File: _profiler.pyi

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (161 lines) | stat: -rw-r--r-- 3,474 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from enum import Enum
from typing import List, Optional, Tuple, Union

from torch._C import device, dtype, layout

# defined in torch/csrc/profiler/python/init.cpp

class RecordScope(Enum):
    FUNCTION = ...
    BACKWARD_FUNCTION = ...
    TORCHSCRIPT_FUNCTION = ...
    KERNEL_FUNCTION_DTYPE = ...
    CUSTOM_CLASS = ...
    BUILD_FEATURE = ...
    LITE_INTERPRETER = ...
    USER_SCOPE = ...
    STATIC_RUNTIME_OP = ...
    STATIC_RUNTIME_MODEL = ...

class ProfilerState(Enum):
    Disable = ...
    CPU = ...
    CUDA = ...
    NVTX = ...
    ITT = ...
    KINETO = ...
    KINETO_GPU_FALLBACK = ...

class ActiveProfilerType(Enum):
    NONE = ...
    LEGACY = ...
    KINETO = ...
    NVTX = ...
    ITT = ...

class ProfilerActivity(Enum):
    CPU = ...
    CUDA = ...

class _EventType(Enum):
    Allocation = ...
    Backend = ...
    PyCall = ...
    PyCCall = ...
    TorchOp = ...
    Kineto = ...

class _ExperimentalConfig:
    def __init__(
        self,
        profiler_metrics: List[str] = ...,
        profiler_measure_per_kernel: bool = ...,
        verbose: bool = ...,
    ) -> None: ...
    ...

class ProfilerConfig:
    def __init__(
        self,
        state: ProfilerState,
        report_input_shapes: bool,
        profile_memory: bool,
        with_stack: bool,
        with_flops: bool,
        with_modules: bool,
        experimental_config: _ExperimentalConfig,
    ) -> None: ...
    ...

class _ProfilerEvent:
    start_tid: int
    start_time_ns: int
    children: List[_ProfilerEvent]
    extra_fields: Union[
        _ExtraFields_TorchOp,
        _ExtraFields_Backend,
        _ExtraFields_Allocation,
        _ExtraFields_OutOfMemory,
        _ExtraFields_PyCall,
        _ExtraFields_PyCCall,
        _ExtraFields_Kineto,
    ]

    @property
    def name(self) -> str: ...
    @property
    def tag(self) -> _EventType: ...
    @property
    def id(self) -> int: ...
    @property
    def parent(self) -> Optional[_ProfilerEvent]: ...
    @property
    def correlation_id(self) -> int: ...
    @property
    def end_time_ns(self) -> int: ...
    @property
    def duration_time_ns(self) -> int: ...

class _Inputs:
    shapes: List[List[int]]
    dtypes: List[str]
    strides: List[List[int]]
    ivalues: List[Union[int, float, bool, complex]]
    tensor_metadata: List[Optional[_TensorMetadata]]

class _TensorMetadata:
    impl_ptr: Optional[int]
    storage_data_ptr: Optional[int]
    id: Optional[int]

    @property
    def layout(self) -> layout: ...
    @property
    def device(self) -> device: ...
    @property
    def dtype(self) -> dtype: ...

class _ExtraFields_TorchOp:
    inputs: _Inputs
    sequence_number: int
    allow_tf32_cublas: bool

    @property
    def scope(self) -> RecordScope: ...

class _ExtraFields_Backend: ...

class _ExtraFields_Allocation:
    ptr: int
    id: Optional[int]
    alloc_size: int
    total_allocated: int
    total_reserved: int

    @property
    def device(self) -> device: ...

class _ExtraFields_OutOfMemory: ...

class _PyFrameState:
    line_number: int
    function_name: str

    @property
    def file_name(self) -> str: ...

class _NNModuleInfo:
    @property
    def params(self) -> List[Tuple[str, int]]: ...
    @property
    def cls_name(self) -> str: ...

class _ExtraFields_PyCCall:
    callsite: _PyFrameState
    caller: _PyFrameState
    module: Optional[_NNModuleInfo]

class _ExtraFields_PyCall:
    caller: _PyFrameState

class _ExtraFields_Kineto: ...