1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
# flake8: noqa
import torch
import math
a = torch.randn(4)
b = torch.randn(4)
t = torch.tensor([-1, -2, 3], dtype=torch.int8)
# abs/absolute
torch.abs(torch.tensor([-1, -2, 3]))
torch.absolute(torch.tensor([-1, -2, 3]))
# acos/arccos
torch.acos(a)
torch.arccos(a)
# acosh/arccosh
torch.acosh(a.uniform_(1, 2))
# add
torch.add(a, 20)
torch.add(a, torch.randn(4, 1), alpha=10)
# addcdiv
torch.addcdiv(torch.randn(1, 3), torch.randn(3, 1), torch.randn(1, 3), value=0.1)
# addcmul
torch.addcmul(torch.randn(1, 3), torch.randn(3, 1), torch.randn(1, 3), value=0.1)
# angle
torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159
# asin/arcsin
torch.asin(a)
torch.arcsin(a)
# asinh/arcsinh
torch.asinh(a)
torch.arcsinh(a)
# atan/arctan
torch.atan(a)
torch.arctan(a)
# atanh/arctanh
torch.atanh(a.uniform_(-1, 1))
torch.arctanh(a.uniform_(-1, 1))
# atan2
torch.atan2(a, a)
# bitwise_not
torch.bitwise_not(t)
# bitwise_and
torch.bitwise_and(t, torch.tensor([1, 0, 3], dtype=torch.int8))
torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
# bitwise_or
torch.bitwise_or(t, torch.tensor([1, 0, 3], dtype=torch.int8))
torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
# bitwise_xor
torch.bitwise_xor(t, torch.tensor([1, 0, 3], dtype=torch.int8))
# ceil
torch.ceil(a)
# clamp/clip
torch.clamp(a, min=-0.5, max=0.5)
torch.clamp(a, min=0.5)
torch.clamp(a, max=0.5)
torch.clip(a, min=-0.5, max=0.5)
# conj
torch.conj(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))
# copysign
torch.copysign(a, 1)
torch.copysign(a, b)
# cos
torch.cos(a)
# cosh
torch.cosh(a)
# deg2rad
torch.deg2rad(torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]]))
# div/divide/true_divide
x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637])
torch.div(x, 0.5)
p = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
[ 0.1815, -1.0111, 0.9805, -1.5923],
[ 0.1062, 1.4581, 0.7759, -1.2344],
[-0.1830, -0.0313, 1.1908, -1.4757]])
q = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308])
torch.div(p, q)
torch.divide(p, q, rounding_mode='trunc')
torch.divide(p, q, rounding_mode='floor')
# digamma
torch.digamma(torch.tensor([1, 0.5]))
# erf
torch.erf(torch.tensor([0, -1., 10.]))
# erfc
torch.erfc(torch.tensor([0, -1., 10.]))
# erfinv
torch.erfinv(torch.tensor([0, 0.5, -1.]))
# exp
torch.exp(torch.tensor([0, math.log(2.)]))
# exp2
torch.exp2(torch.tensor([0, math.log2(2.), 3, 4]))
# expm1
torch.expm1(torch.tensor([0, math.log(2.)]))
# fake_quantize_per_channel_affine
x = torch.randn(2, 2, 2)
scales = (torch.randn(2) + 1) * 0.05
zero_points = torch.zeros(2).to(torch.long)
torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255)
# fake_quantize_per_tensor_affine
torch.fake_quantize_per_tensor_affine(a, 0.1, 0, 0, 255)
# float_power
torch.float_power(torch.randint(10, (4,)), 2)
torch.float_power(torch.arange(1, 5), torch.tensor([2, -3, 4, -5]))
# floor
torch.floor(a)
# floor_divide
torch.floor_divide(torch.tensor([4., 3.]), torch.tensor([2., 2.]))
torch.floor_divide(torch.tensor([4., 3.]), 1.4)
# fmod
torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
torch.fmod(torch.tensor([1, 2, 3, 4, 5]), 1.5)
# frac
torch.frac(torch.tensor([1, 2.5, -3.2]))
# imag
torch.randn(4, dtype=torch.cfloat).imag
# ldexp
torch.ldexp(torch.tensor([1.]), torch.tensor([1]))
torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4]))
# lerp
start = torch.arange(1., 5.)
end = torch.empty(4).fill_(10)
torch.lerp(start, end, 0.5)
torch.lerp(start, end, torch.full_like(start, 0.5))
# lgamma
torch.lgamma(torch.arange(0.5, 2, 0.5))
# log
torch.log(torch.arange(5) + 10)
# log10
torch.log10(torch.rand(5))
# log1p
torch.log1p(torch.randn(5))
# log2
torch.log2(torch.rand(5))
# logaddexp
torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3]))
torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3]))
torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3]))
# logaddexp2
torch.logaddexp2(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3]))
torch.logaddexp2(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3]))
torch.logaddexp2(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3]))
# logical_and
torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
r = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
s = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
torch.logical_and(r, s)
torch.logical_and(r.double(), s.double())
torch.logical_and(r.double(), s)
torch.logical_and(r, s, out=torch.empty(4, dtype=torch.bool))
# logical_not
torch.logical_not(torch.tensor([True, False]))
torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8))
torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double))
torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16))
# logical_or
torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
torch.logical_or(r, s)
torch.logical_or(r.double(), s.double())
torch.logical_or(r.double(), s)
torch.logical_or(r, s, out=torch.empty(4, dtype=torch.bool))
# logical_xor
torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
torch.logical_xor(r, s)
torch.logical_xor(r.double(), s.double())
torch.logical_xor(r.double(), s)
torch.logical_xor(r, s, out=torch.empty(4, dtype=torch.bool))
# logit
torch.logit(torch.rand(5), eps=1e-6)
# hypot
torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0]))
# i0
torch.i0(torch.arange(5, dtype=torch.float32))
# igamma/igammac
a1 = torch.tensor([4.0])
a2 = torch.tensor([3.0, 4.0, 5.0])
torch.igamma(a1, a2)
torch.igammac(a1, a2)
# mul/multiply
torch.mul(torch.randn(3), 100)
torch.multiply(torch.randn(4, 1), torch.randn(1, 4))
# mvlgamma
torch.mvlgamma(torch.empty(2, 3).uniform_(1, 2), 2)
# nan_to_num
w = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14])
torch.nan_to_num(x)
torch.nan_to_num(x, nan=2.0)
torch.nan_to_num(x, nan=2.0, posinf=1.0)
# neg/negative
torch.neg(torch.randn(5))
# nextafter
eps = torch.finfo(torch.float32).eps
torch.nextafter(torch.tensor([1, 2]), torch.tensor([2, 1])) == torch.tensor([eps + 1, 2 - eps])
# polygamma
torch.polygamma(1, torch.tensor([1, 0.5]))
torch.polygamma(2, torch.tensor([1, 0.5]))
torch.polygamma(3, torch.tensor([1, 0.5]))
torch.polygamma(4, torch.tensor([1, 0.5]))
# pow
torch.pow(a, 2)
torch.pow(torch.arange(1., 5.), torch.arange(1., 5.))
# rad2deg
torch.rad2deg(torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]))
# real
torch.randn(4, dtype=torch.cfloat).real
# reciprocal
torch.reciprocal(a)
# remainder
torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
torch.remainder(torch.tensor([1, 2, 3, 4, 5]), 1.5)
# round
torch.round(a)
# rsqrt
torch.rsqrt(a)
# sigmoid
torch.sigmoid(a)
# sign
torch.sign(torch.tensor([0.7, -1.2, 0., 2.3]))
# sgn
torch.tensor([3+4j, 7-24j, 0, 1+2j]).sgn()
# signbit
torch.signbit(torch.tensor([0.7, -1.2, 0., 2.3]))
# sin
torch.sin(a)
# sinc
torch.sinc(a)
# sinh
torch.sinh(a)
# sqrt
torch.sqrt(a)
# square
torch.square(a)
# sub/subtract
torch.sub(torch.tensor((1, 2)), torch.tensor((0, 1)), alpha=2)
# tan
torch.tan(a)
# tanh
torch.tanh(a)
# trunc/fix
torch.trunc(a)
# xlogy
f = torch.zeros(5,)
g = torch.tensor([-1, 0, 1, float('inf'), float('nan')])
torch.xlogy(f, g)
f = torch.tensor([1, 2, 3])
g = torch.tensor([3, 2, 1])
torch.xlogy(f, g)
torch.xlogy(f, 4)
torch.xlogy(2, g)
|