1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
|
# Owner(s): ["module: vmap"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn.functional as F
from torch import Tensor
from torch._vmap_internals import vmap
import functools
import itertools
import warnings
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
skipCUDAIfNoMagma
import types
FALLBACK_REGEX = r'There is a performance drop'
class EnableVmapFallbackWarnings:
def __enter__(self):
self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled()
torch._C._debug_only_display_vmap_fallback_warnings(True)
def __exit__(self, *ignored):
torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state)
class TestVmapAPI(TestCase):
def test_non_tensor_output_raises(self):
with self.assertRaisesRegex(ValueError, "got type <class 'float'> as the return"):
output = vmap(lambda x: 3.14)(torch.ones(3))
def multiple_outputs(x):
return x, 3
with self.assertRaisesRegex(ValueError, "got type <class 'int'> for return 1"):
vmap(multiple_outputs)(torch.ones(3))
def test_different_map_dim_size_raises(self):
x = torch.randn(2)
y = torch.randn(3)
expected_msg = 'Expected all tensors to have the same size in the mapped dimension'
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(torch.mul)(x, y)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
def test_func_with_no_inputs(self):
expected_msg = 'got no inputs'
def foo():
return torch.randn(3)
def bar(x):
return torch.randn(3)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(foo)()
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(bar)()
def test_constant_function(self):
output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3))
self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14]))
def test_single_input(self):
x = torch.randn(2, 3)
def square(x):
return x * x
output = vmap(square)(x)
self.assertEqual(output, x * x)
def test_multiple_inputs(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
output = vmap(torch.mul)(x, y)
self.assertEqual(output, x * y)
def test_multiple_outputs(self):
def foo(x):
return x * x, x * x * x
x = torch.randn(3)
outputs = vmap(foo)(x)
self.assertEqual(outputs[0], x * x)
self.assertEqual(outputs[1], x * x * x)
def test_multiple_outputs_error_cases(self):
# This is the same thing as
# def returns_tuple_of_tensors(x):
# return x, x
def returns_tuple_of_tensors(x):
return (x, x)
def returns_list_of_two_tensors(x):
return [x, x]
def returns_list_of_one_tensor(x):
return [x]
x = torch.randn(3)
# should not throw
vmap(returns_tuple_of_tensors)(x)
# jax supports these, but we don't yet
msg = "must only return Tensors, got type <class 'list'>"
with self.assertRaisesRegex(ValueError, msg):
vmap(returns_list_of_two_tensors)(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(returns_list_of_one_tensor)(x)
def test_nested_with_same_map_dim(self):
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
output = vmap(vmap(torch.mul))(x, y)
self.assertEqual(output, x * y)
output = vmap(vmap(vmap(torch.mul)))(x, y)
self.assertEqual(output, x * y)
def test_nested_with_different_map_dim(self):
x = torch.randn(2, 3)
y = torch.randn(5, 3)
output = vmap(lambda x: vmap(lambda y: x * y)(y))(x)
self.assertEqual(output.shape, (2, 5, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
z = torch.randn(7, 3)
output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x)
self.assertEqual(output.shape, (2, 5, 7, 3))
self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z)
def test_noop_in_inner_vmap(self):
x = torch.randn(3)
y = torch.randn(5)
output = vmap(lambda x: vmap(lambda y: x)(y))(x)
self.assertEqual(output, x.view(3, 1).expand(3, 5))
def test_unsupported_op_err_msg(self):
# Unsupported view op
tensor = torch.randn(2, 3)
msg = (
r"Batching rule not implemented for aten::.+; the "
r"fallback path doesn't work on out= or view ops"
)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(torch.ravel)(tensor)
def out_op(x, y):
return torch.abs(x, out=y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(out_op)(tensor, tensor)
tensor = torch.randn(2)
# The fallback doesn't support TensorList
with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
vmap(lambda t: torch.atleast_1d([t]))(tensor)
# Don't support non-tensor returns. This is a limitation of vmap;
# functions that don't return tensors must be special cased
with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
vmap(torch.Tensor.item)(tensor)
def test_nonzero_out_dims(self):
# Basic test
tensor = torch.randn(2, 3)
result = vmap(lambda x: x, out_dims=1)(tensor)
self.assertEqual(result, tensor.permute(1, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# Test that the batch dimension gets permuted to dim 2
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 0, 3))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# negative out_dim
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=-1)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 3, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# check that out_dims works on ALL outputs
tensor = torch.randn(2, 3, 5, 7)
other = torch.randn(2, 3, 5, 7)
result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other)
self.assertEqual(result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3)))
# use out_dims with the maximum vmap-able tensor dims (64 dims)
ndims = 64
shape = [2] + [1] * (ndims - 1)
expected_shape = [1, 1, 2] + [1] * (ndims - 3)
tensor = torch.randn(shape)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result.shape, expected_shape)
# test something that is not the identity function
def foo(x, y):
return x, x * y, x * y * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=1)(x, y)
self.assertEqual(
result,
(x.permute(1, 0, 2), (x * y).permute(1, 0, 2), (x * y * y).permute(1, 0, 2)))
def test_multiple_out_dims(self):
def foo(x):
return x, x
def bar(x, y):
return x, x, x, x * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=(0, 1))(x)
self.assertEqual(result, (x, x.permute(1, 0, 2)))
result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y)
expected = (
x.permute(1, 2, 0),
x,
x.permute(1, 0, 2),
(x * y).permute(1, 2, 0),
)
self.assertEqual(result, expected)
def test_nested_out_dims(self):
y = torch.randn(2, 3, 5, 7)
# Inner vmap has non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y)
self.assertEqual(result.shape, (2, 5, 3, 7))
self.assertEqual(result, y.permute(0, 2, 1, 3))
# all vmaps have non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y)
self.assertEqual(result.shape, (5, 2, 3, 7))
self.assertEqual(result, y.permute(2, 0, 1, 3))
# throwing in some negative out_dims
result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y)
self.assertEqual(result.shape, (5, 7, 3, 2))
self.assertEqual(result, y.permute(2, 3, 1, 0))
# testing fn that isn't the identity
x = torch.randn(2, 3)
y = torch.randn(5, 3)
result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y)
self.assertEqual(result.shape, (3, 2, 5))
self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0))
def test_out_dims_edge_case(self):
def foo(x):
return x
# Test that we accept out_dims=(1,) for a function with one output.
tensor = torch.randn(2, 3)
expected = vmap(foo, out_dims=1)(tensor)
result = vmap(foo, out_dims=(1,))(tensor)
self.assertEqual(result, expected)
def test_out_dims_must_be_int_or_tuple_of_int_err_msg(self):
msg = '`out_dims` must be an int or a tuple of int'
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims='lol')(tensor)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=('lol',))(tensor)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=None)(tensor)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=(None,))(tensor)
def test_out_dims_and_num_outputs_mismatch_err_msg(self):
msg = '`out_dims` must have one dim per output'
x = torch.randn(2, 3, 5)
# Too many out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=(0, 0))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x)
# Too few out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x), out_dims=(0,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0))(x)
def test_out_dim_out_of_bounds_err_msg(self):
# TODO(rzou): This error message isn't that great. It comes straight
# from maybe_wrap_dim. Consider doing a try-catch-(add some context) to
# the error message in the future in C++
msg = 'Dimension out of range'
x = torch.randn(2, 3, 5)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=3)(x)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=-4)(x)
def test_non_zero_in_dims(self):
tensor = torch.randn(2, 3, 5)
# Implicit out_dims = 0; vmap will move the batch dim to the front.
output = vmap(lambda x: x, (1,))(tensor)
self.assertEqual(output, tensor.permute(1, 0, 2))
self.assertEqual(output.data_ptr(), tensor.data_ptr())
x = torch.randn(2, 3)
y = torch.randn(3, 2)
output = vmap(torch.mul, (0, 1))(x, y)
self.assertEqual(output, x * y.t())
output = vmap(torch.mul, (1, 0))(x, y)
self.assertEqual(output, x.t() * y)
def test_none_in_dims(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# None in_dim for a Tensor means we don't map over it
output = vmap(torch.mul, (0, None))(x, y)
self.assertEqual(output.shape, (2, 2, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
# None in_dim for non-tensor arguments
output = vmap(torch.mul, (0, None))(x, 2)
self.assertEqual(output, x * 2)
def test_nested_non_default_in_dims(self):
x = torch.rand(5, 2, 3)
y = torch.rand(3, 5, 2)
result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y)
self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1))
def test_non_default_in_dims_out_dims(self):
x = torch.randn(2, 3, 5)
# Same in_dim as out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x)
self.assertEqual(result.data_ptr(), x.data_ptr())
# Different in_dim from out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, x.transpose(1, 2))
self.assertEqual(result.data_ptr(), x.data_ptr())
def foo(x):
return x * 2
# Same in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x * 2)
# Different in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, (x * 2).transpose(1, 2))
# Basic nested test.
result = vmap(vmap(foo, 1, 1), 1, 1)(x)
self.assertEqual(result, x * 2)
def test_accepts_nested_inputs(self):
B0 = 2
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# Single layer of nesting
out = vmap(lambda z: z[0] + z[1])((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1])([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'])({'x': x, 'y': y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'], in_dims=(0,))({'x': x, 'y': y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
self.assertEqual(out, x + y)
# Multiple layers of nesting
out_fn = vmap(lambda z: z['x'][0] + z['x'][1][0] + z['y'][0] + z['y'][1])
out = out_fn({'x': [x, (x,)], 'y': [y, y]})
self.assertEqual(out, x + x + y + y)
def test_in_dims_wrong_type_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r'expected `in_dims` to be int or a \(potentially nested\) tuple'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, [0, 0])(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, set({0, 0}))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, 'lol')(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_not_enough_in_dims_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r'in_dims is not compatible with the structure of `inputs`'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0,))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0, 0, 0))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y])
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_integer_in_dim_but_not_tensor_input_err_msg(self):
def foo(xy):
return xy[0] * xy[1]
def bar(x, yz):
return x * yz[0] * yz[1]
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# the following are errors in jax (and will always be errors)
msg = 'Got in_dim=0 for an input but the input is of type'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum)(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum, (0, 0))(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1])
# The following should not throw
vmap(torch.sum, (0, None))(x, 0)
def test_in_dim_not_in_tensor_err_msg(self):
def foo(x):
return x * x
x = torch.randn(2, 3)
y = torch.randn(2, 3)
msg = r'Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w'
with self.assertRaisesRegex(ValueError, msg):
vmap(foo)(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(0,))(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(-1,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(2,))(y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y])
# the following should not throw
vmap(foo, in_dims=(0,))(torch.randn(2, 3))
vmap(foo, in_dims=(1,))(torch.randn(2, 3))
def test_fallback_does_not_warn_by_default(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch.atan2
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
result = vmap(op)(x, y)
# The single warning here is the "vmap is experimental"
# warning, not a warning from the vmap fallback path.
self.assertEqual(len(wa), 1)
def test_fallback_warns_when_warnings_are_enabled(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch.atan2
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
with EnableVmapFallbackWarnings():
result = vmap(op)(x, y)
self.assertEqual(len(wa), 2)
self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def _assert_uses_vmap_fallback(self, vmap_args, inputs):
with warnings.catch_warnings(record=True) as wa:
with EnableVmapFallbackWarnings():
result = vmap(*vmap_args)(*inputs)
self.assertEqual(len(wa), 2)
self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def test_fallback_zero_dim(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch.atan2
x = torch.randn(11)
y = torch.randn(11)
self._assert_uses_vmap_fallback((op,), (x, y))
B0, B1 = 0, 3
x = torch.randn(B0, 11)
y = torch.randn(11)
msg = 'The fallback path does not support vmap over dims of size 0'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
x = torch.randn(B0, B1, 11)
y = torch.randn(B1, 11)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
def test_fallback_atan2(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch.atan2
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
# fallback on torch.atan2
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(op, (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# fallback on torch.atan2, nested vmap
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# big batch size (total 10000)
x = torch.randn(100, 10, 10, 5)
y = torch.randn(100, 10, 10)
result = vmap(vmap(vmap(op)))(x, y)
self.assertEqual(result, op(x, y.view(100, 10, 10, 1)))
def test_fallback_masked_fill(self):
# NB: One day we will implement a batching rule for masked_fill
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
def run_test(batch_size):
B0 = batch_size
x = torch.randn(B0, 7, 11, 13)
dim = 0
index = torch.tensor([0, 4, 2])
values = torch.randn(B0, 3, 13)
self._assert_uses_vmap_fallback((torch.index_add, (0, None, None, 0)), (x, dim, index, values))
result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values)
expected = torch.index_add(
x, dim + 1, index, values.view(B0, 3, 1, 13))
self.assertEqual(result, expected)
run_test(batch_size=5)
run_test(batch_size=1237)
def test_fallback_multiple_returns(self):
# NB: One day we will implement a batching rule for torch.var_mean
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
B0, B1, B2 = 2, 3, 1237
tensor = torch.randn(B0, 10)
self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,))
# fallback correctness on torch.var_mean
result = vmap(torch.var_mean)(tensor)
expected = torch.var_mean(tensor, dim=1)
self.assertEqual(result, expected)
# nested vmap
tensor = torch.randn(B0, B1, 10)
result = vmap(vmap(torch.var_mean))(tensor)
expected = torch.var_mean(tensor, dim=2)
self.assertEqual(result, expected)
# big batch size, nested vmap
tensor = torch.randn(B0, B1, B2, 10)
result = vmap(vmap(vmap(torch.var_mean)))(tensor)
expected = torch.var_mean(tensor, dim=3)
self.assertEqual(result, expected)
def test_inplace_fallback_unary(self):
# Test the in-place fallback on an in-place method that takes no
# additional Tensor arguments. This is the simplest case of the fallback.
# NB: One day we will implement a batching rule for acos_.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.acos_
B0, B1, B2 = 2, 3, 10000
x = torch.randn(B0, 5)
self._assert_uses_vmap_fallback((op,), (x,))
# Single vmap
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op)(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Single vmap + different out_dim produces a view(!)
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op, out_dims=(1,))(x)
self.assertTrue(result._base is x)
self.assertEqual(result, x_orig.t().acos())
# Nested vmap
x_orig = torch.randn(B0, B1, 5)
x = x_orig.clone()
result = vmap(vmap(op))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Nested vmap, large batch size
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
result = vmap(vmap(vmap(op)))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
def test_inplace_fallback_nary_same_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
# Single vmap
B0 = 5
x_orig = torch.randn(7, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, 7, 11)
vmap(op, (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2)))
# Nested vmap
B0, B1 = 5, 7
x_orig = torch.randn(B1, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, B1, 11)
vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0])))
# big batch size (total 10000)
B0, B1, B2 = 100, 10, 10
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
y = torch.randn(B0, B1, B2)
result = vmap(vmap(vmap(op)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1)))
def test_inplace_fallback_nary_different_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
B0, B1, B2 = 2, 3, 5
x = torch.rand(B0, 7)
y = torch.rand(7)
self._assert_uses_vmap_fallback((op, (0, None)), (x, y))
# op(left, right): All of the levels in right are found in left
x_orig = torch.rand(B0, 7)
x = x_orig.clone()
y = torch.rand(7)
vmap(op, in_dims=(0, None))(x, y)
self.assertEqual(x, outplace_op(x_orig, y))
x_orig = torch.rand(B0, B1, 7)
x = x_orig.clone()
y = torch.rand(B0, 7)
vmap(vmap(op, in_dims=(0, None)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7)))
# op(left, right): Some of the levels in right are not found in left
msg = r'vmap: aten::atan2_\(self, \*extra_args\) is not possible'
x = torch.rand(7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(7, B0)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y)
x = torch.rand(B0, 7)
y = torch.rand(B0, B1, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(None, 0)))(x, y)
def test_backward_unsupported_interaction(self):
x = torch.randn(3, requires_grad=True)
y = torch.randn(5)
grad = torch.randn_like(x)
err_msg = r'backward\(\) called inside torch.vmap'
def backward_on_vmapped_tensor(x):
x.sum().backward()
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_on_vmapped_tensor)(x)
def backward_with_vmapped_grad(x, grad):
x.backward(grad)
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_with_vmapped_grad)(x, grad)
def completely_unrelated_backward(y):
x.sum().backward()
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(completely_unrelated_backward)(y)
def test_grad_unsupported_interaction(self):
input_tensor = torch.randn(3, requires_grad=True)
err_msg = 'autograd.grad.* called inside torch.vmap'
captured = torch.randn(3, requires_grad=True)
def output_to_grad_is_vmapped(input_tensor):
output = (captured * input_tensor).sum()
return torch.autograd.grad([output], [captured])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(output_to_grad_is_vmapped)(input_tensor)
output = (input_tensor ** 2).sum()
def input_to_grad_is_vmapped(input_tensor):
return torch.autograd.grad([output], [input_tensor])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(input_to_grad_is_vmapped)(input_tensor)
def test_batched_gradient_basic(self):
N = 3
x = torch.randn(N, requires_grad=True)
y = torch.randn(N)
def vjp_mul(v):
return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0]
batched_v = torch.eye(N)
jacobian = vmap(vjp_mul)(batched_v)
self.assertEqual(jacobian, torch.diagflat(y))
def test_functools_partial(self):
x = torch.randn(3)
y = torch.randn(2, 3)
result = vmap(functools.partial(torch.mul, x))(y)
self.assertEqual(result, x * y)
def test_nn_module(self):
tensor = torch.randn(2, 3)
model = torch.nn.Linear(3, 3, bias=False)
result = vmap(model)(tensor)
self.assertEqual(result, model(tensor))
def test_fallback_with_undefined_grad(self):
B0 = 7
x = torch.randn(2, 3, 4, 5, requires_grad=True)
weight = torch.randn(3, 3, 1, 1)
v = torch.randn(B0, 2, 3, 4, 5)
def get_vjp(v):
result = torch.nn.functional.conv2d(x, weight)
grad_x, = torch.autograd.grad(result, x, v)
return grad_x
# Runs vmap(get_vjp)(v), which should not error out.
# The backward formula for convolution returns an undefined
# Tensor for grad_bias because the original bias does not exist.
#
# In the future we'll probably add a batching rule for convolution
# backward. When this happens, we should modify this test to use a
# different op (and/or create and use a dummy operator) to avoid bitrot.
self._assert_uses_vmap_fallback([get_vjp], [v])
def slice_inputs(inputs, bdims, i):
result = []
for inp, bdim in zip(inputs, bdims):
if bdim is None:
result.append(inp)
else:
result.append(inp.select(bdim, i))
return tuple(result)
def reference_vmap(op, inputs, in_dims=0, out_dims=0):
if isinstance(in_dims, int):
in_dims = (in_dims,) * len(inputs)
bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None]
assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes)
bdim_size = bdim_sizes[0]
results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size))
assert len(results) > 0
op_has_single_return = not isinstance(results[0], tuple)
if op_has_single_return:
assert all(isinstance(result, torch.Tensor) for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * 1
return torch.stack(results, dim=out_dims[0])
assert all(isinstance(result, tuple) for result in results)
num_returns = len(results[0])
assert all(len(result) == num_returns for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * num_returns
return tuple(torch.stack(result_shards, out_dim)
for result_shards, out_dim in zip(zip(*results), out_dims))
class TensorFactory:
@staticmethod
def rand(size, device='cpu', dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype)
@staticmethod
def randn(size, device='cpu', dtype=torch.float):
return torch.randn(size, device=device, dtype=dtype)
@staticmethod
def randp1(size, device='cpu', dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype) + 1
# Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a
# (slow) sequential map+stack fallback.
#
# check_view: Test if the first returned output is a view of the first input
# check_propagates_grad: Test if the operation propagates gradients.
def _vmap_test(self, op, inputs, in_dims=0, out_dims=0,
check_view=False, check_propagates_grad=True):
result = vmap(op, in_dims, out_dims)(*inputs)
reference_result = reference_vmap(op, inputs, in_dims, out_dims)
self.assertEqual(result, reference_result)
op_has_single_return = not isinstance(result, tuple)
if check_view:
result_as_tuple = (result,) if op_has_single_return else result
for output in result_as_tuple:
input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base
self.assertTrue(output._base is input0_base,
msg="result was not a view of the first input!")
if not check_propagates_grad:
return
# Assuming input[0] is a floating-point tensor. Check if the vmap
# operation propagates the requires_grad flag to the zeroth output.
# Some vmap operators are implemented in a way that assumes that
# they are composite with respect to autograd. If the operator ever is
# changed to not be composite with respect to autograd, then the
# following check should fail.
inputs_clone = list(inputs)
inputs_clone[0] = inputs[0].clone().requires_grad_()
result = vmap(op, in_dims, out_dims)(*inputs_clone)
result_as_tuple = (result,) if op_has_single_return else result
self.assertTrue(result[0].requires_grad)
def should_allow_vmap_fallback_usage(fn):
return getattr(fn, '_allow_vmap_fallback_usage', False)
def allowVmapFallbackUsage(fn):
fn._allow_vmap_fallback_usage = True
return fn
# All tests of TestVmapBase check that the slow vmap fallback is never invoked.
# This is so that we can incrementally add batching rules for operators to
# replace the slow vmap fallback path for said operators. To skip this check,
# please use the allowVmapFallbackUsage decorator.
#
# NB: Don't add tests to TestVmapBase directly, unless you want them to run
# on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators.
#
# NB: TestVmapBase is a nested class. This prevents test runners from picking
# it up and running it.
class Namespace:
class TestVmapBase(TestCase):
def __init__(self, method_name='runTest'):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is None:
return
if not should_allow_vmap_fallback_usage(test_method):
setattr(self, method_name,
self._wrap_method_with_vmap_fallback_check(test_method))
def _wrap_method_with_vmap_fallback_check(self, method):
msg = (
'Expected the test to not invoke the vmap fallback path, i.e., '
'all of the operators being tested in this test should have batching '
'rules implemented. If you are intentionally testing something to '
'do with the fallback path, use allowVmapFallbackUsage. Otherwise, '
'please make sure that batching rules are implemented for the '
'operator(s) being tested.'
)
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
with warnings.catch_warnings(record=True) as wa:
warnings.simplefilter('always')
with EnableVmapFallbackWarnings():
method(*args, **kwargs)
for captured_warning in wa:
self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg)
return types.MethodType(wrapper, self)
@allowVmapFallbackUsage
def test_vmap_fallback_check_ok(self):
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
vmap(op_using_fallback)(torch.rand(3))
def test_vmap_fallback_check(self):
@self._wrap_method_with_vmap_fallback_check
def no_fallback(self):
pass
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
@self._wrap_method_with_vmap_fallback_check
def uses_fallback(self):
vmap(op_using_fallback)(torch.rand(3))
no_fallback(self)
with self.assertRaises(AssertionError):
uses_fallback(self)
class TestVmapOperators(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
def _vmap_view_test(self, *args, **kwargs):
self._vmap_test(*args, **kwargs, check_view=True)
def _test_unary(self, op, getter, device, *args, **kwargs):
test = functools.partial(self._vmap_test, *args, **kwargs)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [getter([B0, 3], device)])
test(op, [getter([2, 5, B0, 3], device)], in_dims=2)
test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [getter([B0, B1], device)])
test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2)
test(vmap(op, in_dims=2), [getter([2, 5, B0, B1, 3], device)],
in_dims=2, out_dims=2)
def test_unary_pointwise_ops(self):
cases = [
(torch.abs, TensorFactory.randn),
(torch.acos, TensorFactory.rand),
(torch.asin, TensorFactory.rand),
(torch.atan, TensorFactory.rand),
(torch.ceil, TensorFactory.randn),
(torch.cos, TensorFactory.rand),
(torch.cosh, TensorFactory.rand),
(torch.digamma, TensorFactory.rand),
(torch.exp, TensorFactory.randn),
(torch.expm1, TensorFactory.randn),
(torch.floor, TensorFactory.randn),
(torch.frac, TensorFactory.randn),
(torch.lgamma, TensorFactory.rand),
(torch.log, TensorFactory.randp1),
(torch.log10, TensorFactory.randp1),
(torch.log1p, TensorFactory.randp1),
(torch.log2, TensorFactory.randp1),
(torch.neg, TensorFactory.randn),
(torch.reciprocal, TensorFactory.randp1),
(torch.relu, TensorFactory.randn),
(torch.round, TensorFactory.randn),
(torch.rsqrt, TensorFactory.randp1),
(torch.sigmoid, TensorFactory.randn),
(torch.sign, TensorFactory.randn),
(torch.sin, TensorFactory.rand),
(torch.sinh, TensorFactory.rand),
(torch.sqrt, TensorFactory.rand),
(torch.tan, TensorFactory.rand),
(torch.tanh, TensorFactory.rand),
(torch.trunc, TensorFactory.randn),
]
for op, getter in cases:
self._test_unary(op, getter, 'cpu')
def test_clone(self):
# Some basic tests
self._test_unary(lambda x: x.clone(), TensorFactory.randn, 'cpu')
self._test_unary(lambda x: x.clone(memory_format=torch.preserve_format),
TensorFactory.randn, 'cpu')
self._test_unary(lambda x: x.clone(memory_format=torch.contiguous_format),
TensorFactory.randn, 'cpu')
# Test that the per-examples are contiguous when using torch.contiguous_format
def clone_contiguous(x):
return x.clone(memory_format=torch.contiguous_format)
B0, B1 = 3, 5
x = torch.randn(2, B0, 7)
y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x)
self.assertTrue(y.movedim(1, 0).is_contiguous())
self.assertTrue(y[:, 0, :].is_contiguous())
x = torch.randn(2, B0, 7, B1)
y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x)
self.assertTrue(y.is_contiguous())
self.assertTrue(y[0][0].is_contiguous())
msg = r'only supported with memory_format torch.preserve_format or torch.contiguous_format'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))(torch.randn(B0))
def test_binary_pointwise_ops(self):
def get_number(getter):
return getter([]).item()
def make_case(op, input_getter=TensorFactory.randn):
return (op, input_getter)
cases = [
# Basic arithmetic
make_case(torch.add),
make_case(lambda x, y: x + y),
make_case(torch.sub),
make_case(lambda x, y: x - y),
make_case(torch.mul),
make_case(lambda x, y: x * y),
make_case(torch.div, input_getter=TensorFactory.randp1),
make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1),
make_case(torch.pow, input_getter=TensorFactory.randp1),
make_case(lambda x, y: x ** y, input_getter=TensorFactory.randp1),
]
test = self._vmap_test
for op, getter in cases:
device = 'cpu'
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([B0], device), getter([B0, 2, 3], device)))
test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
test(op, (getter([B0], device), getter([2, B0, 3], device)),
in_dims=(0, 1), out_dims=1)
test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
test(vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))
# Python number overload: op(Tensor, Number) (and vice-versa)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device)
number = get_number(getter)
self._test_unary(lambda t: op(number, t), getter, device)
# Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor)
test(op, (getter([B0], device), getter([B0], device, dtype=torch.double)))
test(op, (getter([B0], device, dtype=torch.double), getter([B0], device)))
test(op, (getter([B0], device), getter([B0], device)))
# Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa)
test(op, (getter([B0, 2], device), getter([B0], device, torch.double)))
test(op, (getter([B0], device, torch.double), getter([B0, 2], device)))
if not torch.cuda.is_available():
continue
# TODO(rzou): fix the following
# # Test cross-device scalars
# number = get_number(getter)
# self._test_unary(lambda t: op(t, number), getter, device='cuda')
# self._test_unary(lambda t: op(number, t), getter, device='cuda')
# self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda')
def test_as_strided(self):
def _test(sizes, strides, offset, tensor, lambd):
result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor)
expected = vmap(lambd)(tensor)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# single vmap test
B0 = 5
tensors = [
# contiguous
torch.randn(B0, 2, 3),
# non-contiguous
torch.randn(B0, 3, 2).transpose(1, 2),
# non-zero storage offset
torch.randn(2, B0, 2, 3)[1],
# non-contiguous strides, zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0],
# non-contiguous strides, non-zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1],
]
for x in tensors:
S0, S1 = x.stride()[1:]
offset = x.storage_offset()
# Broadcast
_test([5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3))
# transpose
_test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1))
# select
_test([2], [S0], offset + S1, x, lambda x: x[:, 1])
# Nested vmap test
B1 = 7
x = torch.randn(B1, B0, 2, 3)
S0, S1 = x.stride()[2:]
result = vmap(vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1)(x)
expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# Check that mal-formatted size/strides doesn't crash
with self.assertRaisesRegex(RuntimeError, 'size and stride must have the same length'):
x = torch.randn(B0, 2, 3).transpose(0, 1)
vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x)
# Sanity check #1: we require the batch dims to be at the front of the
# tensor (in memory layout).
msg = 'batch dims being vmapped over are at the front of the tensor'
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(2, B0, 3).transpose(0, 1)
vmap(lambda x: x.as_strided([2, 3], [B0 * 3, 1]))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 2, 3, B1).movedim(3, 1)
vmap(vmap(lambda x: x.as_strided([2, 3], [B1 * 3, B1])))(x)
# All the Sanity check #2{a,b,c} cases check that
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# doesn't index memory that is out of bounds of xs[i]. This condition
# is important to the correctness of the as_strided batching rule
# (see NOTE: [When will the as_strided_batching_rule fail?])
# Sanity check #2a: The maximum indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is less than or equal to the maximum indexable location of xs[i].
msg = 'This is not supported inside of vmap'
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3)
vmap(lambda x: x.as_strided([3], [1], 1))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3, 5)
vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, B1, 3, 5)
vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x)
# Sanity check #2b: The min indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is greater than or equal to the min indexable location of xs[i].
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(2, B0, 3)[1]
vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x)
# Sanity check #2c:
# xs[i] is a zero-dim tensor, but
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is not
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 0, 3)
vmap(lambda x: x.as_strided([3], [1]))(x)
def test_bmm(self):
op = torch.bmm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3)))
test(vmap(op), (torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)), in_dims=(None, 0))
def test_cat(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.cat(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2))
test(vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 3)), in_dims=(None, 0))
test(vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 3)), in_dims=(None, 0))
def test_conj(self):
op = torch.conj
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
test = self._vmap_test
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
# correctness tests
run_test(torch.float)
run_test(torch.cfloat)
# check that torch.conj on a non-complex tensor returns the same tensor
real_tensor = torch.randn(3)
result = vmap(op)(real_tensor)
self.assertEqual(result.data_ptr(), real_tensor.data_ptr())
def test_contiguous(self):
op = Tensor.contiguous
self._test_unary(op, TensorFactory.randn, 'cpu')
# check that contiguous returns the original tensor if the per-examples
# are already contiguous
B0 = 3
x = torch.randn(B0, 2, 5, 7)
x = x.movedim(0, 2)
result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x)
self.assertTrue(result is x)
msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
tensor = torch.randn(B0, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor)
def test_stride(self):
B0 = 3
x = torch.randn(B0, 2, 5, 7)
def foo(x):
assert x.stride() == (7 * 5, 7, 1)
return x
vmap(foo)(x)
x = torch.randn(2, B0, 5, 7).movedim(1, 0)
def bar(x):
assert x.stride() == (7 * 5 * B0, 7, 1)
return x
vmap(bar)(x)
def test_chunk(self):
test = self._vmap_view_test
op = torch.chunk
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 4, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_clamp(self):
clamp_cases = (
(lambda t: t.clamp(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp(max=0.5), TensorFactory.randn),
(lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn),
(lambda t: t.clamp_min(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp_max(max=0.5), TensorFactory.randn),
)
for op, getter in clamp_cases:
self._test_unary(op, getter, 'cpu')
def test_comparison_ops(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
getter = TensorFactory.randn
B0, B1 = 7, 11
ops = (
torch.eq, lambda x, y: x == y,
torch.gt, lambda x, y: x > y,
torch.ge, lambda x, y: x >= y,
torch.le, lambda x, y: x <= y,
torch.lt, lambda x, y: x < y,
torch.ne, lambda x, y: x != y,
)
for op in ops:
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3]), getter([B0, 3])))
test(op, (getter([B0]), getter([B0, 2, 3])))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1)
test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None))
test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3])))
test(vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3]), getter([B1, 3])), in_dims=(0, None))
# test number as inputs
number = getter([]).item()
self._test_unary(lambda t: op(t, number), getter, 'cpu', check_propagates_grad=False)
def test_diagonal(self):
tensor = torch.randn(3, 5, 7, 11, 13)
test = self._vmap_view_test
op = torch.diagonal
test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None))
test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None))
test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None))
test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1)
test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1)
test(vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3),
(tensor,), in_dims=1, out_dims=1)
def test_dot(self):
op = torch.dot
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 5), torch.rand(5)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(5), torch.rand(B1, B0, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 5), torch.rand(B0, 5)))
test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 5), torch.rand(B0, 5)), in_dims=(None, 0))
def test_expand_as(self):
op = torch.Tensor.expand_as
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5)))
test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None))
test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5)))
test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)), in_dims=(0, 1))
test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None))
test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5)))
def test_fill_and_zero_inplace(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
ops = (
lambda t: t.fill_(0.1),
lambda t: t.fill_(torch.tensor(0.2)),
lambda t: t.zero_(),
)
for op in ops:
# Single vmap, various in_dims / out_dims
test(op, [TensorFactory.randn([B0, 3])])
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2)
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [TensorFactory.randn([B0, B1])])
test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(op, in_dims=2), [TensorFactory.randn([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
# test when value is a batched tensor for fill_ operator
B0, B1 = 3, 5
test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)])
with self.assertRaisesRegex(RuntimeError,
r"output with shape .+ doesn't match the broadcast shape"):
# Runtime Error is thrown when the tensor being written to isn't being vmapped over
vmap(Tensor.fill_, (None, 0))(TensorFactory.randn([B0, B1]),
TensorFactory.randn([B0]))
def _test_complex_views(self, op, dtypes):
test = self._vmap_view_test
def run_test(op, dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([3, B0])], in_dims=1)
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
for dtype in dtypes:
run_test(op, dtype)
def test_real(self):
self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble])
def test_imag(self):
self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble])
def test_view_as_real(self):
self._test_complex_views(torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble])
def test_view_as_complex(self):
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
op = torch.view_as_complex
test = self._vmap_view_test
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3, 2])])
test(op, [get([2, 5, B0, 3, 2])], in_dims=2)
test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1, 2])])
test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])],
in_dims=2, out_dims=2)
# Interesting case #1: Batch dim directly before dim of size 2
test(op, [get([3, B0, 2])], in_dims=1)
test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2)
# Interesting case #2: Batch dim at end of tensor, success cases
# view_as_complex requires that the dim with size 2 have stride 1
# in order for the view to function propertly
test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1)
test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)])
test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)])
# Interesting case #3: Batch dim at end of tensor, failure cases
msg = "Tensor must have a last dimension with stride 1"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([2, B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1]))
# Invalid input: no dimension of size 2
msg = 'Input tensor must have one or more dimensions'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(get([B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op))(get([B0, B1]))
# Invalid input: Batch dim has size 2, but the logical last dim does
# not have size 2
msg = 'Tensor must have a last dimension of size 2'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([3, 2]))
for dtype in [torch.float, torch.double]:
run_test(dtype)
def test_is_complex(self):
ctensor = torch.randn(3, dtype=torch.cfloat)
tensor = torch.randn(3)
def foo(x):
if x.is_complex():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0]))
def test_is_floating_point(self):
float_tensor = torch.tensor([1., 2., 3.])
long_tensor = torch.tensor([1, 2, 3])
def foo(x):
if x.is_floating_point():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0]))
def test_is_contiguous(self):
def foo(x):
if x.is_contiguous():
return torch.tensor(1.)
else:
return torch.tensor(0.)
B0, B1 = 3, 5
# Single batch dim
contig = torch.randn(B0, 2, 7)
self.assertEqual(vmap(foo)(contig), torch.ones(B0))
noncontig = torch.randn(2, B0, 7)
self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, B0, 7).movedim(1, 0)
self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, 7, B0)
self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0))
# Multiple batch dims
contig = torch.randn(B0, B1, 3)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3)
self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3).movedim(0, 1)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
noncontig = torch.randn(B0, 3, B1)
self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1))
# is_contiguous on empty tensor is True
def bar(x):
assert x.is_contiguous()
return x
vmap(bar)(torch.randn(B0, 0, 3))
vmap(bar, in_dims=1)(torch.randn(0, B0, 3))
vmap(bar)(torch.randn(B0, 0, 3).mT)
# is_contiguous with other memory formats
def baz(x, memory_format):
x.is_contiguous(memory_format=memory_format)
return x
msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
tensor = torch.randn(B0, 2, 7, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor)
def test_movedim(self):
op = torch.movedim
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
# movedim(tensor, int, int) variant
test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), 0, 1), in_dims=(2, None, None))
test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), 0, 1), in_dims=(2, None, None))
# movedim(tensor, intlist, intlist) variant
test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None))
test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]), in_dims=(2, None, None))
test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]), in_dims=(2, None, None))
def test_mm(self):
op = torch.mm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5, 2)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5, 2)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2)))
test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
def test_mv(self):
op = torch.mv
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5)))
test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
def test_narrow(self):
op = torch.narrow
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None))
test(vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 2, B0, 5), 1, 0, 0), in_dims=(2, None, None, None))
test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
(torch.rand(B1, 2, B0, 5, B2), -1, 2, 3), in_dims=(2, None, None, None))
def test_new_empty(self):
# Empty is non-deterministic so we just check that the shape of the
# output tensor is what we expect and that the vmap fallback isn't used.
op = Tensor.new_empty
B0, B1 = 7, 11
result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0))
self.assertEqual(result.shape, [B0, 2, 3])
result = vmap(lambda x: op(x, []))(torch.randn(B0))
self.assertEqual(result.shape, [B0])
result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1))
self.assertEqual(result.shape, [B0, B1, 2, 3])
def test_new_empty_strided(self):
# Empty is non-deterministic so we just check that the size and shape
# of the output are what we expect and that the vmap fallback isn't used
B0, B1 = 7, 11
def _test_single_vmap(size, stride, B0):
x = torch.randn(B0)
result = vmap(lambda x: x.new_empty_strided(size, stride))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0] + size)
self.assertEqual(result.stride(), [S] + stride)
def _test_double_vmap(size, stride, B0, B1):
x = torch.randn(B0, B1)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
x = torch.randn(B1, B0)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)(x)
S = x.new_empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
# contiguous case
_test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0)
_test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1)
# expanded
_test_single_vmap([2, 3, 5], [0, 5, 1], B0)
_test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1)
# some of these cases are pretty strange, just verifying that if
# empty_strided allows them then BatchedTensor.new_empty_strided
# can as well
for shape in [[2, 3, 4], [0, 2, 0]]:
for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]:
_test_single_vmap(shape, strides, B0)
_test_double_vmap(shape, strides, B0, B1)
def test_new_zeros(self):
op = Tensor.new_zeros
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
test(lambda x: op(x, 2, 3), (torch.rand(B0),))
test(lambda x: op(x, []), (torch.rand(B0),))
test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),))
def test_select(self):
op = torch.select
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None))
test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)
def test_stack(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.stack(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 2)), in_dims=(None, 0))
test(vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 2)), in_dims=(None, 0))
def test_slice(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda t: t[0:1], (torch.rand(B0, 3, 5),))
test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2)
test(vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2)
test(vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2),
(torch.rand(3, 5, B0, B1, B2),), in_dims=2)
def test_squeeze(self):
test = self._vmap_view_test
op = torch.squeeze
B0, B1 = 1, 11
test(op, (torch.rand(B0),))
test(op, (torch.rand(B0, 3, 5),))
test(op, (torch.rand(1, B0, 5),), in_dims=1)
test(op, (torch.rand(B0, 0, 1, 5, 1),))
test(op, (torch.rand(B0, 1, 1, 1, 1),))
test(vmap(op), (torch.rand(B0, B1, 1),))
test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2)
def test_sum_dim(self):
test = self._vmap_test
B0, B1 = 5, 7
# Single vmap, various in_dims / out_dims
test(lambda x: x.sum(()), [torch.randn([B0])])
test(lambda x: x.sum(0), [torch.randn([B0])])
test(lambda x: x.sum(-1), [torch.randn([B0])])
test(lambda x: x.sum(0), [torch.randn([B0, 3])])
test(lambda x: x.sum(-1), [torch.randn([2, 5, B0, 3])], in_dims=2)
test(lambda x: x.sum(2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(lambda x: x.sum(())), [torch.randn([B0, B1])])
test(vmap(lambda x: x.sum(0)), [torch.randn([B0, B1])])
test(vmap(lambda x: x.sum(-1)), [torch.randn([B0, B1])])
test(vmap(lambda x: x.sum(-2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(lambda x: x.sum(2), in_dims=2), [torch.randn([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
def test_reshape(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.reshape
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True)
test(op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False)
test(vmap(lambda t: t.reshape([-1])), (torch.rand(B0, B1, 2, 5),), check_view=True)
test(vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1),
(torch.rand(3, B1, 2, B2, 5, B0),), in_dims=5, check_view=False)
def test_reshape_as(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.reshape_as
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True)
test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0), check_view=True)
test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None), check_view=True)
test(op, (torch.rand(2, B0, 5), torch.rand(1, 1, 10)), in_dims=(1, None), check_view=False)
test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)), check_view=True)
test(vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)),
(torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)),
in_dims=(5, 0), check_view=False)
def test_result_type(self):
def scalar_tensor_with_dtype(op):
def wrapped(*args, **kwargs):
dtype = op(*args, **kwargs)
return torch.ones([], dtype=dtype)
return wrapped
test = self._vmap_test
op = scalar_tensor_with_dtype(torch.result_type)
B0 = 2
test(op, (torch.randn(B0), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False)
test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0),),
check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0),), check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)),
check_propagates_grad=False)
test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0, 2),),
check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0, 2),), check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False)
def test_tensor_split(self):
test = self._vmap_view_test
op = torch.tensor_split
B0, B1, B2 = 7, 11, 13
# tests for torch.tensor_split(self, indices_or_sections: int, dim)
test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
# tests for torch.tensor_split(self, indices_or_sections: List[int], dim)
test(op, (torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_split(self):
test = self._vmap_view_test
op = torch.split
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
# tests for torch.split(self, split_size: List[int], dim)
test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_trace(self):
op = torch.trace
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_transpose(self):
op = torch.transpose
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),))
test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
# Special case: scalar tensor
for dim1, dim2 in itertools.product([0, -1], [0, -1]):
x = torch.rand(B0)
result = vmap(lambda x: op(x, dim1, dim2))(x)
self.assertTrue(result is x)
def test_t(self):
op = torch.t
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_T_numpy(self):
def op(t):
return t.T
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 3, 5),))
test(op, (torch.rand(B0),))
test(op, (torch.rand(2, B0, 3, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2)
def test_to(self):
test = self._vmap_test
B0, B1 = 7, 11
test(lambda t: t.to('cpu'), (torch.rand(B0),))
test(lambda t: t.to(torch.double), (torch.rand(B0),))
test(lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)))
test(lambda t, o: t.to(o),
(torch.rand(B0), torch.randn(B0, dtype=torch.float64)),
in_dims=(0, None))
test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),))
# also test some casting methods
test(lambda t: t.double(), (torch.rand(B0),))
test(lambda t: t.float(), (torch.rand(B0),))
test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False)
test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False)
def test_unfold(self):
op = torch.Tensor.unfold
test = self._vmap_view_test
B0, B1, B2 = 3, 2, 5
test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None))
test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None))
test(vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 7, B0, 11), 1, 5, 1), in_dims=(2, None, None, None))
test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
(torch.rand(B1, 7, B0, 11, B2), -1, 2, 4), in_dims=(2, None, None, None))
def test_unbind(self):
test = self._vmap_view_test
op = torch.unbind
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None))
test(op, (torch.rand(B0, 2, 0),))
test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, 1023, B0, 5), 1),
in_dims=(2, None))
test(vmap(vmap(lambda t: op(t, dim=1), in_dims=2)),
(torch.rand(B1, 2, B0, 32, B2),), in_dims=2)
def test_view(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10])
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None))
test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),))
test(vmap(vmap(lambda t: t.reshape([-1])), in_dims=1),
(torch.rand(B2, B0, B1, 3, 2, 5),), in_dims=1)
def test_view_as(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view_as
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10))
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)))
test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0))
test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None))
test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)))
test(vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)),
(torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)),
in_dims=(2, 0))
def test_no_random_op_support(self):
B0 = 2
captured = torch.rand(3)
random_ops = [
# out-of-place on BatchedTensor
(torch.bernoulli, (torch.rand(B0, 1),)),
(lambda t: torch.bernoulli(t, p=0.5), (torch.rand(B0, 1),)),
(lambda t: torch.multinomial(t, 2), (torch.rand(B0, 3),)),
(torch.normal, (torch.randn(B0, 1), torch.randn(B0, 1))),
(lambda t: torch.normal(t, 1.), (torch.randn(B0, 1),)),
(lambda t: torch.normal(0., t), (torch.randn(B0, 1),)),
(torch.poisson, (torch.rand(B0, 1),)),
(torch.rand_like, (torch.rand(B0, 1),)),
(torch.randn_like, (torch.rand(B0, 1),)),
(lambda t: torch.randint_like(t, 2), (torch.rand(B0, 1),)),
(lambda t: torch.randint_like(t, 0, 2), (torch.rand(B0, 1),)),
# out-of-place on captured tensor
(lambda t: torch.bernoulli(captured), (torch.rand(B0),)),
(lambda t: torch.bernoulli(captured, p=0.5), (torch.rand(B0),)),
(lambda t: torch.multinomial(captured, 2), (torch.rand(B0),)),
(lambda t: torch.normal(captured, captured), (torch.randn(B0),)),
(lambda t: torch.normal(captured, 1.), (torch.randn(B0),)),
(lambda t: torch.normal(0., captured), (torch.randn(B0),)),
(lambda t: torch.poisson(captured), (torch.rand(B0),)),
(lambda t: torch.rand_like(captured), (torch.rand(B0),)),
(lambda t: torch.randn_like(captured) , (torch.rand(B0),)),
(lambda t: torch.randint_like(captured, 2), (torch.rand(B0),)),
(lambda t: torch.randint_like(captured, 0, 2), (torch.rand(B0),)),
# in-place on BatchedTensor
(lambda t: t.bernoulli_(), (torch.randn(B0, 1),)),
(lambda t: t.cauchy_(), (torch.randn(B0, 1),)),
(lambda t: t.exponential_(), (torch.randn(B0, 1),)),
(lambda t: t.geometric_(0.5), (torch.randn(B0, 1),)),
(lambda t: t.log_normal_(), (torch.randn(B0, 1),)),
(lambda t: t.normal_(), (torch.randn(B0, 1),)),
(lambda t: t.random_(), (torch.randn(B0, 1),)),
(lambda t: t.random_(0, 2), (torch.randn(B0, 1),)),
(lambda t: t.random_(2), (torch.randn(B0, 1),)),
(lambda t: t.uniform_(), (torch.randn(B0, 1),)),
# in-place on captured tensor
(lambda t: captured.bernoulli_(), (torch.randn(B0),)),
(lambda t: captured.cauchy_(), (torch.randn(B0),)),
(lambda t: captured.exponential_(), (torch.randn(B0),)),
(lambda t: captured.geometric_(0.5), (torch.randn(B0),)),
(lambda t: captured.log_normal_(), (torch.randn(B0),)),
(lambda t: captured.normal_(), (torch.randn(B0),)),
(lambda t: captured.random_(), (torch.randn(B0),)),
(lambda t: captured.random_(0, 2), (torch.randn(B0),)),
(lambda t: captured.random_(2), (torch.randn(B0),)),
(lambda t: captured.uniform_(), (torch.randn(B0),)),
# factory functions
(lambda t: torch.rand(1), (torch.randn(B0),)),
(lambda t: torch.randn(1), (torch.randn(B0),)),
(lambda t: torch.randint(5, [1]), (torch.randn(B0),)),
(lambda t: torch.randperm(5), (torch.randn(B0),)),
]
for op, args in random_ops:
with self.assertRaisesRegex(RuntimeError,
'vmap: We do not yet support calling random operations'):
vmap(op)(*args)
def construct_v(output, batch_size):
return torch.randn(batch_size, *output.shape,
dtype=output.dtype, device=output.device)
def as_tuple(x):
if isinstance(x, tuple):
return x
elif isinstance(x, list):
return tuple(x)
else:
return x,
def differentiable(args):
return tuple(arg for arg in as_tuple(args)
if isinstance(arg, torch.Tensor) and arg.requires_grad)
def _get_rand_no_zeros(*args, **kwargs):
requires_grad = kwargs.get('requires_grad', False)
kwargs_without_requires_grad = kwargs.copy()
kwargs_without_requires_grad['requires_grad'] = False
result = torch.rand(*args, **kwargs_without_requires_grad)
return result.clamp_min_(0.1).requires_grad_(requires_grad)
class TestVmapBatchedGradient(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
# Tests batched gradient computation of outputs = op(*args, **kwargs)
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
def _batched_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
batched_vectors = tuple(construct_v(out, batch_size) for out in outputs)
def vector_jacobian_product(*vectors):
return torch.autograd.grad(outputs, differentiable(args), vectors,
retain_graph=True)
self._vmap_test(vector_jacobian_product, batched_vectors,
check_propagates_grad=False)
# Tests batched second grad computation of outputs = op(*args, **kwargs).
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
#
# NB: we only test computing batched gradients in the second gradient
# computation. One specific use case that does this is computing the hessian
# matrix of a scalar-valued function; this is useful in Bayesian Logistic
# Regression.
# It might be useful to have a test that computes batched first gradients and
# then uses those to compute batched second gradients in the future.
def _batched_grad_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
ones = tuple(torch.ones_like(out) for out in outputs)
# Same thing as summing together all of the outputs and calling .backward()
first_grads = torch.autograd.grad(outputs, differentiable(args), ones,
create_graph=True)
first_grads = differentiable(first_grads)
self.assertNotEqual(
len(first_grads), 0, "None of the first grads depend on the input!")
batched_vectors = tuple(construct_v(grad, batch_size) for grad in first_grads)
def vector_hessian_product(*vectors):
outputs = torch.autograd.grad(first_grads, differentiable(args), vectors,
retain_graph=True, allow_unused=True)
outputs = tuple(out for out in outputs if out is not None)
assert len(outputs) > 0
return outputs
self._vmap_test(vector_hessian_product, batched_vectors,
check_propagates_grad=False)
def _test_arithmetic(self, op, device, test_grad_grad=True):
x = torch.randn(2, 3, requires_grad=True, device=device)
y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
scalar = 3.14
self._batched_grad_test(op, (x, y))
self._batched_grad_test(op, (scalar, y))
self._batched_grad_test(op, (x, scalar))
if test_grad_grad:
self._batched_grad_grad_test(op, (x, y))
def test_add(self, device):
self._test_arithmetic(torch.add, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False)
def test_sub(self, device):
self._test_arithmetic(torch.sub, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False)
def test_mul(self, device):
self._test_arithmetic(torch.mul, device)
self._test_arithmetic(lambda x, y: x * y, device)
def test_div(self, device):
self._test_arithmetic(torch.div, device)
self._test_arithmetic(lambda x, y: x / y, device)
@allowVmapFallbackUsage
def test_binary_cross_entropy(self, device):
x = torch.sigmoid(torch.randn(3, 2, device=device, requires_grad=True))
target = torch.rand(3, 2, device=device)
op = functools.partial(F.binary_cross_entropy, target=target)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_expand(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
def op(x):
return x.expand(5, 5, 2, 3)
self._batched_grad_test(op, (x,))
@allowVmapFallbackUsage
def test_index(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
index = torch.tensor([[0, 0], [1, 1]], device=device)
def op(x):
y = x * x
return y[index]
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_lgamma(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.lgamma, (x,))
self._batched_grad_grad_test(Tensor.lgamma, (x,))
def test_log(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log, (x,))
self._batched_grad_grad_test(torch.log, (x,))
def test_logsumexp(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
def op(x):
return torch.logsumexp(x, -1)
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_log1p(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log1p, (x,))
self._batched_grad_grad_test(torch.log1p, (x,))
@allowVmapFallbackUsage
def test_max(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.max, (x,))
@allowVmapFallbackUsage
def test_median(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.median, (x,))
@allowVmapFallbackUsage
def test_min(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.min, (x,))
def test_permute(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.permute(2, 0, 1)
self._batched_grad_test(op, (x,))
def test_reshape(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.reshape([2 * 3, 5])
self._batched_grad_test(op, (x,))
def test_sigmoid(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.sigmoid, (x,))
self._batched_grad_grad_test(Tensor.sigmoid, (x,))
def test_stack(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
y = torch.randn(2, 3, device=device, requires_grad=True)
def op(x, y):
return torch.stack([x, y])
self._batched_grad_test(op, (x, y))
def test_select(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[1], (x,))
self._batched_grad_test(lambda x: x.select(1, 2), (x,))
self._batched_grad_test(lambda x: x.select(-1, 0), (x,))
def test_slice(self, device):
x = torch.randn(2, 3, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[0:1], (x,))
self._batched_grad_test(lambda x: x[:, 1:3], (x,))
self._batched_grad_test(lambda x: x[..., 1:3], (x,))
def test_trace(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(Tensor.trace, (x,))
@skipCUDAIfNoMagma
@allowVmapFallbackUsage
def test_symeig(self, device):
def op(x):
return torch.symeig(x, eigenvectors=True)[0]
x = torch.randn(3, 3, device=device, requires_grad=True)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_threshold(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,))
@allowVmapFallbackUsage
def test_inplace_on_view(self, device):
leaf = torch.randn(4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base[0]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
@allowVmapFallbackUsage
def test_inplace_manyview(self, device):
leaf = torch.randn(4, 4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base.transpose(0, 2)
view = view[1]
view = view.diagonal()
view = view[::2]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
def test_diagonal(self, device):
x = torch.randn(4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,))
x = torch.randn(3, 4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,))
@allowVmapFallbackUsage
def test_unrelated_output(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
res, = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
@allowVmapFallbackUsage
def test_unrelated_output_multiple_grad(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
res, = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
_ = vjp(gy[0])
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
instantiate_device_type_tests(
TestVmapBatchedGradient,
globals(),
None,
)
if __name__ == '__main__':
run_tests()
|