File: tensor_sampling.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# flake8: noqa
import torch

# seed
reveal_type(torch.seed())  # E: int

# manual_seed
reveal_type(torch.manual_seed(3))  # E: torch._C.Generator

# initial_seed
reveal_type(torch.initial_seed())  # E: int

# get_rng_state
reveal_type(torch.get_rng_state())  # E: {Tensor}

# bernoulli
reveal_type(torch.bernoulli(torch.empty(3, 3).uniform_(0, 1)))  # E: {Tensor}

# multinomial
weights = torch.tensor([0, 10, 3, 0], dtype=torch.float)
reveal_type(torch.multinomial(weights, 2))  # E: {Tensor}

# normal
reveal_type(torch.normal(2, 3, size=(1, 4)))  # E: {Tensor}

# poisson
reveal_type(torch.poisson(torch.rand(4, 4) * 5))  # E: {Tensor}

# rand
reveal_type(torch.rand(4))  # E: {Tensor}
reveal_type(torch.rand(2, 3))  # E: {Tensor}

# rand_like
a = torch.rand(4)
reveal_type(torch.rand_like(a))  # E: {Tensor}

# randint
reveal_type(torch.randint(3, 5, (3,)))  # E: {Tensor}
reveal_type(torch.randint(10, (2, 2)))  # E: {Tensor}
reveal_type(torch.randint(3, 10, (2, 2)))  # E: {Tensor}

# randint_like
b = torch.randint(3, 50, (3, 4))
reveal_type(torch.randint_like(b, 3, 10))  # E: {Tensor}

# randn
reveal_type(torch.randn(4))  # E: {Tensor}
reveal_type(torch.randn(2, 3))  # E: {Tensor}

# randn_like
c = torch.randn(2, 3)
reveal_type(torch.randn_like(c))  # E: {Tensor}

# randperm
reveal_type(torch.randperm(4))  # E: {Tensor}

# soboleng
d = torch.quasirandom.SobolEngine(dimension=5)
reveal_type(d)  # E: torch.quasirandom.SobolEngine
reveal_type(d.draw())  # E: {Tensor}