1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
# flake8: noqa
import torch
from torch.testing._internal.common_utils import TEST_NUMPY
if TEST_NUMPY:
import numpy as np
# From the docs, there are quite a few ways to create a tensor:
# https://pytorch.org/docs/stable/tensors.html
# torch.tensor()
reveal_type(torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])) # E: {Tensor}
reveal_type(torch.tensor([0, 1])) # E: {Tensor}
reveal_type(torch.tensor([[0.11111, 0.222222, 0.3333333]],
dtype=torch.float64,
device=torch.device('cuda:0'))) # E: {Tensor}
reveal_type(torch.tensor(3.14159)) # E: {Tensor}
# torch.sparse_coo_tensor
i = torch.tensor([[0, 1, 1],
[2, 0, 2]]) # E: {Tensor}
v = torch.tensor([3, 4, 5], dtype=torch.float32) # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(i, v, [2, 4])) # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(i, v)) # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(i, v, [2, 4],
dtype=torch.float64,
device=torch.device('cuda:0'))) # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])) # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]),
torch.empty([0, 2]), [1, 2])) # E: {Tensor}
# torch.as_tensor
if TEST_NUMPY:
a = np.array([1, 2, 3])
reveal_type(torch.as_tensor(a)) # E: {Tensor}
reveal_type(torch.as_tensor(a, device=torch.device('cuda'))) # E: {Tensor}
# torch.as_strided
x = torch.randn(3, 3)
reveal_type(torch.as_strided(x, (2, 2), (1, 2))) # E: {Tensor}
reveal_type(torch.as_strided(x, (2, 2), (1, 2), 1)) # E: {Tensor}
# torch.from_numpy
if TEST_NUMPY:
a = np.array([1, 2, 3])
reveal_type(torch.from_numpy(a)) # E: {Tensor}
# torch.zeros/zeros_like
reveal_type(torch.zeros(2, 3)) # E: {Tensor}
reveal_type(torch.zeros(5)) # E: {Tensor}
reveal_type(torch.zeros_like(torch.empty(2, 3))) # E: {Tensor}
# torch.ones/ones_like
reveal_type(torch.ones(2, 3)) # E: {Tensor}
reveal_type(torch.ones(5)) # E: {Tensor}
reveal_type(torch.ones_like(torch.empty(2, 3))) # E: {Tensor}
# torch.arange
reveal_type(torch.arange(5)) # E: {Tensor}
reveal_type(torch.arange(1, 4)) # E: {Tensor}
reveal_type(torch.arange(1, 2.5, 0.5)) # E: {Tensor}
# torch.range
reveal_type(torch.range(1, 4)) # E: {Tensor}
reveal_type(torch.range(1, 4, 0.5)) # E: {Tensor}
# torch.linspace
reveal_type(torch.linspace(3, 10, steps=5)) # E: {Tensor}
reveal_type(torch.linspace(-10, 10, steps=5)) # E: {Tensor}
reveal_type(torch.linspace(start=-10, end=10, steps=5)) # E: {Tensor}
reveal_type(torch.linspace(start=-10, end=10, steps=1)) # E: {Tensor}
# torch.logspace
reveal_type(torch.logspace(start=-10, end=10, steps=5)) # E: {Tensor}
reveal_type(torch.logspace(start=0.1, end=1.0, steps=5)) # E: {Tensor}
reveal_type(torch.logspace(start=0.1, end=1.0, steps=1)) # E: {Tensor}
reveal_type(torch.logspace(start=2, end=2, steps=1, base=2)) # E: {Tensor}
# torch.eye
reveal_type(torch.eye(3)) # E: {Tensor}
# torch.empty/empty_like/empty_strided
reveal_type(torch.empty(2, 3)) # E: {Tensor}
reveal_type(torch.empty_like(torch.empty(2, 3), dtype=torch.int64)) # E: {Tensor}
reveal_type(torch.empty_strided((2, 3), (1, 2))) # E: {Tensor}
# torch.full/full_like
reveal_type(torch.full((2, 3), 3.141592)) # E: {Tensor}
reveal_type(torch.full_like(torch.full((2, 3), 3.141592), 2.71828)) # E: {Tensor}
# torch.quantize_per_tensor
reveal_type(torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8)) # E: {Tensor}
# torch.quantize_per_channel
x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
quant = torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8)
reveal_type(x) # E: {Tensor}
# torch.dequantize
reveal_type(torch.dequantize(x)) # E: {Tensor}
# torch.complex
real = torch.tensor([1, 2], dtype=torch.float32)
imag = torch.tensor([3, 4], dtype=torch.float32)
reveal_type(torch.complex(real, imag)) # E: {Tensor}
# torch.polar
abs = torch.tensor([1, 2], dtype=torch.float64)
pi = torch.acos(torch.zeros(1)).item() * 2
angle = torch.tensor([pi / 2, 5 * pi / 4], dtype=torch.float64)
reveal_type(torch.polar(abs, angle)) # E: {Tensor}
# torch.heaviside
inp = torch.tensor([-1.5, 0, 2.0])
values = torch.tensor([0.5])
reveal_type(torch.heaviside(inp, values)) # E: {Tensor}
|