1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
import argparse
import os
import pathlib
import sys
from typing import Any, cast, Optional
import yaml
try:
# use faster C loader if available
from yaml import CSafeLoader as YamlLoader
except ImportError:
from yaml import SafeLoader as YamlLoader # type: ignore[misc]
NATIVE_FUNCTIONS_PATH = "aten/src/ATen/native/native_functions.yaml"
TAGS_PATH = "aten/src/ATen/native/tags.yaml"
def generate_code(
gen_dir: pathlib.Path,
native_functions_path: Optional[str] = None,
tags_path: Optional[str] = None,
install_dir: Optional[str] = None,
subset: Optional[str] = None,
disable_autograd: bool = False,
force_schema_registration: bool = False,
operator_selector: Any = None,
) -> None:
from torchgen.selective_build.selector import SelectiveBuilder
from tools.autograd.gen_annotated_fn_args import gen_annotated
from tools.autograd.gen_autograd import gen_autograd, gen_autograd_python
# Build ATen based Variable classes
if install_dir is None:
install_dir = os.fspath(gen_dir / "torch/csrc")
python_install_dir = os.fspath(gen_dir / "torch/testing/_internal/generated")
else:
python_install_dir = install_dir
autograd_gen_dir = os.path.join(install_dir, "autograd", "generated")
for d in (autograd_gen_dir, python_install_dir):
os.makedirs(d, exist_ok=True)
autograd_dir = os.fspath(pathlib.Path(__file__).parent.parent / "autograd")
if subset == "pybindings" or not subset:
gen_autograd_python(
native_functions_path or NATIVE_FUNCTIONS_PATH,
tags_path or TAGS_PATH,
autograd_gen_dir,
autograd_dir,
)
if operator_selector is None:
operator_selector = SelectiveBuilder.get_nop_selector()
if subset == "libtorch" or not subset:
gen_autograd(
native_functions_path or NATIVE_FUNCTIONS_PATH,
tags_path or TAGS_PATH,
autograd_gen_dir,
autograd_dir,
disable_autograd=disable_autograd,
operator_selector=operator_selector,
)
if subset == "python" or not subset:
gen_annotated(
native_functions_path or NATIVE_FUNCTIONS_PATH,
tags_path or TAGS_PATH,
python_install_dir,
autograd_dir,
)
def get_selector_from_legacy_operator_selection_list(
selected_op_list_path: str,
) -> Any:
with open(selected_op_list_path, "r") as f:
# strip out the overload part
# It's only for legacy config - do NOT copy this code!
selected_op_list = {
opname.split(".", 1)[0] for opname in yaml.load(f, Loader=YamlLoader)
}
# Internal build doesn't use this flag any more. Only used by OSS
# build now. Every operator should be considered a root operator
# (hence generating unboxing code for it, which is consistent with
# the current behaviour), and also be considered as used for
# training, since OSS doesn't support training on mobile for now.
#
is_root_operator = True
is_used_for_training = True
from torchgen.selective_build.selector import SelectiveBuilder
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
selected_op_list,
is_root_operator,
is_used_for_training,
)
return selector
def get_selector(
selected_op_list_path: Optional[str],
operators_yaml_path: Optional[str],
) -> Any:
# cwrap depends on pyyaml, so we can't import it earlier
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, root)
from torchgen.selective_build.selector import SelectiveBuilder
assert not (
selected_op_list_path is not None and operators_yaml_path is not None
), (
"Expected at most one of selected_op_list_path and "
+ "operators_yaml_path to be set."
)
if selected_op_list_path is None and operators_yaml_path is None:
return SelectiveBuilder.get_nop_selector()
elif selected_op_list_path is not None:
return get_selector_from_legacy_operator_selection_list(selected_op_list_path)
else:
return SelectiveBuilder.from_yaml_path(cast(str, operators_yaml_path))
def main() -> None:
parser = argparse.ArgumentParser(description="Autogenerate code")
parser.add_argument("--native-functions-path")
parser.add_argument("--tags-path")
parser.add_argument(
"--gen-dir",
type=pathlib.Path,
default=pathlib.Path("."),
help="Root directory where to install files. Defaults to the current working directory.",
)
parser.add_argument(
"--install_dir",
help=(
"Deprecated. Use --gen-dir instead. The semantics are different, do not change "
"blindly."
),
)
parser.add_argument(
"--subset",
help='Subset of source files to generate. Can be "libtorch" or "pybindings". Generates both when omitted.',
)
parser.add_argument(
"--disable-autograd",
default=False,
action="store_true",
help="It can skip generating autograd related code when the flag is set",
)
parser.add_argument(
"--selected-op-list-path",
help="Path to the YAML file that contains the list of operators to include for custom build.",
)
parser.add_argument(
"--operators_yaml_path",
help="Path to the model YAML file that contains the list of operators to include for custom build.",
)
parser.add_argument(
"--force_schema_registration",
action="store_true",
help="force it to generate schema-only registrations for ops that are not"
"listed on --selected-op-list",
)
parser.add_argument(
"--gen_lazy_ts_backend",
action="store_true",
help="Enable generation of the torch::lazy TorchScript backend",
)
parser.add_argument(
"--per_operator_headers",
action="store_true",
help="Build lazy tensor ts backend with per-operator ATen headers, must match how ATen was built",
)
options = parser.parse_args()
generate_code(
options.gen_dir,
options.native_functions_path,
options.tags_path,
options.install_dir,
options.subset,
options.disable_autograd,
options.force_schema_registration,
# options.selected_op_list
operator_selector=get_selector(
options.selected_op_list_path, options.operators_yaml_path
),
)
if options.gen_lazy_ts_backend:
aten_path = os.path.dirname(os.path.dirname(options.native_functions_path))
ts_backend_yaml = os.path.join(aten_path, "native/ts_native_functions.yaml")
ts_native_functions = "torch/csrc/lazy/ts_backend/ts_native_functions.cpp"
ts_node_base = "torch/csrc/lazy/ts_backend/ts_node.h"
install_dir = options.install_dir or os.fspath(options.gen_dir / "torch/csrc")
lazy_install_dir = os.path.join(install_dir, "lazy/generated")
os.makedirs(lazy_install_dir, exist_ok=True)
assert os.path.isfile(
ts_backend_yaml
), f"Unable to access ts_backend_yaml: {ts_backend_yaml}"
assert os.path.isfile(
ts_native_functions
), f"Unable to access {ts_native_functions}"
from torchgen.dest.lazy_ir import GenTSLazyIR
from torchgen.gen_lazy_tensor import run_gen_lazy_tensor
run_gen_lazy_tensor(
aten_path=aten_path,
source_yaml=ts_backend_yaml,
backend_name="TorchScript",
output_dir=lazy_install_dir,
dry_run=False,
impl_path=ts_native_functions,
node_base="TsNode",
node_base_hdr=ts_node_base,
build_in_tree=True,
lazy_ir_generator=GenTSLazyIR,
per_operator_headers=options.per_operator_headers,
gen_forced_fallback_code=True,
)
if __name__ == "__main__":
main()
|