._test_arithmetic(torch.mul, device)
        self._test_arithmetic(lambda x, y: x * y, device)

    def test_div(self, device):
        self._test_arithmetic(torch.div, device)
        self._test_arithmetic(lambda x, y: x / y, device)

    @allowVmapFallbackUsage
    def test_binary_cross_entropy(self, device):
        x = torch.sigmoid(torch.randn(3, 2, device=device, requires_grad=True))
        target = torch.rand(3, 2, device=device)

        op = functools.partial(F.binary_cross_entropy, target=target)

        self._batched_grad_test(op, (x,), {})
        self._batched_grad_grad_test(op, (x,), {})

    def test_expand(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)

        def op(x):
            return x.expand(5, 5, 2, 3)
        self._batched_grad_test(op, (x,))

    @allowVmapFallbackUsage
    def test_index(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        index = torch.tensor([[0, 0], [1, 1]], device=device)

        def op(x):
            y = x * x
            return y[index]

        self._batched_grad_test(op, (x,))
        self._batched_grad_grad_test(op, (x,))

    def test_lgamma(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(Tensor.lgamma, (x,))
        self._batched_grad_grad_test(Tensor.lgamma, (x,))

    def test_log(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(torch.log, (x,))
        self._batched_grad_grad_test(torch.log, (x,))

    def test_logsumexp(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)

        def op(x):
            return torch.logsumexp(x, -1)

        self._batched_grad_test(op, (x,))
        self._batched_grad_grad_test(op, (x,))

    def test_log1p(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(torch.log1p, (x,))
        self._batched_grad_grad_test(torch.log1p, (x,))

    @allowVmapFallbackUsage
    def test_max(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.max, (x,))

    @allowVmapFallbackUsage
    def test_median(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.median, (x,))

    @allowVmapFallbackUsage
    def test_min(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.min, (x,))

    def test_permute(self, device):
        x = torch.randn(2, 3, 5, requires_grad=True, device=device)

        def op(x):
            return x.permute(2, 0, 1)

        self._batched_grad_test(op, (x,))

    def test_reshape(self, device):
        x = torch.randn(2, 3, 5, requires_grad=True, device=device)

        def op(x):
            return x.reshape([2 * 3, 5])

        self._batched_grad_test(op, (x,))

    def test_sigmoid(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(Tensor.sigmoid, (x,))
        self._batched_grad_grad_test(Tensor.sigmoid, (x,))

    def test_stack(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        y = torch.randn(2, 3, device=device, requires_grad=True)

        def op(x, y):
            return torch.stack([x, y])
        self._batched_grad_test(op, (x, y))

    def test_select(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x[1], (x,))
        self._batched_grad_test(lambda x: x.select(1, 2), (x,))
        self._batched_grad_test(lambda x: x.select(-1, 0), (x,))

    def test_slice(self, device):
        x = torch.randn(2, 3, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x[0:1], (x,))
        self._batched_grad_test(lambda x: x[:, 1:3], (x,))
        self._batched_grad_test(lambda x: x[..., 1:3], (x,))

    def test_trace(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(Tensor.trace, (x,))

    @skipCUDAIfNoMagma
    @allowVmapFallbackUsage
    def test_symeig(self, device):
        def op(x):
            return torch.symeig(x, eigenvectors=True)[0]

        x = torch.randn(3, 3, device=device, requires_grad=True)
        self._batched_grad_test(op, (x,), {})
        self._batched_grad_grad_test(op, (x,), {})

    def test_threshold(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,))


    @allowVmapFallbackUsage
    def test_inplace_on_view(self, device):
        leaf = torch.randn(4, 5, requires_grad=True)

        def func(leaf):
            # Make sure the function is non-trivially twice differentiable
            base = leaf * leaf
            view = base[0]
            view.cos_()
            return view

        self._batched_grad_test(func, (leaf,), {})
        self._batched_grad_grad_test(func, (leaf,), {})

    @allowVmapFallbackUsage
    def test_inplace_manyview(self, device):
        leaf = torch.randn(4, 4, 5, requires_grad=True)

        def func(leaf):
            # Make sure the function is non-trivially twice differentiable
            base = leaf * leaf
            view = base.transpose(0, 2)
            view = view[1]
            view = view.diagonal()
            view = view[::2]
            view.cos_()
            return view

        self._batched_grad_test(func, (leaf,), {})
        self._batched_grad_grad_test(func, (leaf,), {})

    def test_diagonal(self, device):
        x = torch.randn(4, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,))

        x = torch.randn(3, 4, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,))

    @allowVmapFallbackUsage
    def test_unrelated_output(self, device):
        B0 = 3
        x = torch.randn([], requires_grad=True)
        y = torch.randn([], requires_grad=True)
        gy = torch.randn(B0, requires_grad=True)

        def vjp(v):
            res, = torch.autograd.grad(y, x, v, allow_unused=True)
            return torch.zeros_like(x) if res is None else res

        result = vmap(vjp)(gy)
        self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))

    @allowVmapFallbackUsage
    def test_unrelated_output_multiple_grad(self, device):
        B0 = 3
        x = torch.randn([], requires_grad=True)
        y = torch.randn([], requires_grad=True)
        gy = torch.randn(B0, requires_grad=True)

        def vjp(v):
            res, = torch.autograd.grad(y, x, v, allow_unused=True)
            return torch.zeros_like(x) if res is None else res

        _ = vjp(gy[0])
        result = vmap(vjp)(gy)
        self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))

instantiate_device_type_tests(
    TestVmapBatchedGradient,
    globals(),
    None,
)

if __name__ == '__main__':
    run_tests()