File: gen_python_functions.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1300 lines) | stat: -rw-r--r-- 42,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse
# or torch._C._special objects.
#

# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
#   no templates are currently shared between functions, but if that
#   happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
#   pass named arguments directly for everything, otherwise it's much too
#   hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
#   ideally in a data structure rather than code if possible. See e.g.
#   SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
#   all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
#   especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
#   information as is available into the message. I.e. no need to
#   plumb in new params whose only purpose is to fill out an error
#   message, but use what's there
#

import itertools
import re
from collections import defaultdict

from typing import Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple

import yaml
from torchgen.api import cpp
from torchgen.api.python import (
    arg_parser_output_exprs,
    cpp_dispatch_exprs,
    cpp_dispatch_target,
    dispatch_lambda_args,
    dispatch_lambda_exprs,
    dispatch_lambda_return_str,
    has_tensor_options,
    namedtuple_fieldnames,
    PythonSignature,
    PythonSignatureDeprecated,
    PythonSignatureGroup,
    PythonSignatureNativeFunctionPair,
    signature,
    signature_from_schema,
)

from torchgen.code_template import CodeTemplate
from torchgen.context import with_native_function
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
from torchgen.model import (
    Argument,
    BaseOperatorName,
    FunctionSchema,
    NativeFunction,
    Type,
    Variant,
)
from torchgen.utils import FileManager, split_name_params, YamlLoader

from .gen_trace_type import should_trace

#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#

# These functions require manual Python bindings or are not exposed to Python
_SKIP_PYTHON_BINDINGS = [
    "alias",
    "contiguous",
    "is_cuda",
    "is_sparse",
    "is_sparse_csr",
    "size",
    "stride",
    ".*_backward",
    ".*_backward_(out|input|weight|bias)",
    ".*_forward",
    ".*_forward_out",
    ".*_jvp",
    "_unsafe_view",
    "tensor",
    "_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
    "_range.*",
    "_sparse_add_out",
    "_sparse_div.*",
    "_sparse_mul.*",
    "_sparse_sub.*",
    "_sparse_dense_add_out",
    "index",
    "index_out",
    "unique_dim_consecutive",
    "_cumsum.*",
    "_cumprod.*",
    "_sum.*",
    "_prod.*",
    "_th_.*",
    "_thnn_.*",
    "range.*",
    "_solve.*",
    "_inverse.*",
    "_cholesky.*",
    "_triangular_solve.*",
    "_qr.*",
    "_symeig.*",
    "_svd.*",
    "slice",
    "item",
    "_local_scalar_dense",
    "to",
    "_to_copy",
    "copy_sparse_to_sparse_",
    "copy_",
    "numpy_T",
    "matrix_H",
    "mT",
    "mH",  # these need to be an attributes in Python, not functions
    "nonzero(_(out|numpy))?",
    "set_data",
    ".*_overrideable",  # overrideable functions for backend extension
    "data",
    "is_leaf",
    "output_nr",
    "_version",
    "requires_grad_",
    "retains_grad",
    "set_",
    "_fw_primal",
    "fake_quantize_per_tensor_affine_cachemask",
    "fake_quantize_per_channel_affine_cachemask",
    "_new_zeros_with_same_feature_meta",
    "_has_same_storage_numel",  # used for forward AD internals
    "_reshape_alias",
    "replace_",  # only used by the functionalization pass, doesn't need to be exposed to python
    "copy",  # only used by the functionalization pass
    "fill.Tensor",  # only used by the functionalization pass
    "fill.Scalar",  # only used by the functionalization pass
    "lift.*",
    "normal_functional",  # only used by the functionalization pas
    "_nested_tensor_strides",  # don't want to expose this to python
    "_nested_tensor_offsets",  # don't want to expose this to python
    "_nested_view_from_buffer",  # View only version of _nested_from_buffer. This will force users to only use the "safe" version.
    "_nested_view_from_buffer_copy",
]

SKIP_PYTHON_BINDINGS = list(
    map(lambda pattern: re.compile(rf"^{pattern}$"), _SKIP_PYTHON_BINDINGS)
)

# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
    "add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
    "add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
    "sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
    "sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
    "mul.Scalar(Tensor self, Scalar other) -> Tensor",
    "mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
    "div.Scalar(Tensor self, Scalar other) -> Tensor",
    "div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
]


@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
    # So far, all NativeFunctions that are entirely code-generated do not get python bindings.
    if "generated" in f.tags:
        return False
    name = cpp.name(f.func)
    for skip_regex in SKIP_PYTHON_BINDINGS:
        if skip_regex.match(name):
            return False

    signature = str(f.func)
    for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
        if pattern == signature:
            return False

    return True


def get_pycname(name: BaseOperatorName) -> str:
    return f"THPVariable_{name}"


def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
    return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0


def is_py_variable_method(f: NativeFunction) -> bool:
    return f.python_module is None and Variant.method in f.variants


def is_py_torch_function(f: NativeFunction) -> bool:
    return f.python_module is None and Variant.function in f.variants


def is_py_nn_function(f: NativeFunction) -> bool:
    return f.python_module == "nn"


def is_py_fft_function(f: NativeFunction) -> bool:
    return f.python_module == "fft"


def is_py_linalg_function(f: NativeFunction) -> bool:
    return f.python_module == "linalg"


def is_py_nested_function(f: NativeFunction) -> bool:
    return f.python_module == "nested"


def is_py_sparse_function(f: NativeFunction) -> bool:
    return f.python_module == "sparse"


def is_py_special_function(f: NativeFunction) -> bool:
    return f.python_module == "special"


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                            Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def gen(
    out: str,
    native_yaml_path: str,
    tags_yaml_path: str,
    deprecated_yaml_path: str,
    template_path: str,
    *,
    symint: bool = True,
) -> None:
    fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
    native_functions = parse_native_yaml(
        native_yaml_path, tags_yaml_path
    ).native_functions
    native_functions = list(filter(should_generate_py_binding, native_functions))

    methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
    create_python_bindings(
        fm,
        methods,
        is_py_variable_method,
        None,
        "python_variable_methods.cpp",
        method=True,
        symint=symint,
    )

    # NOTE: num_shards here must be synced with gatherTorchFunctions in
    #       torch/csrc/autograd/python_torch_functions_manual.cpp
    functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
    create_python_bindings_sharded(
        fm,
        functions,
        is_py_torch_function,
        "torch",
        "python_torch_functions.cpp",
        method=False,
        num_shards=3,
        symint=symint,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_nn_function,
        "torch.nn",
        "python_nn_functions.cpp",
        method=False,
        symint=symint,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_fft_function,
        "torch.fft",
        "python_fft_functions.cpp",
        method=False,
        symint=symint,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_linalg_function,
        "torch.linalg",
        "python_linalg_functions.cpp",
        method=False,
        symint=symint,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_nested_function,
        "torch.nested",
        "python_nested_functions.cpp",
        method=False,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_sparse_function,
        "torch.sparse",
        "python_sparse_functions.cpp",
        method=False,
        symint=symint,
    )

    create_python_bindings(
        fm,
        functions,
        is_py_special_function,
        "torch.special",
        "python_special_functions.cpp",
        method=False,
        symint=symint,
    )

    # Currently, we only use `functions` to generate `return_types` bindings.
    # All methods which return namedtuple have function variant at this point.
    # If any method only operator with namedtuple is added in the future,
    # we will have to address that.
    create_python_return_type_bindings(
        fm, functions, lambda fn: True, "python_return_types.cpp"
    )

    valid_tags = parse_tags_yaml(tags_yaml_path)

    def gen_tags_enum() -> Dict[str, str]:
        return {
            "enum_of_valid_tags": (
                "".join([f'\n.value("{tag}", at::Tag::{tag})' for tag in valid_tags])
            )
        }

    fm.write("python_enum_tag.cpp", gen_tags_enum)


def group_filter_overloads(
    pairs: Sequence[PythonSignatureNativeFunctionPair],
    pred: Callable[[NativeFunction], bool],
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
    grouped: Dict[
        BaseOperatorName, List[PythonSignatureNativeFunctionPair]
    ] = defaultdict(list)
    for pair in pairs:
        if pred(pair.function):
            grouped[pair.function.func.name.name].append(pair)
    return grouped


def create_python_bindings(
    fm: FileManager,
    pairs: Sequence[PythonSignatureNativeFunctionPair],
    pred: Callable[[NativeFunction], bool],
    module: Optional[str],
    filename: str,
    *,
    method: bool,
    symint: bool = True,
) -> None:
    """Generates Python bindings to ATen functions"""
    py_methods: List[str] = []
    ops_headers: List[str] = []
    py_method_defs: List[str] = []
    py_forwards: List[str] = []

    grouped = group_filter_overloads(pairs, pred)

    for name in sorted(grouped.keys(), key=lambda x: str(x)):
        overloads = grouped[name]
        py_methods.append(
            method_impl(name, module, overloads, method=method, symint=symint)
        )
        py_method_defs.append(method_def(name, module, overloads, method=method))
        py_forwards.extend(forward_decls(name, overloads, method=method))
        ops_headers.append(f"#include <ATen/ops/{name.base}.h>")

    fm.write_with_template(
        filename,
        filename,
        lambda: {
            "generated_comment": "@"
            + f"generated from {fm.template_dir_for_comments()}/{filename}",
            "ops_headers": ops_headers,
            "py_forwards": py_forwards,
            "py_methods": py_methods,
            "py_method_defs": py_method_defs,
        },
    )


def create_python_return_type_bindings(
    fm: FileManager,
    pairs: Sequence[PythonSignatureNativeFunctionPair],
    pred: Callable[[NativeFunction], bool],
    filename: str,
) -> None:
    """
    Generate function to initialize and return named tuple for native functions
    which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
    """
    py_return_types_definition: List[str] = []
    py_return_types_map: List[str] = []

    grouped = group_filter_overloads(pairs, pred)

    for name in sorted(grouped.keys(), key=lambda x: str(x)):
        overloads = grouped[name]
        definitions, map_entries = generate_return_type_definition_and_map_entry(
            overloads
        )
        py_return_types_definition.append(
            "" if not definitions else "\n".join(definitions)
        )
        py_return_types_map.append("" if not map_entries else "\n".join(map_entries))

    fm.write_with_template(
        filename,
        filename,
        lambda: {
            "generated_comment": "@"
            + f"generated from {fm.template_dir_for_comments()}/{filename}",
            "py_return_types": py_return_types_definition,
            "py_return_types_map": py_return_types_map,
        },
    )


def create_python_bindings_sharded(
    fm: FileManager,
    pairs: Sequence[PythonSignatureNativeFunctionPair],
    pred: Callable[[NativeFunction], bool],
    module: Optional[str],
    filename: str,
    *,
    method: bool,
    num_shards: int,
    symint: bool = True,
) -> None:
    """Generates Python bindings to ATen functions"""
    grouped = group_filter_overloads(pairs, pred)

    def key_func(
        kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
    ) -> str:
        return kv[0].base

    def env_func(
        kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
    ) -> Dict[str, List[str]]:
        name, fn_pairs = kv
        return {
            "ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
            "py_forwards": list(forward_decls(name, fn_pairs, method=method)),
            "py_methods": [
                method_impl(name, module, fn_pairs, method=method, symint=symint)
            ],
            "py_method_defs": [method_def(name, module, fn_pairs, method=method)],
        }

    fm.write_sharded(
        filename,
        grouped.items(),
        base_env={
            "generated_comment": "@"
            + f"generated from {fm.template_dir_for_comments()}/{filename}",
        },
        key_fn=key_func,
        env_callable=env_func,
        num_shards=num_shards,
        sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
    )


def load_signatures(
    native_functions: List[NativeFunction],
    deprecated_yaml_path: str,
    *,
    method: bool,
    skip_deprecated: bool = False,
    pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
    @with_native_function
    def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
        return PythonSignatureNativeFunctionPair(
            signature=signature(f, method=method, pyi=pyi),
            function=f,
        )

    pairs = list(map(gen_signature_pairs, native_functions))
    deprecated = load_deprecated_signatures(
        pairs, deprecated_yaml_path, method=method, pyi=pyi
    )
    return pairs if skip_deprecated else pairs + deprecated


def load_deprecated_signatures(
    pairs: Sequence[PythonSignatureNativeFunctionPair],
    deprecated_yaml_path: str,
    *,
    method: bool,
    pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
    # The deprecated.yaml doesn't have complete type information, we need
    # find and leverage the original ATen signature (to which it delegates
    # the call) to generate the full python signature.
    # We join the deprecated and the original signatures using type-only form.

    # group the original ATen signatures by name
    grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
    for pair in pairs:
        grouped[pair.signature.name].append(pair)

    # find matching original signatures for each deprecated signature
    results: List[PythonSignatureNativeFunctionPair] = []

    with open(deprecated_yaml_path, "r") as f:
        deprecated_defs = yaml.load(f, Loader=YamlLoader)

    for deprecated in deprecated_defs:
        schema = FunctionSchema.parse(deprecated["name"])
        aten_name, call_args = split_name_params(deprecated["aten"])
        is_out = aten_name.endswith("_out")
        if is_out:
            aten_name = aten_name.replace("_out", "")

        # HACK: these are fixed constants used to pass the the aten function.
        # The type must be known ahead of time
        known_constants = {
            "1": Type.parse("Scalar"),
        }
        schema_args_by_name = {a.name: a for a in schema.arguments.flat_all}
        for name in call_args:
            assert (
                name in schema_args_by_name or name in known_constants
            ), f"deprecation definiton: Unrecognized value {name}"

        # Map deprecated signature arguments to their aten signature and test
        # if the types and alias annotation match.
        def is_schema_compatible(
            aten_schema: FunctionSchema,
        ) -> bool:
            arguments: Iterable[Argument]
            if is_out:
                arguments = itertools.chain(
                    aten_schema.arguments.out, aten_schema.arguments.flat_non_out
                )
            else:
                arguments = aten_schema.arguments.flat_all

            for i, arg in enumerate(arguments):
                if i < len(call_args):
                    arg_name = call_args[i]
                    if arg_name in known_constants:
                        schema_type = known_constants[arg_name]
                        schema_annotation = None
                    else:
                        schema_arg = schema_args_by_name[arg_name]
                        schema_type = schema_arg.type
                        schema_annotation = schema_arg.annotation

                    if schema_type != arg.type or schema_annotation != arg.annotation:
                        return False
                else:
                    if arg.default is None:
                        return False

            return len(schema.returns) == len(aten_schema.returns) and all(
                a == b for a, b in zip(schema.returns, aten_schema.returns)
            )

        any_schema_found = False
        for pair in grouped[aten_name]:
            if not is_schema_compatible(pair.function.func):
                continue
            any_schema_found = True

            python_sig = signature_from_schema(
                schema,
                category_override=pair.function.category_override,
                method=method,
                pyi=pyi,
            )

            results.append(
                PythonSignatureNativeFunctionPair(
                    signature=PythonSignatureDeprecated(
                        name=python_sig.name,
                        input_args=python_sig.input_args,
                        input_kwargs=python_sig.input_kwargs,
                        output_args=python_sig.output_args,
                        tensor_options_args=python_sig.tensor_options_args,
                        method=python_sig.method,
                        deprecated_schema=schema,
                        deprecated_args_exprs=tuple(call_args),
                        returns=python_sig.returns,
                    ),
                    function=pair.function,
                )
            )
        assert (
            any_schema_found
        ), f"No native function with name {aten_name} matched signature:\n  {str(schema)}"

    return results


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                         Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


@with_native_function
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
    name = cpp.name(f.func)
    fieldnames = namedtuple_fieldnames(f.func.returns)
    return "_".join([name] + fieldnames)


def emit_namedtuple_call(
    overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], Dict[str, str]]:
    """
    Generate block of named tuple type def inits, and add typeref snippets
    to declarations that use them
    """
    typenames: Dict[
        str, str
    ] = {}  # map from unique name + field name lists to typedef name
    typedefs: List[str] = []  # typedef declarations and init code

    for overload in overloads:
        fieldnames = namedtuple_fieldnames(overload.function.func.returns)
        if not fieldnames:
            continue

        name = cpp.name(overload.function.func)  # use @with_native_function?
        tn_key = gen_namedtuple_typename_key(overload.function)
        typename = typenames.get(tn_key)
        if typename is None:
            typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
            typenames[tn_key] = typename
            typedefs.append(
                f"""\
static PyTypeObject* {typename} = get_namedtuple("{name}");"""
            )

    return typedefs, typenames


def generate_return_type_definition_and_map_entry(
    overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], List[str]]:
    """
    Generate block of function in `python_return_types.cpp` to initialize
    and return named tuple for a native function which returns named tuple
    and relevant entry for the map in same file.
    """
    typenames: Dict[
        str, str
    ] = {}  # map from unique name + field name lists to typedef name
    definitions: List[str] = []  # function defintion to register the typedef
    map_entries: List[
        str
    ] = []  # C++ map entry of <function_name, function creates it namedtuple>

    for overload in overloads:
        fieldnames = namedtuple_fieldnames(overload.function.func.returns)
        if not fieldnames:
            continue

        fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)

        name = cpp.name(overload.function.func)  # use @with_native_function?
        tn_key = gen_namedtuple_typename_key(overload.function)
        typename = typenames.get(tn_key)

        if typename is None:
            typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
            typenames[tn_key] = typename
            definitions.append(
                f"""\
PyTypeObject* get_{name}_namedtuple() {{
    static PyStructSequence_Field NamedTuple_fields[] = {{ {fields},  {{nullptr}} }};
    static PyTypeObject {typename};
    static bool is_initialized = false;
    static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
    if (!is_initialized) {{
        PyStructSequence_InitType(&{typename}, &desc);
        {typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
        is_initialized = true;
    }}
    return &{typename};
}}
"""
            )
            map_entries.append(f'{{"{name}", get_{name}_namedtuple()}}, ')

    return definitions, map_entries


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                         Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
    r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
  ${method_header}
  static PythonArgParser parser({
    ${signatures}
  }, /*traceable=*/${traceable});

  ParsedArgs<${max_args}> parsed_args;
  auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
  ${check_has_torch_function}
  switch (_r.idx) {
    ${dispatch}
  }
  ${method_footer}
}

"""
)

# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate(
    """\
case ${overload_index}: {
  ${body}
}
"""
)

# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
    """\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
  ${method_header}
  static PythonArgParser parser({
    ${signatures}
  }, /*traceable=*/${traceable});

  ParsedArgs<${max_args}> parsed_args;
  auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
  ${check_has_torch_function}
  ${dispatch}
  ${method_footer}
}

"""
)

# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
    """\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
  ${method_header}
  ${check_has_torch_function}
  ${dispatch}
  ${method_footer}
}

"""
)


def method_impl(
    name: BaseOperatorName,
    module: Optional[str],
    overloads: Sequence[PythonSignatureNativeFunctionPair],
    *,
    method: bool,
    symint: bool = True,
) -> str:
    """
    Generate a python binding for all overloads of an op.
    """
    pycname = get_pycname(name)
    noarg = is_noarg(overloads)
    namedtuple_inits, namedtuple_typenames = emit_namedtuple_call(overloads)

    method_header = ["HANDLE_TH_ERRORS"]
    method_header += namedtuple_inits
    method_header += (
        ["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
    )

    method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]

    traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"

    grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(
        overloads, symint=symint
    )
    is_singleton = len(grouped_overloads) == 1
    signatures: List[str] = []
    dispatch: List[str] = []
    for overload_index, overload in enumerate(grouped_overloads):
        signature = overload.signature.signature_str(symint=symint)
        signatures.append(f"{cpp_string(str(signature))},")
        dispatch_body = emit_dispatch_case(
            overload, namedtuple_typenames, symint=symint
        )
        dispatch.append(
            PY_VARIABLE_CASE.substitute(
                overload_index=overload_index, body=dispatch_body
            )
            if not is_singleton
            else dispatch_body
        )

    if noarg:
        template = PY_VARIABLE_METHOD_NOARGS
    elif is_singleton:
        template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
    else:
        template = PY_VARIABLE_METHOD_VARARGS

    return template.substitute(
        name=name,
        pycname=pycname,
        method_header=method_header,
        max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
        signatures=signatures,
        traceable=traceable,
        check_has_torch_function=gen_has_torch_function_check(
            name=name,
            module=module,
            noarg=noarg,
            method=method,
        ),
        dispatch=dispatch,
        method_footer=method_footer,
        self_="self_" if method else "nullptr",
    )


def gen_has_torch_function_check(
    name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
    if noarg:
        if method:
            return f"""\
if(check_has_torch_function(self_)) {{
  return handle_torch_function(self_, "{name}");
}}
"""
        else:
            return ""

    self_ = "self_" if method else "nullptr"
    namespace = (
        {
            "torch": "THPVariableFunctionsModule",
            "torch.nn": "THPNNVariableFunctionsModule",
            "torch.fft": "THPFFTVariableFunctionsModule",
            "torch.linalg": "THPLinalgVariableFunctionsModule",
            "torch.nested": "THPNestedVariableFunctionsModule",
            "torch.sparse": "THPSparseVariableFunctionsModule",
            "torch.special": "THPSpecialVariableFunctionsModule",
        }[module]
        if module
        else "THPVariableClass"
    )

    return f"""\
if(_r.has_torch_function()) {{
  return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""


# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate(
    """\
if (_r.isNone(${out_idx})) {
  ${call_dispatch}
} else {
  ${call_dispatch_out}
}
"""
)


def emit_dispatch_case(
    overload: PythonSignatureGroup,
    namedtuple_typenames: Dict[str, str],
    *,
    symint: bool = True,
) -> str:
    """
    Emit dispatch code for a single parsed signature. This corresponds to either
    a single native function, or a pair that differ only in output params. In the
    latter case, a single python signature is used for both and dispatching
    switches on the presence/absence of passed output args.
    """
    if overload.outplace is not None:
        # dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
        return PY_VARIABLE_OUT.substitute(
            out_idx=overload.signature.output_idx(),
            call_dispatch=emit_single_dispatch(
                overload.signature, overload.base, namedtuple_typenames, symint=symint
            ),
            call_dispatch_out=emit_single_dispatch(
                overload.signature,
                overload.outplace,
                namedtuple_typenames,
                symint=symint,
            ),
        )
    else:
        # no-output version only
        return emit_single_dispatch(
            overload.signature, overload.base, namedtuple_typenames, symint=symint
        )


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                    Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def forward_decls(
    name: BaseOperatorName,
    overloads: Sequence[PythonSignatureNativeFunctionPair],
    *,
    method: bool,
) -> Tuple[str, ...]:
    if method:
        return ()

    pycname = get_pycname(name)
    if is_noarg(overloads):
        return (
            f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",
        )
    else:
        return (
            f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",
        )


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#              Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def method_def(
    name: BaseOperatorName,
    module: Optional[str],
    overloads: Sequence[PythonSignatureNativeFunctionPair],
    *,
    method: bool,
) -> str:
    """
    Generate method def entry.
    """
    pycname = get_pycname(name)

    if is_noarg(overloads):
        pyfunc_cast = ""
        flags = "METH_NOARGS" if method else "METH_VARARGS | METH_KEYWORDS"
    else:
        pyfunc_cast = "castPyCFunctionWithKeywords"
        flags = "METH_VARARGS | METH_KEYWORDS"

    if module == "torch":
        flags += " | METH_STATIC"

    if name.dunder_method:
        # PyMethodDef entry for binary op, throws not implemented error
        return f"""\
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
    else:
        # PyMethodDef entry
        return f"""\
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                   Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def group_overloads(
    overloads: Sequence[PythonSignatureNativeFunctionPair], *, symint: bool = True
) -> Sequence[PythonSignatureGroup]:
    bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
    outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}

    # first group by signature ignoring out arguments
    for overload in overloads:
        sig = overload.signature.signature_str(skip_outputs=True, symint=symint)
        if overload.function.func.is_out_fn():
            if sig in outplaces:
                raise RuntimeError(
                    f"Found duplicated function definition:\n- {overload.function.func}.\n"
                    f"Existing definition:\n- {outplaces[sig].function.func}."
                )
            outplaces[sig] = overload
        else:
            if sig in bases:
                raise RuntimeError(
                    f"Found duplicated function definition:\n- {overload.function.func}.\n"
                    f"Existing definition:\n- {bases[sig].function.func}."
                )
            bases[sig] = overload

    for sig, out in outplaces.items():
        if sig not in bases:
            candidates: List[str] = []
            for overload in overloads:
                if (
                    str(overload.function.func.name.name)
                    == str(out.function.func.name.name)
                    and not overload.function.func.is_out_fn()
                    and not overload.signature.deprecated
                ):
                    candidates.append(
                        overload.signature.signature_str(
                            skip_outputs=True, symint=symint
                        )
                    )
            out_sig = out.signature.signature_str(symint=symint)
            raise RuntimeError(
                f"While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. "
                f"We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema "
                "correctly in native_functions.yaml. We discovered the following candidate(s): \n"
                + "\n".join(f"- {candidate}" for candidate in candidates)
            )

    grouped = [
        PythonSignatureGroup.from_pairs(
            functional=base,
            out=outplaces.get(sig),
        )
        for sig, base in bases.items()
    ]
    return sort_overloads(grouped, symint=symint)


# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
#   All parameters have the same type, except one taking Tensor the other taking
#   Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
#   object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
#   Therefore, same input arguments might be accepted by either python signature.
#   We want to always parse the one taking Tensor first.
#
#     bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
#     bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
#   If they have different number of parameters then they are not ambiguous - but
#   the difference on output param can be ignored as it's optional.
#
#     multiply(Tensor input, Tensor other, *, Tensor out=None)
#     multiply(Tensor input, Scalar other)
#
#   Both positional args and keyword-only args are considered together.
#
#     subtract(Tensor other, *, Scalar alpha=1)
#     subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
#   If there is any difference in other parameters besides the Tensor/Scalar
#   difference, then they are not considered ambiguous by this method anymore.
#   However, the difference could be too trivial to disambiguate.
#
#     foo(Tensor input, Scalar other, Scalar bar)
#     foo(Tensor input, Tensor other, double bar)
#
#   If they are taking different number of parameters then they are not considered
#   ambiguous anymore, even if the difference is only on optional kwargs.
#
#     foo(Scalar other, Scalar alpha=1)
#     foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#


def sort_overloads(
    grouped_overloads: Sequence[PythonSignatureGroup], *, symint: bool = True
) -> Sequence[PythonSignatureGroup]:
    # NB: Smaller here means lower priority

    def is_arg_smaller(t1: Type, t2: Type) -> bool:
        return (
            str(t1) == "Scalar"
            and str(t2) == "Tensor"
            or str(t1) == "Scalar?"
            and str(t2) == "Tensor?"
            or "Dimname" in str(t1)
            and "Dimname" not in str(t2)
            or
            # In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
            # discussed why it is important to prioritize int/int? over int[]
            str(t1) == "int[]"
            and (str(t2) == "int" or str(t2) == "int?")
            or
            # TensorList currently throws an error during argument parsing, that's why it needs to be
            # last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
            str(t1) == "Tensor[]"
            and str(t2).find("[]") != -1
            or
            # Prioritize IntArrayRef overload over SymIntArrayRef
            str(t1) == "SymInt[]"
            and str(t2) == "int[]"
        )

    def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
        """Returns True if s1 < s2 in the partial order."""
        args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
        if len(args1) != len(args2):
            return False
        # TODO: should use some canonical form instead of 'str(arg.type)' - see comments
        # above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
        # ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
        equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
        smaller_or_equal = all(
            str(arg1.type) == str(arg2.type) or is_arg_smaller(arg1.type, arg2.type)
            for arg1, arg2 in zip(args1, args2)
        )
        return smaller_or_equal and not equal

    # First sort by signature
    grouped_overloads = sorted(
        grouped_overloads, key=lambda x: x.signature.signature_str(symint=symint)
    )

    # Construct the relation graph
    larger_than: Dict[int, Set[int]] = defaultdict(set)
    for i1, overload1 in enumerate(grouped_overloads):
        for i2, overload2 in enumerate(grouped_overloads):
            if is_smaller(overload1.signature, overload2.signature):
                larger_than[i1].add(i2)

    if not larger_than:
        return list(grouped_overloads)

    # Use a topological sort to sort overloads according to the partial order.
    N = len(grouped_overloads)
    sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))

    for idx in range(N):
        # The size of sorted_ids will grow to N eventually.
        i = sorted_ids[idx]
        for j in sorted(larger_than.keys()):
            larger = larger_than[j]
            larger.discard(i)
            if not larger:
                del larger_than[j]
                sorted_ids.append(j)

    return list(map(lambda x: grouped_overloads[x], sorted_ids))


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
#                       Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def emit_single_dispatch(
    ps: PythonSignature,
    f: NativeFunction,
    namedtuple_typenames: Dict[str, str],
    *,
    symint: bool = True,
) -> str:
    """
    Emit dispatch code for a single native function.
    """

    @with_native_function
    def go(f: NativeFunction) -> str:
        # header comments
        if isinstance(ps, PythonSignatureDeprecated):
            schema_comment = f"// [deprecated] aten::{ps.deprecated_schema}"
        else:
            schema_comment = f"// aten::{f.func}"

        deprecated = "[deprecated] " if ps.deprecated else ""

        # dispatch lambda signature
        name = cpp.name(f.func)
        lambda_formals = ", ".join(
            map(
                lambda a: f"{a.type_str} {a.name}",
                dispatch_lambda_args(ps, f, symint=symint),
            )
        )
        lambda_return = dispatch_lambda_return_str(f)

        # dispatch lambda body
        dispatch_callee = cpp_dispatch_target(f)
        dispatch_args = ", ".join(cpp_dispatch_exprs(f, python_signature=ps))

        # from arg parser outputs to dispatch lambda arguments
        parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
        lambda_arg_exprs = dispatch_lambda_exprs(ps, f, symint=symint)
        inits = "\n".join(lambda_arg_exprs.inits)
        lambda_args = ", ".join(lambda_arg_exprs.exprs)

        # scatter fields
        # TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
        #       solution for enabling the 'requires_grad' argument for tensor methods
        #       new_full, new_empty, and new_zeros. A much better but more difficult to
        #       implement solution involves refactoring according to Ed's description here:
        #       https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
        need_set_requires_grad = ps.tensor_options_args and (
            not has_tensor_options(f)
            or (ps.method and ("requires_grad" in parser_outputs))
        )
        set_requires_grad = (
            f'.set_requires_grad({parser_outputs["requires_grad"].expr})'
            if need_set_requires_grad
            else ""
        )

        if lambda_return == "void":
            return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
  pybind11::gil_scoped_release no_gil;
  {dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
        else:
            typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
            namedtuple_typeref = f"{typename}, " if typename is not None else ""
            return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
  pybind11::gil_scoped_release no_gil;
  return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""

    return go(f)