1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
import argparse
import collections
from pprint import pformat
from typing import Dict, List, Sequence
from torchgen.api.python import (
PythonSignatureGroup,
PythonSignatureNativeFunctionPair,
returns_named_tuple_pyi,
)
from torchgen.gen import parse_native_yaml
from torchgen.model import DispatchKey, Variant
from torchgen.utils import FileManager
from tools.autograd.gen_python_functions import (
group_overloads,
load_signatures,
should_generate_py_binding,
)
"""
This module implements generation of type stubs for PyTorch,
enabling use of autocomplete in IDEs like PyCharm, which otherwise
don't understand C extension modules.
At the moment, this module only handles type stubs for torch and
torch.Tensor. It should eventually be expanded to cover all functions
which come are autogenerated.
Here's our general strategy:
- We start off with a hand-written __init__.pyi.in file. This
file contains type definitions for everything we cannot automatically
generate, including pure Python definitions directly in __init__.py
(the latter case should be pretty rare).
- We go through automatically bound functions based on the
type information recorded in native_functions.yaml and
generate type hints for them (generate_type_hints)
There are a number of type hints which we've special-cased;
read gen_pyi for the gory details.
"""
def get_py_torch_functions(
python_funcs: Sequence[PythonSignatureNativeFunctionPair],
method: bool = False,
) -> Sequence[PythonSignatureGroup]:
"""
Get declarations (grouped by name) which should be generated
as either functions in the "torch" module or methods on Tensor.
"""
def should_bind_function(python_func: PythonSignatureNativeFunctionPair) -> bool:
return (
should_generate_py_binding(python_func.function)
and not python_func.function.python_module
and Variant.function in python_func.function.variants
)
def should_bind_method(python_func: PythonSignatureNativeFunctionPair) -> bool:
return (
should_generate_py_binding(python_func.function)
and not python_func.function.python_module
and Variant.method in python_func.function.variants
)
should_bind = should_bind_method if method else should_bind_function
return group_overloads([f for f in python_funcs if should_bind(f)])
# TODO: Consider defining some aliases for our Union[...] types, to make
# the stubs to read on the human eye.
DEVICE_PARAM = "device: Device=None"
FACTORY_PARAMS = (
f"dtype: Optional[_dtype]=None, {DEVICE_PARAM}, requires_grad: _bool=False"
)
# this could be more precise w.r.t list contents etc. How to do Ellipsis?
INDICES = "indices: Union[None, _int, slice, Tensor, List, Tuple]"
blocklist = [
"__init_subclass__",
"__new__",
"__subclasshook__",
"cdist",
"device",
"grad",
"requires_grad",
"range",
# defined in functional
"einsum",
# reduction argument; these bindings don't make sense
"binary_cross_entropy_with_logits",
"ctc_loss",
"cosine_embedding_loss",
"hinge_embedding_loss",
"kl_div",
"margin_ranking_loss",
"triplet_margin_loss",
# Somehow, these are defined in both _C and in functional. Ick!
"broadcast_tensors",
# Manually define named tensor type stubs in __init__.pyi.in
"align_tensors",
"meshgrid",
"cartesian_prod",
"block_diag",
"norm",
"chain_matmul",
"stft",
"tensordot",
"split",
"unique_consecutive",
"atleast_1d",
"atleast_2d",
"atleast_3d",
# These are handled specially by python_arg_parser.cpp
"add",
"add_",
"add_out",
"sub",
"sub_",
"sub_out",
"mul",
"mul_",
"mul_out",
"div",
"div_",
"div_out",
"true_divide",
"true_divide_",
"true_divide_out",
"floor_divide",
"floor_divide_",
"floor_divide_out",
"to",
"_to_copy",
"copy_",
]
binary_ops = (
"add",
"sub",
"mul",
"div",
"pow",
"lshift",
"rshift",
"mod",
"truediv",
"matmul",
"floordiv",
"radd",
"rsub",
"rmul",
"rtruediv",
"rfloordiv",
"rpow", # reverse arithmetic
"and",
"or",
"xor",
"rand",
"ror",
"rxor", # logic
"iadd",
"iand",
"idiv",
"ilshift",
"imul",
"ior",
"irshift",
"isub",
"ixor",
"ifloordiv",
"imod", # inplace ops
)
symmetric_comparison_ops = ("eq", "ne")
asymmetric_comparison_ops = ("ge", "gt", "lt", "le")
comparison_ops = symmetric_comparison_ops + asymmetric_comparison_ops
unary_ops = ("neg", "abs", "invert")
to_py_type_ops = ("bool", "float", "complex", "long", "index", "int", "nonzero")
all_ops = binary_ops + comparison_ops + unary_ops + to_py_type_ops
def sig_for_ops(opname: str) -> List[str]:
"""sig_for_ops(opname : str) -> List[str]
Returns signatures for operator special functions (__add__ etc.)"""
# we have to do this by hand, because they are hand-bound in Python
assert opname.endswith("__") and opname.startswith("__"), "Unexpected op {}".format(
opname
)
name = opname[2:-2]
if name in binary_ops:
return ["def {}(self, other: Any) -> Tensor: ...".format(opname)]
elif name in comparison_ops:
sig = "def {}(self, other: Any) -> Tensor: ...".format(opname)
if name in symmetric_comparison_ops:
# unsafe override https://github.com/python/mypy/issues/5704
sig += " # type: ignore[override]"
return [sig]
elif name in unary_ops:
return ["def {}(self) -> Tensor: ...".format(opname)]
elif name in to_py_type_ops:
if name in {"bool", "float", "complex"}:
tname = name
elif name == "nonzero":
tname = "bool"
else:
tname = "int"
if tname in {"float", "int", "bool", "complex"}:
tname = "builtins." + tname
return ["def {}(self) -> {}: ...".format(opname, tname)]
else:
raise Exception("unknown op", opname)
def generate_type_hints(sig_group: PythonSignatureGroup) -> List[str]:
type_hints: List[str] = []
# Some deprecated ops that are on the blocklist are still included in pyi
if sig_group.signature.name in blocklist and not sig_group.signature.deprecated:
return type_hints
# deprecated signatures have separate entries for their functional and out variants
# (as opposed to the native ops, which fuse the two into a single signature).
# generate the functional variant here, if an out variant exists.
if sig_group.signature.deprecated and sig_group.outplace is not None:
type_hint = sig_group.signature.signature_str_pyi(skip_outputs=True)
type_hints.append(type_hint)
# PythonSignatureGroups that have both a functional + out variant get a single signature, with an optional out argument
# Generates the out variant if one exists. Otherwise, generate the functional variant
type_hint = sig_group.signature.signature_str_pyi(
skip_outputs=sig_group.outplace is None
)
type_hints.append(type_hint)
# Some operators also additionally have a vararg variant of their signature
type_hint_vararg = sig_group.signature.signature_str_pyi_vararg(
skip_outputs=sig_group.outplace is None
)
if type_hint_vararg:
type_hints.append(type_hint_vararg)
return type_hints
def gen_nn_functional(fm: FileManager) -> None:
# Functions imported into `torch.nn.functional` from `torch`, perhaps being filtered
# through an `_add_docstr` call
imports = [
"conv1d",
"conv2d",
"conv3d",
"conv_transpose1d",
"conv_transpose2d",
"conv_transpose3d",
"conv_tbc",
"avg_pool1d",
"relu_",
"selu_",
"celu_",
"rrelu_",
"pixel_shuffle",
"pixel_unshuffle",
"channel_shuffle",
"native_channel_shuffle",
"pdist",
"cosine_similarity",
]
# Functions generated by `torch._jit_internal.boolean_dispatch`
dispatches = [
"fractional_max_pool2d",
"fractional_max_pool3d",
"max_pool1d",
"max_pool2d",
"max_pool3d",
"adaptive_max_pool1d",
"adaptive_max_pool2d",
"adaptive_max_pool3d",
]
# Functions directly imported from `torch._C`
from_c = [
"avg_pool2d",
"avg_pool3d",
"hardtanh_",
"elu_",
"leaky_relu_",
"logsigmoid",
"softplus",
"softshrink",
"one_hot",
]
import_code = ["from .. import {0} as {0}".format(_) for _ in imports]
# TODO make these types more precise
dispatch_code = ["{}: Callable".format(_) for _ in (dispatches + from_c)]
fm.write_with_template(
"torch/nn/functional.pyi",
"torch/nn/functional.pyi.in",
lambda: {
"imported_hints": import_code,
"dispatched_hints": dispatch_code,
},
)
# functional.pyi already contains the definitions for those functions
# so, we don't export then to it
from_c.extend(["hardtanh", "leaky_relu", "hardsigmoid"])
dispatch_code = ["{}: Callable".format(_) for _ in (dispatches + from_c)]
fm.write_with_template(
"torch/_C/_nn.pyi",
"torch/_C/_nn.pyi.in",
lambda: {
"imported_hints": import_code,
"dispatched_hints": dispatch_code,
},
)
def gen_pyi(
native_yaml_path: str,
tags_yaml_path: str,
deprecated_yaml_path: str,
fm: FileManager,
) -> None:
"""gen_pyi()
This function generates a pyi file for torch.
"""
# Some of this logic overlaps with generate_python_signature in
# tools/autograd/gen_python_functions.py; however, this
# function is all about generating mypy type signatures, whereas
# the other function generates are custom format for argument
# checking. If you are update this, consider if your change
# also needs to update the other file.
# Dictionary for NamedTuple definitions
namedtuples: Dict[str, str] = {}
# Generate type signatures for top-level functions
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
unsorted_function_hints: Dict[str, List[str]] = collections.defaultdict(list)
for n, n1, n2 in [
("csr", "crow", "col"),
("csc", "ccol", "row"),
("bsr", "crow", "col"),
("bsc", "ccol", "row"),
]:
unsorted_function_hints.update(
{
f"sparse_{n}_tensor": [
f"def sparse_{n}_tensor({n1}_indices: Union[Tensor, List],"
f"{n2}_indices: Union[Tensor, List],"
" values: Union[Tensor, List], size: Optional[_size]=None,"
" *, dtype: Optional[_dtype]=None,"
" device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ..."
],
f"_sparse_{n}_tensor_unsafe": [
f"def _sparse_{n}_tensor_unsafe({n1}_indices: Union[Tensor, List],"
f"{n2}_indices: Union[Tensor, List],"
" values: Union[Tensor, List], size: List[int],"
" dtype: Optional[_dtype] = None, device: Optional[_device] = None,"
" requires_grad: bool = False) -> Tensor: ..."
],
}
)
unsorted_function_hints.update(
{
"set_flush_denormal": ["def set_flush_denormal(mode: _bool) -> _bool: ..."],
"get_default_dtype": ["def get_default_dtype() -> _dtype: ..."],
"asarray": [
"def asarray(obj: Any, *, dtype: Optional[_dtype]=None, "
"device: Union[_device, str, None]=None, copy: Optional[_bool]=None, "
"requires_grad: _bool=False) -> Tensor: ..."
],
"from_numpy": ["def from_numpy(ndarray) -> Tensor: ..."],
"frombuffer": [
"def frombuffer(buffer: Any, *, dtype: _dtype, count: int=-1, "
"offset: int=0, device: Union[_device, str, None]=None, "
"requires_grad: _bool=False) -> Tensor: ..."
],
"numel": ["def numel(self: Tensor) -> _int: ..."],
"as_tensor": [
f"def as_tensor(data: Any, dtype: Optional[_dtype]=None, {DEVICE_PARAM}) -> Tensor: ..."
],
"get_num_threads": ["def get_num_threads() -> _int: ..."],
"set_num_threads": ["def set_num_threads(num: _int) -> None: ..."],
"init_num_threads": ["def init_num_threads() -> None: ..."],
"get_num_interop_threads": ["def get_num_interop_threads() -> _int: ..."],
"set_num_interop_threads": [
"def set_num_interop_threads(num: _int) -> None: ..."
],
# These functions are explicitly disabled by
# SKIP_PYTHON_BINDINGS because they are hand bound.
# Correspondingly, we must hand-write their signatures.
"tensor": [
"def tensor(data: Any, {}) -> Tensor: ...".format(FACTORY_PARAMS)
],
"sparse_coo_tensor": [
"def sparse_coo_tensor(indices: Tensor, values: Union[Tensor,List],"
" size: Optional[_size]=None, *, dtype: Optional[_dtype]=None,"
" device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ..."
],
"_sparse_coo_tensor_unsafe": [
"def _sparse_coo_tensor_unsafe(indices: Tensor, values: Tensor, size: List[int],"
" dtype: Optional[_dtype] = None, device: Optional[_device] = None,"
" requires_grad: bool = False) -> Tensor: ..."
],
"sparse_compressed_tensor": [
"def sparse_compressed_tensor(compressed_indices: Union[Tensor, List],"
"plain_indices: Union[Tensor, List],"
" values: Union[Tensor, List], size: Optional[_size]=None,"
" *, dtype: Optional[_dtype]=None, layout: Optional[_layout] = None,"
" device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ..."
],
"_sparse_compressed_tensor_unsafe": [
"def _sparse_compressed_tensor_unsafe(comp_indices: Union[Tensor, List],"
"plain_indices: Union[Tensor, List],"
" values: Union[Tensor, List], size: List[int],"
" dtype: Optional[_dtype] = None, layout: Optional[_layout] = None,"
" device: Optional[_device] = None,"
" requires_grad: bool = False) -> Tensor: ..."
],
"_sync": ["def _sync(t: Tensor) -> None: ..."],
"_is_functional_tensor": [
"def _is_functional_tensor(t: Tensor) -> _bool: ..."
],
"_from_functional_tensor": [
"def _from_functional_tensor(t: Tensor) -> Tensor: ..."
],
"_to_functional_tensor": [
"def _to_functional_tensor(t: Tensor) -> Tensor: ..."
],
"range": [
"def range(start: Number, end: Number,"
" step: Number=1, *, out: Optional[Tensor]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
)
],
"arange": [
"def arange(start: Number, end: Number, step: Number, *,"
" out: Optional[Tensor]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
),
"def arange(start: Number, end: Number, *, out: Optional[Tensor]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
),
"def arange(end: Number, *, out: Optional[Tensor]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
),
],
"linspace": [
"def linspace(start: Number, end: Number, steps: Optional[_int]=None, *,"
" out: Optional[Tensor]=None, {}) -> Tensor: ...".format(FACTORY_PARAMS)
],
"logspace": [
"def logspace(start: Number, end: Number, steps: Optional[_int]=None, base: _float=10.0, *,"
" out: Optional[Tensor]=None, {}) -> Tensor: ...".format(FACTORY_PARAMS)
],
"randint": [
"def randint(low: _int, high: _int, size: _size, *,"
" generator: Optional[Generator]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
),
"def randint(high: _int, size: _size, *,"
" generator: Optional[Generator]=None, {}) -> Tensor: ...".format(
FACTORY_PARAMS
),
],
"full": [
"def full(size: _size, fill_value: Number, *,"
" out: Optional[Tensor]=None,"
" layout: _layout=strided, {}) -> Tensor: ...".format(FACTORY_PARAMS),
"def full(size: _size, fill_value: Number, *,"
" names: List[Union[str, None]],"
" layout: _layout=strided, {}) -> Tensor: ...".format(FACTORY_PARAMS),
],
"is_grad_enabled": ["def is_grad_enabled() -> _bool: ..."],
"is_inference_mode_enabled": [
"def is_inference_mode_enabled() -> _bool: ..."
],
"nonzero": [
"def nonzero(input: Tensor, *, as_tuple: Literal[False]=False, out: Optional[Tensor]=None) -> Tensor: ...",
"def nonzero(input: Tensor, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...",
],
"binary_cross_entropy_with_logits": [
"def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, "
"weight: Optional[Tensor] = None, size_average: Optional[bool] = None, "
"reduce: Optional[bool] = None, reduction: str = ..., "
"pos_weight: Optional[Tensor] = None) -> Tensor: ..."
],
"cosine_embedding_loss": [
"def cosine_embedding_loss(input1: Tensor, input2: Tensor, "
"target: Tensor, margin: float = ..., size_average: Optional[bool] = ..., "
"reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ..."
],
"ctc_loss": [
"def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor,"
" blank: int = ..., reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ..."
],
"hinge_embedding_loss": [
"def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ...,"
" size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., "
"reduction: str = ...) -> Tensor: ..."
],
"kl_div": [
"def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., "
"reduce: Optional[bool] = ..., reduction: str = ..., log_target: bool = ...) -> Tensor: ..."
],
"margin_ranking_loss": [
"def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor,"
" margin: float = ..., size_average: Optional[bool] = ..., "
" reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ..."
],
"triplet_margin_loss": [
"def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, "
"margin: float = ..., p: float = ..., eps: float = ..., swap: bool = ..., "
"size_average: Optional[bool] = ..., "
"reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ..."
],
"dsmm": ["def dsmm(input: Tensor, mat2: Tensor) -> Tensor: ..."],
"hsmm": ["def hsmm(input: Tensor, mat2: Tensor) -> Tensor: ..."],
"saddmm": [
"def saddmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, "
"alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ..."
],
"spmm": ["def spmm(input: Tensor, mat2: Tensor) -> Tensor: ..."],
"div": [
"def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, "
"rounding_mode: Optional[str] = None, out: Optional[Tensor]=None) -> Tensor: ..."
],
}
)
for binop in ["mul", "true_divide", "floor_divide"]:
unsorted_function_hints[binop].append(
"def {}(input: Union[Tensor, Number],"
" other: Union[Tensor, Number],"
" *, out: Optional[Tensor]=None) -> Tensor: ...".format(binop)
)
for binop in ["add", "sub"]:
unsorted_function_hints[binop].append(
"def {}(input: Union[Tensor, Number],"
" other: Union[Tensor, Number],"
" *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...".format(
binop
)
)
native_functions = parse_native_yaml(
native_yaml_path, tags_yaml_path
).native_functions
native_functions = list(filter(should_generate_py_binding, native_functions))
function_signatures = load_signatures(
native_functions, deprecated_yaml_path, method=False, pyi=True
)
sig_groups = get_py_torch_functions(function_signatures)
for group in sorted(sig_groups, key=lambda g: g.signature.name):
name = group.signature.name
unsorted_function_hints[name] += generate_type_hints(group)
named_tuple = returns_named_tuple_pyi(group.signature)
if named_tuple is not None and not group.signature.deprecated:
# deprecated namedtuples are currently not included for torch functions
tuple_name, tuple_def = named_tuple
if tuple_name in namedtuples:
assert namedtuples[tuple_name] == tuple_def
else:
namedtuples[tuple_name] = tuple_def
function_hints = []
for name, hints in sorted(unsorted_function_hints.items()):
if len(hints) > 1:
hints = ["@overload\n" + h for h in hints]
function_hints += hints
# Generate type signatures for Tensor methods
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
unsorted_tensor_method_hints: Dict[str, List[str]] = collections.defaultdict(list)
unsorted_tensor_method_hints.update(
{
"size": [
"def size(self) -> Size: ...",
"def size(self, dim: _int) -> _int: ...",
],
"stride": [
"def stride(self) -> Tuple[_int]: ...",
"def stride(self, _int) -> _int: ...",
],
"new_ones": [
"def new_ones(self, size: _size, {}) -> Tensor: ...".format(
FACTORY_PARAMS
)
],
"new_tensor": [
"def new_tensor(self, data: Any, {}) -> Tensor: ...".format(
FACTORY_PARAMS
)
],
# new and __init__ have the same signatures differ only in return type
# Adapted from legacy_tensor_ctor and legacy_tensor_new
"new": [
"def new(self, *args: Any, {}) ->Tensor: ...".format(DEVICE_PARAM),
"def new(self, storage: Storage) -> Tensor: ...",
"def new(self, other: Tensor) -> Tensor: ...",
"def new(self, size: _size, *, {}) -> Tensor: ...".format(DEVICE_PARAM),
],
"__init__": [
"def __init__(self, *args: Any, {}) -> None: ...".format(DEVICE_PARAM),
"def __init__(self, storage: Storage) -> None: ...",
"def __init__(self, other: Tensor) -> None: ...",
"def __init__(self, size: _size, *, {}) -> None: ...".format(
DEVICE_PARAM
),
],
"as_subclass": ["def as_subclass(self, cls: Type[S]) -> S: ..."],
"_make_subclass": [
"def _make_subclass(cls, data: Tensor, require_grad: _bool = False, dispatch_strides: _bool=False,"
" dispatch_device: _bool=False, device_for_backend_keys: Optional[_device] = None) -> Tensor: ..."
],
"__getitem__": ["def __getitem__(self, {}) -> Tensor: ...".format(INDICES)],
"__setitem__": [
"def __setitem__(self, {}, val: Union[Tensor, Number])"
" -> None: ...".format(INDICES)
],
"tolist": ["def tolist(self) -> List: ..."],
"requires_grad_": [
"def requires_grad_(self, mode: _bool=True) -> Tensor: ..."
],
"element_size": ["def element_size(self) -> _int: ..."],
"data_ptr": ["def data_ptr(self) -> _int: ..."],
"dim": ["def dim(self) -> _int: ..."],
"nonzero": [
"def nonzero(self, *, as_tuple: Literal[False]=False) -> Tensor: ...",
"def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...",
],
"numel": ["def numel(self) -> _int: ..."],
"ndimension": ["def ndimension(self) -> _int: ..."],
"nelement": ["def nelement(self) -> _int: ..."],
"cuda": [
"def cuda(self, device: Optional[Union[_device, _int, str]]=None, non_blocking: _bool=False) -> Tensor: ..."
],
"numpy": ["def numpy(self, *, force: _bool=False) -> Any: ..."],
"apply_": ["def apply_(self, callable: Callable) -> Tensor: ..."],
"map_": [
"def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ..."
],
"map2_": [
"def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ..."
],
"storage": ["def _storage(self) -> Storage: ..."],
"storage_type": ["def storage_type(self) -> Storage: ..."],
"type": [
"def type(self, dtype: None=None, non_blocking: _bool=False) -> str: ...",
"def type(self, dtype: Union[str, _dtype], non_blocking: _bool=False) -> Tensor: ...",
],
"get_device": ["def get_device(self) -> _int: ..."],
"contiguous": [
"def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ..."
],
"has_names": ["def has_names(self) -> _bool: ..."],
"is_contiguous": [
"def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: ..."
],
"_is_view": ["def _is_view(self) -> _bool: ..."],
"is_cuda": ["is_cuda: _bool"],
"is_leaf": ["is_leaf: _bool"],
"is_nested": ["is_nested: _bool"],
"is_sparse": ["is_sparse: _bool"],
"is_sparse_csr": ["is_sparse_csr: _bool"],
"is_quantized": ["is_quantized: _bool"],
"is_meta": ["is_meta: _bool"],
"is_mps": ["is_mps: _bool"],
"is_ort": ["is_ort: _bool"],
"is_mkldnn": ["is_mkldnn: _bool"],
"is_vulkan": ["is_vulkan: _bool"],
"is_ipu": ["is_ipu: _bool"],
"storage_offset": ["def storage_offset(self) -> _int: ..."],
"to": [
"def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...",
"def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, "
"non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...",
"def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...",
],
"item": ["def item(self) -> Number: ..."],
"copy_": [
"def copy_(self, src: Tensor, non_blocking: _bool=False) -> Tensor: ..."
],
"set_": [
"def set_(self, storage: Union[Storage, TypedStorage], offset: _int, size: _size, stride: _size) -> Tensor: ...",
"def set_(self, storage: Union[Storage, TypedStorage]) -> Tensor: ...",
],
"split": [
"def split(self, split_size: _int, dim: _int=0) -> Sequence[Tensor]: ...",
"def split(self, split_size: Tuple[_int, ...], dim: _int=0) -> Sequence[Tensor]: ...",
],
"div": [
"def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ..."
],
"div_": [
"def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ..."
],
}
)
for binop in ["mul", "true_divide", "floor_divide"]:
for inplace in [False, True]:
out_suffix = ", *, out: Optional[Tensor]=None"
if inplace:
binop += "_"
out_suffix = ""
unsorted_tensor_method_hints[binop].append(
"def {}(self, other: Union[Tensor, Number, torch.SymIntNode, torch.SymFloatNode]{})"
" -> Tensor: ...".format(binop, out_suffix)
)
for binop in ["add", "sub"]:
for inplace in [False, True]:
out_suffix = ", out: Optional[Tensor]=None"
if inplace:
binop += "_"
out_suffix = ""
unsorted_tensor_method_hints[binop].append(
"def {}(self, other: Union[Tensor, Number, torch.SymIntNode, torch.SymFloatNode], "
"*, alpha: Optional[Number]=1{})"
" -> Tensor: ...".format(binop, out_suffix)
)
simple_conversions = [
"byte",
"char",
"cpu",
"double",
"float",
"half",
"int",
"long",
"short",
"bool",
"bfloat16",
]
for name in simple_conversions:
unsorted_tensor_method_hints[name].append(
"def {}(self) -> Tensor: ...".format(name)
)
# pyi tensor methods don't currently include deprecated signatures for some reason
# TODO: we should probably add them in
tensor_method_signatures = load_signatures(
native_functions,
deprecated_yaml_path,
method=True,
skip_deprecated=True,
pyi=True,
)
tensor_method_sig_groups = get_py_torch_functions(
tensor_method_signatures, method=True
)
for group in sorted(tensor_method_sig_groups, key=lambda g: g.signature.name):
name = group.signature.name
unsorted_tensor_method_hints[name] += generate_type_hints(group)
named_tuple = returns_named_tuple_pyi(group.signature)
if named_tuple is not None and not group.signature.deprecated:
# deprecated namedtuples are currently not included for torch functions
tuple_name, tuple_def = named_tuple
if tuple_name in namedtuples:
assert namedtuples[tuple_name] == tuple_def
else:
namedtuples[tuple_name] = tuple_def
for op in all_ops:
name = "__{}__".format(op)
unsorted_tensor_method_hints[name] += sig_for_ops(name)
tensor_method_hints = []
for name, hints in sorted(unsorted_tensor_method_hints.items()):
if len(hints) > 1:
hints = ["@overload\n" + h for h in hints]
tensor_method_hints += hints
# TODO: Missing type hints for nn
# Generate namedtuple definitions
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
namedtuple_defs = [
"{} = {}".format(name, defn) for name, defn in namedtuples.items()
]
# Generate type signatures for legacy classes
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
legacy_storage_base_hints = ["class StorageBase(object): ..."]
legacy_class_hints = []
for c in (
"DoubleTensor",
"FloatTensor",
"LongTensor",
"IntTensor",
"ShortTensor",
"HalfTensor",
"CharTensor",
"ByteTensor",
"BoolTensor",
):
legacy_class_hints.append("class {}(Tensor): ...".format(c))
# Generate type signatures for dtype classes
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# TODO: don't explicitly list dtypes here; get it from canonical
# source
dtype_class_hints = [
"{}: dtype = ...".format(n)
for n in [
"float32",
"float",
"float64",
"double",
"float16",
"bfloat16",
"half",
"uint8",
"int8",
"int16",
"short",
"int32",
"int",
"int64",
"long",
"complex32",
"complex64",
"cfloat",
"complex128",
"cdouble",
"quint8",
"qint8",
"qint32",
"bool",
"quint4x2",
"quint2x4",
]
]
# Generate __all__ directive
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Include only the functions that contain hints, to prevent undefined
# symbols to be included in the `__all__` directive.
hinted_function_names = [
name for name, hint in unsorted_function_hints.items() if hint
]
all_symbols = sorted(list(namedtuples.keys()) + hinted_function_names)
all_directive = pformat(all_symbols, width=100, compact=True).split("\n")
all_directive[0] = "__all__ = {}".format(all_directive[0])
# Dispatch key hints
# ~~~~~~~~~~~~~~~~~~
dispatch_key_hints = [f"{d.name}: DispatchKey = ..." for d in DispatchKey]
# Write out the stub
# ~~~~~~~~~~~~~~~~~~
env = {
"namedtuple_defs": namedtuple_defs,
"function_hints": function_hints,
"tensor_method_hints": tensor_method_hints,
"legacy_class_hints": legacy_class_hints,
"legacy_storage_base_hints": legacy_storage_base_hints,
"dtype_class_hints": dtype_class_hints,
"dispatch_key_hints": dispatch_key_hints,
"all_directive": all_directive,
}
fm.write_with_template(
"torch/_C/__init__.pyi",
"torch/_C/__init__.pyi.in",
lambda: {
"generated_comment": "@" + "generated from torch/_C/__init__.pyi.in",
**env,
},
)
fm.write_with_template(
"torch/_C/_VariableFunctions.pyi",
"torch/_C/_VariableFunctions.pyi.in",
lambda: {
"generated_comment": "@"
+ "generated from torch/_C/_VariableFunctions.pyi.in",
**env,
},
)
fm.write_with_template(
"torch/_VF.pyi",
"torch/_C/_VariableFunctions.pyi.in",
lambda: {
"generated_comment": "@"
+ "generated from torch/_C/_VariableFunctions.pyi.in",
**env,
},
)
fm.write_with_template(
"torch/return_types.pyi",
"torch/_C/return_types.pyi.in",
lambda: {
"generated_comment": "@" + "generated from torch/_C/return_types.pyi",
**env,
},
)
gen_nn_functional(fm)
def main() -> None:
parser = argparse.ArgumentParser(description="Generate type stubs for PyTorch")
parser.add_argument(
"--native-functions-path",
metavar="NATIVE",
default="aten/src/ATen/native/native_functions.yaml",
help="path to native_functions.yaml",
)
parser.add_argument(
"--tags-path",
metavar="TAGS",
default="aten/src/ATen/native/tags.yaml",
help="path to tags.yaml",
)
parser.add_argument(
"--deprecated-functions-path",
metavar="DEPRECATED",
default="tools/autograd/deprecated.yaml",
help="path to deprecated.yaml",
)
parser.add_argument(
"--out", metavar="OUT", default=".", help="path to output directory"
)
args = parser.parse_args()
fm = FileManager(install_dir=args.out, template_dir=".", dry_run=False)
gen_pyi(
args.native_functions_path, args.tags_path, args.deprecated_functions_path, fm
)
if __name__ == "__main__":
main()
|