File: variable_factories.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (135 lines) | stat: -rw-r--r-- 5,627 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#pragma once

// ${generated_comment}

#include <ATen/core/Tensor.h>
#include <ATen/TracerMode.h>
#include <ATen/core/grad_mode.h>
#include <c10/util/ArrayRef.h>
#include <c10/core/MemoryFormat.h>
#include <torch/csrc/api/include/torch/detail/TensorDataContainer.h>
#include <torch/csrc/autograd/variable.h>

#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/from_blob.h>
$ops_headers
#endif

#include <functional>
#include <initializer_list>
#include <utility>

namespace torch {

/// NOTE: Currently `torch::tensor(...)` doesn't support mixed data types
/// (i.e. `torch::tensor({{bool, 2.0}})` doesn't work). We might be able to
/// support it in the future by iterating over all sub-lists to find
/// the largest data type that can represent all of the elements, or by using
/// variadic templates.
///
/// NOTE: C++ `torch::tensor` with a floating-point type or an `at::ArrayRef` / `std::vector` /
/// (nested) braced-init-list of floating-point types always produces a tensor of dtype
/// `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.
///
/// NOTE: C++ `torch::tensor` with an integer type or an `at::ArrayRef` / `std::vector` /
/// (nested) braced-init-list of integer types always produces a tensor of dtype `at::kLong`
/// (aka. int64_t), matching Python `torch.tensor` behavior.
///
/// NOTE: The following dtypes are not supported by `torch::tensor` currently:
/// - `unsigned int`
/// - `unsigned long int`
/// - `unsigned long long int`
/// - `long long int`
inline at::Tensor tensor(detail::TensorDataContainer tensor_data_container, const at::TensorOptions& options = {}) {
  return autograd::make_variable(
    // note: we remove the requires_grad setting from the TensorOptions because
    // it is ignored anyways (and we actually have an assertion that it isn't set
    // which would fail otherwise). We handle requires_grad explicitly here
    // instead of passing it through to the kernel.
    tensor_data_container.convert_to_tensor(options.requires_grad(c10::nullopt)),
    options.requires_grad());
}

/// A generic deleter function.
using Deleter = std::function<void(void*)>;
using at::MemoryFormat;

/// Exposes the given `data` as a `Tensor` without taking ownership of the
/// original data. `sizes` should specify the shape of the tensor, `strides` the
/// stride in each dimension. The `deleter` function (a
/// `std::function<void(void*)>`) will be called on the `data` when the Tensor
/// data would normally be deallocated. The `TensorOptions` specify additional
/// configuration options for the returned tensor, such as what type to
/// interpret the `data` as.
inline at::Tensor from_blob(
    void* data,
    at::IntArrayRef sizes,
    at::IntArrayRef strides,
    const Deleter& deleter,
    const at::TensorOptions& options = at::TensorOptions()) {
  at::Tensor tensor = ([&]() {
    at::AutoDispatchBelowAutograd guard;  // TODO: remove
    at::tracer::impl::NoTracerDispatchMode tracer_guard;
    return at::from_blob(data, sizes, strides, deleter, options.requires_grad(c10::nullopt));
  })();
  return autograd::make_variable(tensor, options.requires_grad());
}

/// Exposes the given `data` as a `Tensor` without taking ownership of the
/// original data. `sizes` should specify the shape of the tensor, `strides` the
/// stride in each dimension. The `TensorOptions`
/// specify additional configuration options for the returned tensor, such as
/// what type to interpret the `data` as.
inline at::Tensor from_blob(
    void* data,
    at::IntArrayRef sizes,
    at::IntArrayRef strides,
    const at::TensorOptions& options = at::TensorOptions()) {
  at::Tensor tensor = ([&]() {
    at::AutoDispatchBelowAutograd guard;  // TODO: remove
    at::tracer::impl::NoTracerDispatchMode tracer_guard;
    return at::from_blob(data, sizes, strides, options.requires_grad(c10::nullopt));
  })();
  return autograd::make_variable(tensor, options.requires_grad());
}

/// Exposes the given `data` as a `Tensor` without taking ownership of the
/// original data. `sizes` should specify the shape of the tensor. The `deleter`
/// (a `std::function<void(void*)>`) function will be called on the `data` when
/// the Tensor data would normally be deallocated. The `TensorOptions` specify
/// additional configuration options for the returned tensor, such as what type
/// to interpret the `data` as.
inline at::Tensor from_blob(
    void* data,
    at::IntArrayRef sizes,
    const Deleter& deleter,
    const at::TensorOptions& options = at::TensorOptions()) {
  at::Tensor tensor = ([&]() {
    at::AutoDispatchBelowAutograd guard;  // TODO: remove
    at::tracer::impl::NoTracerDispatchMode tracer_guard;
    return at::from_blob(data, sizes, deleter, options.requires_grad(c10::nullopt));
  })();
  return autograd::make_variable(tensor, options.requires_grad());
}

/// Exposes the given `data` as a `Tensor` without taking ownership of the
/// original data. `sizes` should specify the shape of the tensor. The
/// `TensorOptions` specify additional configuration options for the returned
/// tensor, such as what type to interpret the `data` as.
inline at::Tensor from_blob(
    void* data,
    at::IntArrayRef sizes,
    const at::TensorOptions& options = at::TensorOptions()) {
  at::Tensor tensor = ([&]() {
    at::AutoDispatchBelowAutograd guard;  // TODO: remove
    at::tracer::impl::NoTracerDispatchMode tracer_guard;
    return at::from_blob(data, sizes, options.requires_grad(c10::nullopt));
  })();
  return autograd::make_variable(tensor, options.requires_grad());
}

${function_definitions}

} // namespace torch