File: gen_annotated_fn_args.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (110 lines) | stat: -rw-r--r-- 3,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
For procedural tests needed for __torch_function__, we use this function
to export method names and signatures as needed by the tests in
test/test_overrides.py.

python -m tools.autograd.gen_annotated_fn_args \
       aten/src/ATen/native/native_functions.yaml \
       aten/src/ATen/native/tags.yaml \
       $OUTPUT_DIR \
       tools/autograd

Where $OUTPUT_DIR is where you would like the files to be
generated.  In the full build system, OUTPUT_DIR is
torch/testing/_internal/generated
"""

import argparse
import os
import textwrap
from collections import defaultdict

from typing import Any, Dict, List

import torchgen.api.python as python
from torchgen.context import with_native_function

from torchgen.gen import parse_native_yaml
from torchgen.model import BaseOperatorName, NativeFunction
from torchgen.utils import FileManager

from .gen_python_functions import (
    is_py_fft_function,
    is_py_linalg_function,
    is_py_nn_function,
    is_py_special_function,
    is_py_torch_function,
    is_py_variable_method,
    should_generate_py_binding,
)


def gen_annotated(
    native_yaml_path: str, tags_yaml_path: str, out: str, autograd_dir: str
) -> None:
    native_functions = parse_native_yaml(
        native_yaml_path, tags_yaml_path
    ).native_functions
    mappings = (
        (is_py_torch_function, "torch._C._VariableFunctions"),
        (is_py_nn_function, "torch._C._nn"),
        (is_py_linalg_function, "torch._C._linalg"),
        (is_py_special_function, "torch._C._special"),
        (is_py_fft_function, "torch._C._fft"),
        (is_py_variable_method, "torch.Tensor"),
    )
    annotated_args: List[str] = []
    for pred, namespace in mappings:
        groups: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list)
        for f in native_functions:
            if not should_generate_py_binding(f) or not pred(f):
                continue
            groups[f.func.name.name].append(f)
        for group in groups.values():
            for f in group:
                annotated_args.append(f"{namespace}.{gen_annotated_args(f)}")

    template_path = os.path.join(autograd_dir, "templates")
    fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
    fm.write_with_template(
        "annotated_fn_args.py",
        "annotated_fn_args.py.in",
        lambda: {
            "annotated_args": textwrap.indent("\n".join(annotated_args), "    "),
        },
    )


@with_native_function
def gen_annotated_args(f: NativeFunction) -> str:
    out_args: List[Dict[str, Any]] = []
    for arg in f.func.arguments.flat_positional:
        if arg.default is not None:
            continue
        out_arg: Dict[str, Any] = {}
        out_arg["name"] = arg.name
        out_arg["simple_type"] = python.argument_type_str(arg.type, simple_type=True)
        size = python.argument_type_size(arg.type)
        if size:
            out_arg["size"] = size
        out_args.append(out_arg)

    return f"{f.func.name.name}: {repr(out_args)},"


def main() -> None:
    parser = argparse.ArgumentParser(description="Generate annotated_fn_args script")
    parser.add_argument(
        "native_functions", metavar="NATIVE", help="path to native_functions.yaml"
    )
    parser.add_argument("tags", metavar="TAGS", help="path to tags.yaml")
    parser.add_argument("out", metavar="OUT", help="path to output directory")
    parser.add_argument(
        "autograd", metavar="AUTOGRAD", help="path to template directory"
    )
    args = parser.parse_args()
    gen_annotated(args.native_functions, args.tags, args.out, args.autograd)


if __name__ == "__main__":
    main()