File: __init__.pyi.in

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1486 lines) | stat: -rw-r--r-- 60,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
# ${generated_comment}

import torch
from torch.package import PackageExporter
from torch import Tensor
from enum import Enum
from pathlib import Path
from typing import (
    Any, BinaryIO, Callable, ContextManager, Dict, Iterable, Iterator, List,
    NamedTuple, Optional, overload, Sequence, Tuple, TypeVar, Type, Union,
    Generic, Set, AnyStr)
from typing_extensions import Literal
from torch._six import inf

from torch.types import (
    _int, _float, _bool, _dtype, _device, _qscheme, _size, _layout, Device, Number, Storage, SymInt, _dispatchkey
)
from torch.storage import TypedStorage

import builtins

# This module is defined in torch/csrc/Module.cpp

from . import _nn as _nn
from . import _onnx as _onnx
from . import _VariableFunctions as _VariableFunctions
from . import _functorch as _functorch
from . import _lazy as _lazy
from . import _lazy_ts_backend as _lazy_ts_backend

T = TypeVar('T')
S = TypeVar("S", bound="torch.Tensor")

# Defined in torch/csrc/Device.cpp
class device:
    type: str  # THPDevice_type
    index: _int  # THPDevice_index

    def __get__(self, instance, owner=None) -> device: ...

    # THPDevice_pynew
    @overload
    def __init__(self, device: Union[_device, _int, str]) -> None: ...

    @overload
    def __init__(self, type: str, index: _int) -> None: ...

    def __reduce__(self) -> Tuple[Any, ...]: ...  # THPDevice_reduce

# Defined in torch/csrc/Stream.cpp
class Stream:
    _cdata: _int  # Stream handle
    device: device # The device of the stream

    ...

# Defined in torch/csrc/Size.cpp
class Size(Tuple[_int, ...]):
    # TODO: __reduce__

    @overload  # type: ignore[override]
    def __getitem__(self: Size, key: _int) -> _int: ...

    @overload
    def __getitem__(self: Size, key: slice) -> Size: ...

    def numel(self: Size) -> _int: ...

    ...

# Defined in torch/csrc/Dtype.cpp
class dtype:
    # TODO: __reduce__
    is_floating_point: _bool
    is_complex: _bool
    is_signed: _bool
    ...

# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
    bits: _int
    min: _int
    max: _int
    dtype: str

    def __init__(self, dtype: _dtype) -> None: ...

class finfo:
    bits: _int
    min: _float
    max: _float
    eps: _float
    tiny: _float
    smallest_normal: _float
    resolution: _float
    dtype: str

    @overload
    def __init__(self, dtype: _dtype) -> None: ...

    @overload
    def __init__(self) -> None: ...

${dtype_class_hints}

# Defined in torch/csrc/Layout.cpp
class layout:
    ...

# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...

# Defined in torch/csrc/utils/tensor_layouts.cpp
strided : layout = ...
sparse_coo : layout = ...
sparse_csr : layout = ...
sparse_csc : layout = ...
sparse_bsr : layout = ...
sparse_bsc : layout = ...
_mkldnn : layout = ...

# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...

# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...

# Defined in torch/csrc/QScheme.cpp
class qscheme: ...

# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...

# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase(object):
    ...

# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(object):
    def __init__(
        self,
        data: Optional[Tensor]=...,
        requires_grad: Optional[_bool]=...,
        volatile: Optional[_bool]=...,
        _grad_fn: Optional[_FunctionBase]=...
    ) -> None: ...

# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...

class JITException: ...

class Future(object):
  def __init__(self, devices: List[device]) -> None: ...
  def done(self) -> _bool: ...
  def value(self) -> Any: ...
  def wait(self) -> Any: ...
  def add_done_callback(self, callback: Callable) -> None: ...
  def then(self, callback: Callable) -> Future: ...
  def set_result(self, result: Any) -> None: ...
  def _set_unwrap_func(self, callback: Callable) -> None: ...

def _jit_set_num_profiled_runs(num: _size) -> _size: ...

class SymIntNode(object):
    def get_pyobj(self) -> Any: ...

    @staticmethod
    def new_symint(obj) -> SymIntNode: ...

class SymFloatNode(object):
    def get_pyobj(self) -> Any: ...

    @staticmethod
    def new_symfloat(obj) -> SymFloatNode: ...

# Defined in torch/csrc/jit/passes/xnnpack_rewrite.h
class MobileOptimizerType:
    ...

CONV_BN_FUSION: MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: MobileOptimizerType
REMOVE_DROPOUT: MobileOptimizerType
FUSE_ADD_RELU: MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: MobileOptimizerType

def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _collect_all(futures: List[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...

def unify_type_list(types: List[JitType]) -> JitType: ...
def _freeze_module(module: ScriptModule,
                   preserved_attrs: List[str] = [],
                   freeze_interfaces: _bool = True,
                   preserveParameters: _bool = True) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(module: 'torch.jit.ScriptModule',
                                     other_methods: List[str] = []) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph:Graph): ...
def _jit_pass_remove_dropout(module: 'torch.jit.ScriptModule'): ...

def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
def _get_operation_overload(op_name: str, op_overload_name: str) -> Tuple[Callable, Callable, List[Any]]: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                  optimization_blocklist: Set[MobileOptimizerType],
                                  preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _clone_module_with_class(module: 'torch.jit.ScriptModule',
                             ignored_methods: List[AnyStr],
                             ignored_attributes: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_vulkan_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                         preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_metal_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                         preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name :str) -> List[FunctionSchema]: ...
def _jit_get_all_schemas() -> List[FunctionSchema]: ...
def _jit_check_alias_annotation(g: Graph, args: Tuple[Any, ...], unqualified_op_name: str): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: 'torch.jit.ScriptModule'): ...
def _jit_pass_insert_observers(module: 'torch.jit.ScriptModule',
                               method_name: str,
                               qconfig_dict: Dict[str, Any],
                               inplace: _bool,
                               quant_type: _int): ...
def _jit_pass_insert_quant_dequant(module: 'torch.jit.ScriptModule',
                                   method_name: str,
                                   inplace: _bool,
                                   debug: _bool,
                                   quant_type: _int): ...
def _jit_pass_insert_quant_dequant_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
                                   method_name: str,
                                   inplace: _bool,
                                   debug: _bool,
                                   quant_type: _int): ...
def _jit_pass_quant_finalize(module: 'torch.jit.ScriptModule',
                             quant_type: _int,
                             preserved_attrs: Sequence[str]): ...
def _jit_pass_quant_finalize_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
                             quant_type: _int,
                             method_name: str): ...
def _jit_pass_insert_observer_method_for_ondevice_ptq(module: 'torch.jit.ScriptModule',
                               method_name: str,
                               qconfig_dict: Dict[str, Any],
                               inplace: _bool,
                               quant_type: _int): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(strategy: List[Tuple[str, _int]]) -> List[Tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...

# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback = Callable[[str], Callable[..., Any]]

# Defined in torch/csrc/jit/python/script_init.cpp
#        and torch/csrc/jit/python/init.cpp
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(ModuleHook: Optional[Callable], FunctionHook: Optional[Callable]) -> None: ...
def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(filename: Union[str, Path], map_location: Union[_device, str, None]): ...
def _load_for_lite_interpreter_from_buffer(buffer: BinaryIO, map_location: Union[_device, str, None]): ...
def _export_operator_list(module: LiteScriptModule): ...
def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ...
def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
def _backport_for_mobile(filename_input: Union[str, Path], filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_from_buffer(buffer: BinaryIO, filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_to_buffer(filename_input: Union[str, Path], to_version: _int) -> bytes:...
def _backport_for_mobile_from_buffer_to_buffer(buffer: BinaryIO, to_version: _int) -> bytes:...
def _get_model_ops_and_info(filename: Union[str, Path]): ...
def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> List[str]: ...
def _create_function_from_trace(
    qualname: str,
    func: Callable[..., Any],
    input_tuple: Tuple[Any, ...],
    var_lookup_fn: Callable[[Tensor], str],
    strict: _bool,
    force_outplace: _bool,
    argument_names: List[str]
) -> Tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _get_upgraders_map_size() -> _int: ...
def _dump_upgraders_map() -> Dict[str, str]: ...
def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
def merge_type_from_type_comment(decl: Decl, type_annotation_decl: Decl, is_method: _bool) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...

def _resolve_type_from_object(obj: Any, range: SourceRange, rcb: ResolutionCallback) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(overload_decl: Decl, implementation_def: Def, new_name: str) -> Def: ...

def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(graph: Graph, dynamic_axes: Dict[str, Dict[_int, str]], input_names: List[str]) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_pass_onnx_assign_output_shape(graph: Graph, tensors: List[Tensor], desc: IODescriptor, onnx_shape_inference: _bool, is_script: _bool) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(graph: Graph, module: Optional[ScriptModule] = None) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(graph: Graph, disable_shape_peepholes: _bool = False) -> None: ...
def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
    graph: Graph,
    paramsDict: Dict[str, IValue],
    caffe2: _bool
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
    graph: Graph,
    paramsDict: Dict[str, IValue]
) -> Dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(pattern: str, fused_node_name: str, graph: Graph) -> None: ...
def _jit_onnx_list_model_parameters(module: ScriptModule) -> Tuple[ScriptModule, List[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(graph: Graph, _jit_pass_onnx: _onnx.OperatorExportTypes) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(graph: Graph, lowprecision_cast: _bool, opset_version: _int) -> None: ...
def _jit_pass_onnx_peephole(graph: Graph, opset_version: _int, fixed_batch_size: _bool) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(graph: Graph, module_names : Set[str], param_names : List[str]) -> Dict[Node, Dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(graph: Graph, onnx_attrs: Dict[str, Any]) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(graph: Graph, params_dict: Dict[str, IValue], is_train: _bool) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(params: Dict[str, IValue]) -> Dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(n: Node, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(block: Block, n: Node, env: Dict[Value, Value]) -> List[Value]: ...
def _jit_pass_onnx_block(
    old_block: Block,
    new_block: Block,
    operator_export_type: _onnx.OperatorExportTypes,
    env: Dict[Value, Value],
    is_sub_block: _bool
) -> Dict[Value, Value]: ...
def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ...
def _jit_pass_fixup_onnx_controlflow_node(n: Node, opset_version: _int) -> List[Value]: ...
def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ...

def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...

def _generate_upgraders_graph() -> Dict[str, Graph]: ...

def _calculate_package_version_based_on_upgraders(val: _bool): ...

def _get_version_calculator_flag() -> _bool: ...

def _jit_script_interface_compile(name: str, class_def: ClassDef, rcb: ResolutionCallback, is_module: _bool): ...
def _jit_script_compile_overload(
    qualname: str,
    overload_decl: Decl,
    implementation_def: Def,
    rcb: ResolutionCallback,
    implementation_defaults: Dict[str, Any],
    signature: Any
): ...
def _jit_script_compile(
    qual_name: str,
    definition: Def,
    rcb: ResolutionCallback,
    defaults: Dict[str, Any]
): ...
def _jit_script_class_compile(
    qual_name: str,
    definition: ClassDef,
    defaults: Dict[str, Dict[str, Any]],
    rcb: ResolutionCallback
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
    cu: CompilationUnit,
    filename: Union[str, Path],
    map_location: Union[_device, str, None],
    extra_files: Dict[str, Any]
) -> ScriptModule: ...
def import_ir_module_from_buffer(
    cu: CompilationUnit,
    buffer: BinaryIO,
    map_location: Union[_device, str, None],
    extra_files: Dict[str, Any]
) -> ScriptModule: ...
def _import_ir_module_from_package(
    cu: CompilationUnit,
    reader: PyTorchFileReader,
    storage_context: DeserializationStorageContext,
    map_location: Union[_device, str, None],
    ts_id: str
) -> ScriptModule: ...

def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str, full_check: _bool = False) -> None: ...
def _propagate_and_assign_input_shapes(
    graph: Graph,
    inputs: Tuple[Tensor, ...],
    param_count_list: List[_int],
    with_grad: _bool,
    propagate: _bool
) -> Graph: ...

# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState:
    ...

# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb:
    def __str__(self) -> str: ...
    ...

class _InsertPoint:
    def __enter__(self) -> None: ...
    def __exit__(self, *args) -> None: ...

# Defined in torch/csrc/jit/ir/ir.h
class Use:
    @property
    def user(self) -> Node: ...
    @property
    def offset(self) -> _int: ...
    def isAfter(self, other: Use) -> _bool: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Value:
    def type(self)-> JitType: ...
    def setType(self, t: JitType) -> Value: ...
    def setTypeAs(self, other: Value) -> Value: ...
    def inferTypeFrom(self, t: Tensor) -> None: ...
    def debugName(self) -> str: ...
    def setDebugName(self, name: str) -> None: ...
    def unique(self) -> _int: ...
    def offset(self) -> _int: ...
    def node(self) -> Node: ...
    def uses(self) -> List[Use]: ...
    def replaceAllUsesWith(self, val: Value) -> None: ...
    def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
    def requires_grad(self) -> _bool: ...
    def requiresGrad(self) -> _bool: ...
    def copyMetadata(self, other: Value) -> Value: ...
    def isCompleteTensor(self) -> _bool: ...
    def toIValue(self) -> IValue: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Block:
    def inputs(self) -> List[Value]: ...
    def outputs(self) -> List[Value]: ...
    def nodes(self) -> Iterator[Node]: ...
    def paramNode(self) -> Node: ...
    def returnNode(self) -> Node: ...
    def owningNode(self) -> Node: ...
    def registerOutput(self, n: Value) -> _int: ...
    def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Node:
    def __getitem__(self, key: str) -> Any: ...
    def schema(self) -> str: ...
    def input(self) -> Value: ...
    def inputs(self) -> List[Value]: ...
    def inputsAt(self, idx: _int) -> Value: ...
    def inputsSize(self) -> _int: ...
    def output(self) -> Value: ...
    def outputs(self) -> List[Value]: ...
    def outputsAt(self, idx: _int) -> Value: ...
    def outputsSize(self) -> _int: ...
    def hasMultipleOutputs(self) -> _bool: ...
    def blocks(self) -> List[Block]: ...
    def addBlock(self) -> Block: ...
    def mustBeNone(self) -> _bool: ...
    def matches(self, pattern: str) -> _bool: ...
    def kind(self) -> str: ...
    def kindOf(self, name: str) -> str: ...
    def addInput(self, name: str) -> Value: ...
    def replaceInput(self, i: _int, newValue: Value) -> Value: ...
    def replaceInputWith(self, from_: Value, to: Value) -> None: ...
    def replaceAllUsesWith(self, n: Node) -> None: ...
    def insertBefore(self, n: Node) -> Node: ...
    def insertAfter(self, n: Node) -> Node: ...
    def isBefore(self, n: Node) -> _bool: ...
    def isAfter(self, n: Node) -> _bool: ...
    def moveBefore(self, n: Node) -> None: ...
    def moveAfter(self, n: Node) -> None: ...
    def removeInput(self, i: _int) -> None: ...
    def removeAllInputs(self, i: _int) -> None: ...
    def hasUses(self) -> _bool: ...
    def eraseOutput(self, i: _int) -> None: ...
    def addOutput(self) -> Value: ...
    def scopeName(self) -> str: ...
    def isNondeterministic(self) -> _bool: ...
    def copyAttributes(self, rhs: Node) -> Node: ...
    def copyMetadata(self, rhs: Node) -> Node: ...
    def hasAttributes(self) -> _bool: ...
    def hasAttribute(self, name: str) -> _bool: ...
    def removeAttribute(self, attr: str) -> Node: ...
    def namedInput(self, name: str) -> Value: ...
    def sourceRange(self) -> SourceRange: ...
    def owningBlock(self) -> Block: ...
    def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
    def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
    def getModuleHierarchy(self) -> str: ...
    def prev(self) -> Node: ...
    def destroy(self) -> None: ...
    def attributeNames(self) -> List[str]: ...

    # Accessors for attributes as types.
    def f(self, name: str) -> _float: ...
    def f_(self, name: str, val: _float) -> Node: ...
    def fs(self, name: str) -> List[_float]: ...
    def fs_(self, name: str, val: List[_float]) -> Node: ...
    def c(self, name: str) -> complex: ...
    def c_(self, name: str, val: complex) -> Node: ...
    def s(self, name: str) -> str: ...
    def s_(self, name: str, val: str) -> Node: ...
    def ss(self, name: str) -> List[str]: ...
    def ss_(self, name: str, val: List[str]) -> Node: ...
    def i(self, name: str) -> _int: ...
    def i_(self, name: str, val: _int) -> Node: ...
    # Cannot define "is" like this because it's a reserved keyword in python.
    # def is(self, name: str) -> List[_int]: ...
    # def is_(self, name: str, val: List[_int]) -> Node: ...
    def g(self, name: str) -> Graph: ...
    def g_(self, name: str, val: Graph) -> Node: ...
    def gs(self, name: str) -> List[Graph]: ...
    def gs_(self, name: str, val: List[Graph]) -> Node: ...
    def ival(self, name: str) -> IValue: ...
    def ival_(self, name: str, val: IValue) -> Node: ...
    def t(self, name: str) -> Tensor: ...
    def t_(self, name: str, val: Tensor) -> Node: ...
    def ts(self, name: str) -> List[Tensor]: ...
    def ts_(self, name: str, val: List[Tensor]) -> Node: ...
    def ty_(self, name: str, val: JitType) -> Node: ...
    def tys_(self, name: str, val: List[JitType]) -> Node: ...
    ...

# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
    def inputs(self) -> List[Value]: ...
    def outputs(self) -> List[Value]: ...
    def nodes(self) -> Iterator[Node]: ...
    def param_node(self) -> Node: ...
    def return_node(self) -> Node: ...
    def addInput(self, name: str) -> Value: ...
    def eraseInput(self, i: _int) -> None: ...
    def registerOutput(self, n: Value) -> _int: ...
    def eraseOutput(self, i: _int) -> None: ...
    def create(self, name: str, args, num_outputs: _int) -> Node: ...
    def appendNode(self, n: Node) -> Node: ...
    def prependNode(self, n: Node) -> Node: ...
    def insertNode(self, n: Node) -> Node: ...
    def block(self) -> Block: ...
    def lint(self) -> None: ...
    def alias_db(self) -> AliasDb: ...
    def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
    def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
    def insertPoint(self) -> Node: ...
    def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
    def makeMultiOutputIntoTuple(self) -> None: ...
    ...


# Defined in torch/aten/src/ATen/core/alias_info.h
class AliasInfo:
    is_write: _bool
    before_set: Set[str]
    after_set: Set[str]


# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
    name: str
    type: JitType
    default_value: Optional[Any]
    def has_default_value(self) -> _bool: ...
    kwarg_only : _bool
    is_out: _bool
    alias_info: Optional[AliasInfo]
    ...
class FunctionSchema:
    arguments: List[Argument]
    returns: List[Argument]
    name: str
    overload_name: str
    ...

class _UpgraderEntry:
    bumped_at_version: _int
    upgrader_name: str
    old_schema: str
    def __init__(self, bumped_at_version: _int, upgrader_name: str, old_schema: str) -> None: ...

class _UpgraderRange:
    min_version: _int
    max_version: _int

def _get_max_operator_version() -> _int: ...

def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...

def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...

def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...

def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer(object):
    def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
    def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
    def write_files(self) -> None: ...
    def storage_context(self) -> SerializationStorageContext: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext(object):
    def __init__(self) -> None: ...
    def has_storage(self, storage: Storage) -> _bool: ...
    def get_or_add_storage(self, storage: Storage) -> _int: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext(object):
    def __init__(self) -> None: ...
    def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
    def has_storage(self, name: str) -> _bool: ...
    def add_storage(self, name: str, tensor: Tensor) -> _int: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
    def __init__(self, obj: Any) -> None: ...
    def set_module_dict(self): ...
    def set_module_list(self): ...
    def set_parameter_list(self): ...
    def set_parameter_dict(self): ...
    def add_attribute(self, name: str, ty: JitType, is_param: _bool, is_buffer: _bool): ...
    def add_module(self, name: str, meta: ConcreteModuleType): ...
    def add_constant(self, name: str, value: Any): ...
    def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
    def add_builtin_function(self, name: str, symbol_name: str): ...
    def add_failed_attribute(self, name: str, failure_reason: str): ...
    def add_function_attribute(self, name: str, ty: JitType, func: Callable[..., Any]): ...
    def add_ignored_attribute(self, name: str): ...
    def add_ignored_attributes(self, names: List[str]): ...
    def add_forward_hook(self, hook: Callable[..., Any]): ...
    def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...

class ConcreteModuleType:
    def get_constants(self) -> Dict[str, Any]: ...
    def equals(self, other: 'ConcreteModuleType') -> _bool: ...

    @staticmethod
    def from_jit_type(ty: JitType) -> ConcreteModuleType: ...

class CallStack:
    def __init__(self, name: str, range: SourceRange): ...

class ErrorReport:
    def __init__(self, range: SourceRange) -> None: ...
    def what(self) -> str: ...

    @staticmethod
    def call_stack() -> str: ...

class CompilationUnit:
    def __init__(self, lang: str=..., _frames_up: _int=...) -> None: ...
    def find_function(self, name: str) -> ScriptFunction: ...
    def __getattr__(self, name: str) -> ScriptFunction: ...
    def define(self, script: str, rcb: ResolutionCallback=..., _frames_up: _int=...): ...
    def get_interface(self, name: str) -> InterfaceType: ...
    def get_functions(self) -> List[ScriptFunction]: ...
    def create_function(self, name: str, graph: Graph, shouldMangle: _bool=...) -> ScriptFunction: ...
    def get_class(self, name: str) -> ClassType: ...

class ScriptObject:
    def setattr(self, name: str, value: Any): ...

class ScriptModule(ScriptObject):
    def _method_names(self) -> List[str]: ...
    def _get_method(self, name: str) -> ScriptMethod: ...

class LiteScriptModule:
    def __call__(self, *input): ...
    def find_method(self, method_name: str): ...
    def forward(self, *input) -> List[str]: ...
    def run_method(self, method_name: str, *input): ...

class ScriptFunction:
    def __call__(self, *args, **kwargs) -> Tensor: ...
    def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
    def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
    @property
    def graph(self) -> Graph: ...
    def inlined_graph(self) -> Graph: ...
    def schema(self) -> FunctionSchema: ...
    def code(self) -> str: ...
    def name(self) -> str: ...
    @property
    def qualified_name(self) -> str: ...

class ScriptMethod:
    graph: Graph
    @property
    def owner(self) -> ScriptModule: ...
    @property
    def name(self) -> str: ...

class ModuleDict:
    def __init__(self, mod: ScriptModule) -> None: ...
    def items(self) -> List[Tuple[str, Any]]: ...

class ParameterDict:
    def __init__(self, mod: ScriptModule) -> None: ...

class BufferDict:
    def __init__(self, mod: ScriptModule) -> None: ...

# Defined in torch/csrc/jit/api/module.h
class Module:
    ...

# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ...  # THPModule_initExtension
def _autograd_init() -> _bool: ...  # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ...  # THPModule_addDocStr
def _init_names(arg: Sequence[Type]) -> None: ...  # THPModule_initNames
def _has_distributed() -> _bool: ...  # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ...  # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ...  # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ...  # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ...  # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ...  # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ...  # THPModule_crashIfATenASAN
def _show_config() -> str: ...  # THPModule_showConfig
def _cxx_flags() -> str: ...  # THPModule_cxxFlags
def _parallel_info() -> str: ...  # THPModule_parallelInfo
def _set_backcompat_broadcast_warn(arg: _bool) -> None: ...  # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> _bool: ...  # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(arg: _bool) -> None: ...  # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ...  # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ...  # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ...  # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ...  # THPModule_getNumInteropThreads
def set_num_interop_threads(nthreads: _int) -> None: ...  # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ...  # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledCuDNN
def _get_flash_sdp_enabled() -> _bool: ...  # THPModule_userEnabledFusedSDP
def _set_sdp_use_flash(arg: _bool) -> None: ...  # THPModule_setSDPUseFlash
def _get_math_sdp_enabled() -> _bool: ...  # THPModule_userEnabledMathSDP
def _set_sdp_use_math(arg: _bool) -> None: ...  # THPModule_setSDPUseMath
def _get_mkldnn_enabled() -> _bool: ...  # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ...  # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ...  # THPModule_setBenchmarkCuDNN
def _get_cudnn_deterministic() -> _bool: ...  # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ...  # THPModule_setDeterministicCuDNN
def _get_deterministic_algorithms() -> _bool: ...  # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> _bool: ...  # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(mode: _bool, *, warn_only: _bool=...) -> None: ...  # THPModule_setDeterministicAlgorithms
def _get_warnAlways() -> _bool: ...  # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ...  # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ... #THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(arg: str) -> None: ... #THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... #THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(arg: _bool) -> None: ... #THPModule_setAllowFP16ReductionCuBLAS
def _set_conj(x: Tensor, conj: _bool) -> None: ...
def _set_neg(x: Tensor, neg: _bool) -> None: ...
def _add_meta_to_tls_dispatch_include() -> None: ...
def _meta_in_tls_dispatch_include() -> _bool: ...
def _remove_meta_from_tls_dispatch_include() -> None: ...
def _has_storage(x: Tensor) -> _bool: ...
def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ...
# NB: There is no Capsule type in typing, see
# https://code.activestate.com/lists/python-dev/139675/
def _to_dlpack(data: Tensor) -> Any: ...  # THPModule_toDLPack
def _from_dlpack(data: Any) -> Tensor: ...  # THPModule_fromDLPack
def _get_cpp_backtrace(frames_to_skip: _int, maximum_number_of_frames: _int) -> str: ...  # THPModule_getCppBacktrace
def set_flush_denormal(arg: _bool) -> _bool: ...  # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ...  # THPModule_getDefaultDtype
def _get_default_device() -> str: ...  # THPModule_getDefaultDevice
def _get_qengine() -> _int: ...  # THPModule_qEngine
def _set_qengine(qegine: _int) -> None: ...  # THPModule_setQEngine
def _supported_qengines() -> List[_int]: ...  # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ...  # THPModule_isEnabledXNNPACK
def _set_default_mobile_cpu_allocator() -> None: ...  # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> None: ...  # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ...  # THPModule_isEnabledTorchFunction
def _has_torch_function(args: Iterable[Any]) -> _bool: ...  # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ...  # THPModule_has_torch_function_unary
def _has_torch_function_variadic(*args: Any) -> _bool: ...  # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ...  # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ...  # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ...  # LogAPIUsageOnceFromPython
def _demangle(str) -> str: ...  # c10::demangle
def _disabled_torch_function_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ...  # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ...  # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...
def _is_mps_available() -> _bool: ...
class _LinalgBackend:
    Default: _LinalgBackend
    Cusolver: _LinalgBackend
    Magma: _LinalgBackend

# Defined in `valgrind.h` and `callgrind.h` respecitively.
def _valgrind_supported_platform() -> _bool: ...  # NVALGRIND
def _valgrind_toggle() -> None: ...  # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> None: ...  # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS

has_openmp: _bool
has_mkl: _bool
has_mps: _bool
has_lapack: _bool
has_cuda: _bool
has_mkldnn: _bool
has_cudnn: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator

# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
def set_autocast_enabled(enabled: _bool) -> None: ...
def is_autocast_enabled() -> _bool: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def is_anomaly_check_nan_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...

def _is_torch_function_mode_enabled()-> _bool: ...
def _set_torch_function_mode(cls: Any) -> None: ...
def _push_on_torch_function_stack(cls: Any) -> None: ...
def _pop_torch_function_stack() -> Any: ...
def _get_function_stack_at(idx: _int) -> Any: ...
def _len_torch_function_stack() -> _int: ...

def _set_torch_dispatch_mode(cls: Any) -> None: ...
def _push_on_torch_dispatch_stack(cls: Any) -> None: ...
def _pop_torch_dispatch_stack() -> Any: ...
def _get_dispatch_stack_at(idx: _int) -> Any: ...
def _len_torch_dispatch_stack() -> _int: ...

class _InferenceMode(object):
    def __init__(self, mode: _bool) -> None: ...

class _DisableFuncTorch:
    def __init__(self) -> None: ...

class _EnableTorchFunction:
    def __init__(self) -> None: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase(object):
    ...

class NoopLogger(LoggerBase):
    ...

class LockingLogger(LoggerBase):
    ...

class AggregationType(Enum):
    SUM = 0
    AVG = 1

class FileCheck(object):
    # TODO (add more FileCheck signature)
    def check_source_highlighted(self, highlight: str) -> 'FileCheck': ...
    def run(self, test_string: str) -> None: ...
    def check(self, test_string: str) -> 'FileCheck': ...
    def check_not(self, test_string: str) -> 'FileCheck': ...
    ...

# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader(object):
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def get_record(self, name: str) -> bytes: ...
    ...

class PyTorchFileWriter(object):
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def write_record(self, name: str, data: Union[bytes, _int], size: _int) -> None: ...
    def write_end_of_file(self) -> None: ...
    def set_min_version(self, version: _int) -> None: ...
    def get_all_written_records(self) -> List[str]: ...
    def archive_name(self) -> str: ...
    ...

def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_cse(Graph) -> _bool: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...

# Defined in torch/csrc/jit/python/python_custome_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...

# Defined in torch/csrc/Generator.cpp
class Generator(object):
    device: _device
    def __init__(self, device: Union[_device, str, None] = None) -> None: ...
    def get_state(self) -> Tensor: ...
    def set_state(self, _new_state: Tensor) -> Generator: ...
    def manual_seed(self, seed: _int) -> Generator: ...
    def seed(self) -> _int: ...
    def initial_seed(self) -> _int: ...


# Defined in torch/csrc/utils/python_dispatch.cpp

class _DispatchOperatorHandle:
    def schema(self) -> FunctionSchema: ...

class _DispatchModule:
    def def_(self, schema: str, alias: str = "") -> _DispatchModule: ...
    def def_legacy(self, schema: str) -> _DispatchModule: ...
    def def_name_t_t(self, name: str, dispatch: str, debug: str = "default_def_name_t_t") -> _DispatchModule: ...
    def def_schema_t_t(self, schema: str, dispatch: str, alias: str, debug: str = "default_def_schema_t_t") -> _DispatchModule: ...
    def impl_t_t(self, name: str, dispatch: str, debug: str = "impl_t_t") -> _DispatchModule: ...
    def impl_tt_t(self, name: str, dispatch: str, debug: str = "impl_tt_t") -> _DispatchModule: ...
    def impl(self, name: str, dispatch: str, func: Callable) -> _DispatchModule: ...
    def define(self, schema: str, alias: str = "") -> _DispatchModule: ...
    def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ...

def _dispatch_library(kind: str, name: str, dispatch: str, file: str = "", linenum: Any = 0) -> _DispatchModule: ...
def _dispatch_dump(name: str) -> str: ...
def _dispatch_dump_table(name: str) -> str: ...
def _dispatch_check_invariants(name: str) -> None: ...
def _dispatch_check_all_invariants() -> None: ...
def _dispatch_has_kernel(name: str) -> _bool: ...
def _dispatch_has_kernel_for_dispatch_key(name: str, dispatch: _dispatchkey) -> _bool: ...
def _dispatch_has_kernel_for_any_dispatch_key(name: str, dispatch_key_set: DispatchKeySet) -> _bool: ...
def _dispatch_has_computed_kernel_for_dispatch_key(name: str, dispatch: _dispatchkey) -> _bool: ...
def _dispatch_find_dangling_impls() -> List[str]: ...
def _dispatch_tls_set_dispatch_key_excluded(dispatch: _dispatchkey, val: _bool) -> None: ...
def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ...
def _dispatch_key_name(dispatch: _dispatchkey) -> str: ...
def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ...
def _dispatch_num_backends() -> _int: ...

class DispatchKey(Enum):
    ${dispatch_key_hints}

class DispatchKeySet:
    def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ...
    def highestPriorityTypeId(self) -> DispatchKey: ...
    def has(self, k: _dispatchkey) -> _bool: ...
    def __repr__(self) -> str: ...

_dispatch_autogradother_backends: DispatchKeySet
def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ...
def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ...
def _dispatch_get_backend_keyset_from_autograd(dispatch: _dispatchkey) -> DispatchKeySet: ...
def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ...
def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ...
def _dispatch_tls_local_include_set() -> DispatchKeySet: ...
def _dispatch_is_included_in_alias(dispatch_a: _dispatchkey, dispatch_b: _dispatchkey) -> _bool: ...

class ExcludeDispatchKeyGuard:
    pass

class _AutoDispatchBelowAutograd:
    pass

def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
def _dispatch_get_registrations_for_dispatch_key(dispatch_key: str = "") -> List[str]: ...

def _are_functorch_transforms_active() -> _bool: ...

# Define in torch/csrc/autograd/init.cpp
class _DisablePythonDispatcher(object):
    pass

class _EnablePythonDispatcher(object):
    pass

def _set_python_dispatcher(dispatcher: object) -> None: ...


# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig(object):
    num_calling_threads: _int
    num_worker_threads: _int
    num_warmup_iters: _int
    num_iters: _int
    profiler_output_path: str

class BenchmarkExecutionStats(object):
    latency_avg_ms: _float
    num_iters: _int

class ThroughputBenchmark(object):
    def __init__(self, module: Any) -> None: ...
    def add_input(self, *args: Any, **kwargs: Any) -> None: ...
    def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
    def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...

# Defined in torch/csrc/Storage.cpp
${legacy_storage_base_hints}

# TODO: where
${legacy_class_hints}

# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
    ...

# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type):
    pass

# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorBase(metaclass=_TensorMeta):
    requires_grad: _bool
    shape: Size
    data: Tensor
    names: List[str]
    device: _device
    dtype: _dtype
    layout: _layout
    real: Tensor
    imag: Tensor
    T: Tensor
    H: Tensor
    mT: Tensor
    mH: Tensor
    ndim: _int
    output_nr: _int
    _version: _int
    _base: Optional[Tensor]
    _cdata: _int
    grad_fn: Any
    _grad_fn: Any
    _grad: Optional[Tensor]
    grad: Optional[Tensor]
    _backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
    ${tensor_method_hints}

# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...

# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> _int: ...
def _cuda_getCurrentRawStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> _int: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> Optional[str]: ...
def _cuda_init() -> None: ...
def _cuda_setStream(cuda_stream: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_memorySnapshot() -> List[Dict[str, Any]]: ...
def _cuda_recordMemoryHistory(enabled: _bool) -> None: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(code_string: str,
                                              kernel_name: str,
                                              return_by_ref: _bool,
                                              num_outputs: _int,
                                              tensors: Tuple,
                                              kwargs: Dict[str, Union[_int, _float, _bool]]) -> Tensor: ...
def _cuda_get_cudnn_benchmark_limit() -> _int: ...
def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ...
def _nccl_version() -> _int: ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(input: Sequence[Tensor],
                 output: Tensor,
                 root: _int,
                 op: _int,
                 streams: Optional[Sequence[_CudaStreamBase]],
                 comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_reduce(input: Sequence[Tensor],
                     output: Sequence[Tensor],
                     op: _int,
                     streams: Optional[Sequence[_CudaStreamBase]],
                     comms: Optional[Sequence[object]]) -> None: ...
def _nccl_broadcast(input: Sequence[Tensor],
                    root: _int,
                    streams: Optional[Sequence[_CudaStreamBase]],
                    comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_gather(input: Sequence[Tensor],
                     output: Sequence[Tensor],
                     streams: Optional[Sequence[_CudaStreamBase]],
                     comms: Optional[Sequence[object]]) -> None: ...
def _nccl_reduce_scatter(input: Sequence[Tensor],
                         output: Sequence[Tensor],
                         op: _int,
                         streams: Optional[Sequence[_CudaStreamBase]],
                         comms: Optional[Sequence[object]]) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...


class _CudaDeviceProperties:
    name: str
    major: _int
    minor: _int
    multi_processor_count: _int
    total_memory: _int
    is_integrated: _int
    is_multi_gpu_board: _int

# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
def _broadcast_coalesced(
    tensors: List[Tensor],
    devices: List[_int],
    buffer_size: _int
) -> List[List[Tensor]]: ...

def _scatter(tensor: Tensor, devices: List[_int], chunk_sizes: Optional[List[_int]], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _scatter_out(tensor: Tensor, out_tensors: List[Tensor], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _gather(tensors: List[Tensor], dim: _int, destination_index: Optional[_int]) -> Tensor: ...
def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...

# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase:
    _cdata: _int
    device: _device
    cuda_stream: _int
    priority: _int

    def __new__(self, priority: _int = 0, _cdata: _int = 0, stream_ptr: _int = 0) -> _CudaStreamBase: ...
    def query(self) -> _bool: ...
    def synchronize(self) -> None: ...
    def priority_range(self) -> Tuple[_int, _int]: ...

# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
    device: _device
    cuda_event: _int

    def __new__(cls, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False) -> _CudaEventBase: ...
    @classmethod
    def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
    def record(self, stream: _CudaStreamBase) -> None: ...
    def wait(self, stream: _CudaStreamBase) -> None: ...
    def query(self) -> _bool: ...
    def elapsed_time(self, other: _CudaEventBase) -> _float: ...
    def synchronize(self) -> None: ...
    def ipc_handle(self) -> bytes: ...

# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
    def capture_begin(self,
                      pool: Optional[Tuple[_int, _int]]=...) -> None: ...
    def capture_end(self) -> None: ...
    def replay(self) -> None: ...
    def reset(self) -> None: ...
    def pool(self) -> Tuple[_int, _int]: ...

def _cuda_isCurrentStreamCapturing() -> _bool: ...

def _graph_pool_handle() -> Tuple[_int, _int]: ...

# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(*arg: Any) -> None: ...  # THPModule_setWorkerSignalHandlers
def _set_worker_pids(key: _int, child_pids: Tuple[_int, ...]) -> None: ...  # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ...  # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ...  # THPModule_errorIfAnyWorkerFails

# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
    def push_scope(self, scope_name: str) -> None: ...
    def pop_scope(self) -> None: ...
    def current_scope(self) -> str: ...
    def set_graph(self, graph: Graph) -> None: ...
    def graph(self) -> Graph: ...
    ...

def _create_graph_by_tracing(
    func: Callable[..., Any],
    inputs: Any,
    var_name_lookup_fn: Callable[[Tensor], str],
    strict: Any,
    force_outplace: Any,
    self: Any = None,
    argument_names: List[str] = []
) -> Tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...

# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue:
    ...
Stack = List[IValue]

class JitType:
    annotation_str : str
    def isSubtypeOf(self, other: JitType) -> _bool: ...
    def with_dtype(self, dtype: _dtype) -> JitType: ...
    def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
    def kind(self) -> str: ...
    def scalarType(self) -> Optional[str]: ...

class InferredType:
    def __init__(self, arg: Union[JitType, str]): ...
    def type(self) -> JitType: ...
    def success(self) -> _bool: ...
    def reason(self) -> str: ...

R = TypeVar('R', bound=JitType)

class AnyType(JitType):
    @staticmethod
    def get() -> AnyType: ...

class NoneType(JitType):
    @staticmethod
    def get() -> NoneType: ...

class BoolType(JitType):
    @staticmethod
    def get() -> BoolType: ...

class FloatType(JitType):
    @staticmethod
    def get() -> FloatType: ...

class ComplexType(JitType):
    @staticmethod
    def get() -> ComplexType: ...

class IntType(JitType):
    @staticmethod
    def get() -> IntType: ...

class NumberType(JitType):
    @staticmethod
    def get() -> NumberType: ...

class StringType(JitType):
    @staticmethod
    def get() -> StringType: ...

class DeviceObjType(JitType):
    @staticmethod
    def get() -> DeviceObjType: ...

class StreamObjType(JitType):
    @staticmethod
    def get() -> StreamObjType: ...

class ListType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

    @staticmethod
    def ofInts() -> ListType: ...
    @staticmethod
    def ofTensors() -> ListType: ...
    @staticmethod
    def ofFloats() -> ListType: ...
    @staticmethod
    def ofComplexDoubles() -> ListType: ...
    @staticmethod
    def ofBools() -> ListType: ...

class DictType(JitType):
    def __init__(self, key: JitType, value: JitType) -> None: ...
    def getKeyType(self) -> JitType: ...
    def getValueType(self) -> JitType: ...

class TupleType(JitType):
    def __init__(self, a: List[Optional[JitType]]) -> None: ...
    def elements(self) -> List[JitType]: ...

class UnionType(JitType):
    def __init__(self, a: List[JitType]) -> None: ...

class ClassType(JitType):
    def __init__(self, qualified_name: str) -> None: ...

class InterfaceType(JitType):
    def __init__(self, qualified_name: str) -> None: ...
    def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
    def getMethodNames(self) -> List[str]: ...

class OptionalType(JitType, Generic[R]):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

    @staticmethod
    def ofTensor() -> OptionalType: ...

class FutureType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

class RRefType(JitType):
    def __init__(self, a: JitType) -> None: ...

class EnumType(JitType):
    def __init__(
        self,
        qualified_name: str,
        value_type: JitType,
        enum_names_values: List[Any]
    ) -> None:
        ...

class TensorType(JitType):
    @classmethod
    def get(cls) -> TensorType: ...
    @classmethod
    def getInferred(cls) -> TensorType: ...
    def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
    def sizes(self) -> Optional[List[_int]]: ...
    def varyingSizes(self) -> Optional[List[Optional[_int]]]: ...
    def strides(self) -> Optional[List[_int]]: ...
    def device(self) -> Optional[_device]: ...
    def dim(self) -> _int: ...
    def dtype(self) -> Optional[_dtype]: ...
    @staticmethod
    def create_from_tensor(t: Tensor) -> TensorType: ...

# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange:
    ...

class TreeView:
    ...

class Ident(TreeView):
    @property
    def name(self) -> str: ...

class ClassDef(TreeView):
    ...

class Def(TreeView):
    def name(self) -> Ident: ...

class Decl(TreeView):
    ...

# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...

# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...

# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...

# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...

def _enable_minidumps(directory: str) -> None: ...
def _disable_minidumps() -> None: ...
def _enable_minidumps_on_exceptions() -> None: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...
def _activate_cuda_trace() -> None: ...

class _OutOfMemoryError:
    pass