1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
import dataclasses
import typing
import unittest
from collections import defaultdict
from typing import Dict, List
import torchgen.model
import yaml
from tools.autograd import gen_autograd_functions, load_derivatives
from torchgen.api.types import CppSignatureGroup, DispatcherSignature
from torchgen.context import native_function_manager
from torchgen.gen import (
get_native_function_declarations,
get_native_function_schema_registrations,
LineLoader,
static_dispatch,
)
from torchgen.model import (
BackendIndex,
BackendMetadata,
DispatchKey,
Location,
NativeFunction,
OperatorName,
)
from torchgen.native_function_generation import add_generated_native_functions
from torchgen.selective_build.selector import SelectiveBuilder
class TestCreateDerivative(unittest.TestCase):
def test_named_grads(self) -> None:
schema = torchgen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grad_x, grad_y)",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, {"grad_x", "grad_y"})
def test_non_differentiable_output(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {"Default": {"a": "grads[0]", "b": "grads[2]"}},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
self.assertSequenceEqual(
differentiability_info["Default"].available_named_gradients,
# grad_y is not present because y is a
# bool and thus not differentiable.
["grad_x", "grad_z"],
)
def test_indexed_grads(self) -> None:
schema = torchgen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grads[0], grads[1])",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, set())
def test_named_grads_and_indexed_grads(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
with self.assertRaisesRegex(
RuntimeError, 'illegally mixes use of "grad_RETURN_NAME"'
):
load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
# Uh-oh, the derivatives reference gradients by
# name and by index.
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grads[1]",
}
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
class TestGenAutogradFunctions(unittest.TestCase):
def test_non_differentiable_output_invalid_type(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
}
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
definition = gen_autograd_functions.process_function(
differentiability_info["Default"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in definition
assert "grad_z = grads[1]" in definition
def test_non_differentiable_output_output_differentiability(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
},
"AutogradNestedTensor": {
"a": "grad_z",
"b": "grad_x",
},
},
"output_differentiability": [True, False, True],
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
default_definition = gen_autograd_functions.process_function(
differentiability_info["Default"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in default_definition
assert "grad_z = grads[1]" in default_definition
nested_tensor_definition = gen_autograd_functions.process_function(
differentiability_info["AutogradNestedTensor"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
assert "grad_z = grads[2]" not in nested_tensor_definition
assert "grad_z = grads[1]" in nested_tensor_definition
def test_register_bogus_dispatch_key(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
with self.assertRaisesRegex(
RuntimeError,
"Invalid dispatch key AutogradRandomTensor in derivatives.yaml for",
):
load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
},
"AutogradRandomTensor": {
"a": "grad_x",
"b": "grad_z",
},
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
class TestGenSchemaRegistration(unittest.TestCase):
def setUp(self) -> None:
self.selector = SelectiveBuilder.get_nop_selector()
self.custom_native_function, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "custom::func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
def test_default_namespace_schema_registration_code_valid(self) -> None:
native_functions = [DEFAULT_NATIVE_FUNCTION]
registrations, _ = get_native_function_schema_registrations(
native_functions=native_functions,
schema_selector=self.selector,
)
self.assertEqual(registrations, ['m.def("func() -> bool", {});\n'])
def test_custom_namespace_schema_registration_code_valid(self) -> None:
_, registrations = get_native_function_schema_registrations(
native_functions=[self.custom_native_function],
schema_selector=self.selector,
)
self.assertEqual(
registrations,
"""
TORCH_LIBRARY(custom, m) {
m.def("func() -> bool", {});
};""",
)
def test_mixed_namespace_schema_registration_code_valid(self) -> None:
(
aten_registrations,
custom_registrations,
) = get_native_function_schema_registrations(
native_functions=[DEFAULT_NATIVE_FUNCTION, self.custom_native_function],
schema_selector=self.selector,
)
self.assertEqual(aten_registrations, ['m.def("func() -> bool", {});\n'])
self.assertEqual(
custom_registrations,
"""
TORCH_LIBRARY(custom, m) {
m.def("func() -> bool", {});
};""",
)
def test_3_namespaces_schema_registration_code_valid(self) -> None:
custom2_native_function, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "custom2::func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
(
aten_registrations,
custom_registrations,
) = get_native_function_schema_registrations(
native_functions=[
DEFAULT_NATIVE_FUNCTION,
self.custom_native_function,
custom2_native_function,
],
schema_selector=self.selector,
)
self.assertEqual(aten_registrations, ['m.def("func() -> bool", {});\n'])
self.assertEqual(
custom_registrations,
"""
TORCH_LIBRARY(custom, m) {
m.def("func() -> bool", {});
};
TORCH_LIBRARY(custom2, m) {
m.def("func() -> bool", {});
};""",
)
class TestGenNativeFunctionDeclaration(unittest.TestCase):
def setUp(self) -> None:
self.op_1_native_function, op_1_backend_index = NativeFunction.from_yaml(
{"func": "op_1() -> bool", "dispatch": {"CPU": "kernel_1"}},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
self.op_2_native_function, op_2_backend_index = NativeFunction.from_yaml(
{
"func": "op_2() -> bool",
"dispatch": {"CPU": "kernel_2", "QuantizedCPU": "custom::kernel_3"},
},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] = {
DispatchKey.CPU: {},
DispatchKey.QuantizedCPU: {},
}
BackendIndex.grow_index(backend_indices, op_1_backend_index)
BackendIndex.grow_index(backend_indices, op_2_backend_index)
self.backend_indices = {
k: BackendIndex(
dispatch_key=k,
use_out_as_primary=True,
external=False,
device_guard=False,
index=backend_indices[k],
)
for k in backend_indices
}
def test_native_function_declaration_1_op_2_ns_error(self) -> None:
with self.assertRaises(AssertionError):
get_native_function_declarations(
grouped_native_functions=[
self.op_1_native_function,
self.op_2_native_function,
],
backend_indices=self.backend_indices,
)
def test_native_function_declaration_1_op_1_ns_valid(self) -> None:
self.assertIsInstance(self.op_1_native_function, NativeFunction)
declaration = get_native_function_declarations(
grouped_native_functions=[
self.op_1_native_function,
],
backend_indices=self.backend_indices,
)
target = """
namespace at {
namespace native {
TORCH_API bool kernel_1();
} // namespace native
} // namespace at
"""
self.assertEqual("\n".join(declaration), target)
# Test for native_function_generation
class TestNativeFunctionGeneratrion(unittest.TestCase):
def setUp(self) -> None:
self.native_functions: List[NativeFunction] = []
self.backend_indices: Dict[
DispatchKey, Dict[OperatorName, BackendMetadata]
] = defaultdict(dict)
yaml_entry = """
- func: op(Tensor self) -> Tensor
dispatch:
CompositeExplicitAutograd: op
autogen: op.out
"""
es = yaml.load(yaml_entry, Loader=LineLoader)
self.one_return_func, m = NativeFunction.from_yaml(
es[0], loc=Location(__file__, 1), valid_tags=set()
)
BackendIndex.grow_index(self.backend_indices, m)
self.two_returns_func, two_returns_backend_index = NativeFunction.from_yaml(
{
"func": "op_2() -> (Tensor, Tensor)",
"dispatch": {"CPU": "kernel_1"},
"autogen": "op_2.out",
},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
BackendIndex.grow_index(self.backend_indices, two_returns_backend_index)
def test_functional_variant_autogen_out_variant(self) -> None:
native_functions = [self.one_return_func]
add_generated_native_functions(native_functions, self.backend_indices)
self.assertEqual(len(native_functions), 2)
self.assertEqual(
str(native_functions[1].func),
"op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)",
)
op_name = native_functions[1].func.name
backend_metadata = self.backend_indices[DispatchKey.CompositeExplicitAutograd][
op_name
]
self.assertEqual(backend_metadata.kernel, "op_out")
def test_functional_variant_autogen_out_variant_two_returns(self) -> None:
native_functions = [self.two_returns_func]
add_generated_native_functions(native_functions, self.backend_indices)
self.assertEqual(len(native_functions), 2)
self.assertEqual(
str(native_functions[1].func),
"op_2.out(*, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))",
)
op_name = native_functions[1].func.name
backend_metadata = self.backend_indices[DispatchKey.CompositeExplicitAutograd][
op_name
]
self.assertEqual(backend_metadata.kernel, "op_2_out")
# Test for static_dispatch
class TestStaticDispatchGeneratrion(unittest.TestCase):
def setUp(self) -> None:
self.backend_indices: Dict[
DispatchKey, Dict[OperatorName, BackendMetadata]
] = defaultdict(dict)
yaml_entry = """
- func: op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
CompositeExplicitAutograd: op
"""
es = yaml.load(yaml_entry, Loader=LineLoader)
self.one_return_func, m = NativeFunction.from_yaml(
es[0], loc=Location(__file__, 1), valid_tags=set()
)
BackendIndex.grow_index(self.backend_indices, m)
dispatch_key = DispatchKey.CompositeExplicitAutograd
self.assertTrue(dispatch_key in self.backend_indices)
self.indices = [
BackendIndex(
dispatch_key=dispatch_key,
use_out_as_primary=True,
external=False,
device_guard=False,
index=self.backend_indices[dispatch_key],
)
]
def test_op_with_1_backend_generates_static_dispatch(self) -> None:
disp_sig = DispatcherSignature.from_schema(self.one_return_func.func)
with native_function_manager(self.one_return_func):
out = static_dispatch(
sig=disp_sig,
f=self.one_return_func,
backend_indices=self.indices,
)
self.assertEqual(
out, "return at::compositeexplicitautograd::op_out(out, self);"
)
def test_op_with_cpp_sig_generates_static_dispatch(self) -> None:
sig_group = CppSignatureGroup.from_native_function(
self.one_return_func,
method=False,
fallback_binding=self.one_return_func.manual_cpp_binding,
)
# cpp signature puts out at the front
with native_function_manager(self.one_return_func):
out = static_dispatch(
sig=sig_group.signature,
f=self.one_return_func,
backend_indices=self.indices,
)
self.assertEqual(
out, "return at::compositeexplicitautograd::op_out(out, self);"
)
# Represents the most basic NativeFunction. Use dataclasses.replace()
# to edit for use.
DEFAULT_NATIVE_FUNCTION, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
if __name__ == "__main__":
unittest.main()
|