File: decompositions_for_jvp.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (294 lines) | stat: -rw-r--r-- 10,503 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import inspect
from typing import Callable, Dict, List, Optional, Tuple

import torch
import torch._decomp
from torch import Tensor

decomposition_table = torch._decomp.decomposition_table
decomposition_table_for_jvp: Dict[torch._ops.OpOverload, Callable] = {}
register_decomposition = torch._decomp.register_decomposition
aten = torch.ops.aten

# NOTE: [forward-mode AD decompositions mechanism]
#
# The mechanism is in VariableType,
#   IF any inputs have forward grad
#      AND there is no forward AD formula implemented
#      AND the functions is actually differentiable
#   run the decomposition
#      See run_jit_decomposition_with_args_for_jvp
#      We currently use python decompositions that we torchscript.
#
# Note that we would be building the backward graph at the decomposed level
# too, but that is OK, because we would've errored out otherwise anyway.
#
# TODO: The mechanism we are using to register decompositions doesn't
# seem to be exclusively used for jvp. So open question here is whether
# torch/csrc/jit/runtime/decomposition_registry.cpp is being used for other things.
# If that is the case, we may go down the decomposition path unexpectedly
# (and possibly produce an unintelligible error) vs erroring out earlier and
# printing that the forward AD formula is not implemented.
#
# The solution to this may be to have a explicitly white list control when
# to enable the decomposition.


def maybe_register_decomposition(op):
    def decorator(f):
        try:
            return register_decomposition(op)(f)
        except Exception:
            return f

    return decorator


# Functions where we need a special decomposition for jvp but there's another version that
# should be used more generally (ex. for jvp we need to recompute the mean and variance for
# the backwards of a normalization function. Without jvp, it should used the saved value)
decomposition_table_for_jvp = {}


def register_decomposition_for_jvp(fn):
    return register_decomposition(fn, registry=decomposition_table_for_jvp)


def _register_jit_decomposition_for_jvp(decomp, use_python=False):
    if decomp in decomposition_table_for_jvp:
        decomposition_table_used = decomposition_table_for_jvp
    elif decomp in decomposition_table:
        decomposition_table_used = decomposition_table
    else:
        raise RuntimeError(f"could not find decomposition for {decomp}")
    decomp_fn = decomposition_table_used[decomp]
    if use_python:
        decomp_fn = torch.jit.ignore(decomp_fn)
        sig = inspect.signature(decomp_fn)

        # Create a string wrapping the function from the signature
        # example output:
        # def wrapped_decomp(x: torch.Tensor, y: int, z: int):
        #   return decomp_fn(x, y, z)
        # Thanks copilot!
        def get_function_def(sig):
            param_def = [f"{param_str}" for param_str in sig.parameters.values()]
            param_use = [f"{param_str}" for param_str in sig.parameters.keys()]

            return f"def wrapped_decomp({', '.join(param_def)}):\n  return decomp_fn({', '.join(param_use)})\n"

        f_str = get_function_def(sig)
        graph = torch.jit.CompilationUnit(f_str).wrapped_decomp.graph
    else:
        graph = torch.jit.script(decomp_fn).graph
    torch.jit._register_decomposition(decomp, graph)


# The only decompositions here are temporary or hacks for the purposes of jvp

# TODO: do these also belong here?
@maybe_register_decomposition(aten.trace.default)
def trace(self: Tensor) -> Tensor:
    return torch.sum(torch.diag(self))


@maybe_register_decomposition(aten.log_sigmoid_forward.default)
def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]:
    min = torch.minimum(self.new_zeros(()), self)
    z = torch.exp(-torch.abs(self))
    if self.is_cuda:
        buffer = self.new_zeros((0,))
    else:
        buffer = z
    return min - torch.log1p(z), buffer


def recompute_mean_var(
    input: Tensor, rstd: Tensor, inner_dim_indices: List[int], keepdim: bool
):
    # for most norm decompositions, it will be the same as the core version except for here.
    # We recompute the mean and variance so that they track gradients through input

    mean = torch.mean(input, dim=inner_dim_indices, keepdim=keepdim)
    var = torch.var(input, dim=inner_dim_indices, unbiased=False, keepdim=keepdim)
    eps = torch.pow(1 / rstd, 2) - var  # this makes me so sad inside
    eps = eps.detach()
    rstd = 1 / torch.sqrt(var + eps)
    return mean, rstd


@register_decomposition_for_jvp(aten.native_layer_norm_backward)
def native_layer_norm_backward(
    grad_out: Tensor,
    input: Tensor,
    normalized_shape: List[int],
    mean: Tensor,
    rstd: Tensor,
    weight: Optional[Tensor],
    bias: Optional[Tensor],
    output_mask: List[bool],
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
    input_shape = input.shape
    input_ndim = input.dim()

    axis = input_ndim - len(normalized_shape)
    inner_dims = input_shape[axis:]
    outer_dims = input_shape[:axis]
    inner_dim_indices = list(range(axis, input_ndim))
    outer_dim_indices = list(range(0, axis))

    N = 1
    for i in inner_dims:
        N *= i
    M = 1
    for i in outer_dims:
        M *= i
    if M <= 0 or N <= 0:
        return (
            input.new_zeros(input_shape),
            input.new_zeros(input_shape[axis:]),
            input.new_zeros(input_shape[axis:]),
        )

    mean_, rstd_ = recompute_mean_var(input, rstd, inner_dim_indices, keepdim=True)

    x_hat = (input - mean_) * rstd_
    if weight is not None:
        grad_x_hat = grad_out * weight
    else:
        grad_x_hat = grad_out
    a = grad_x_hat * N
    b = torch.sum(grad_x_hat, inner_dim_indices, True)
    c1 = torch.mul(grad_x_hat, x_hat)
    c2 = torch.sum(c1, inner_dim_indices, True)
    c3 = torch.mul(x_hat, c2)
    inner = a - b - c3

    if output_mask[0]:
        d_input: Optional[Tensor] = (rstd_ / N) * inner
    else:
        d_input = torch.zeros_like(input)  # should be None but doesn't work with vjp

    if output_mask[1] and weight is not None:
        if len(outer_dim_indices) > 0:
            d_weight: Optional[Tensor] = torch.sum(
                grad_out * x_hat, outer_dim_indices, False
            )
        else:
            d_weight = grad_out * x_hat
    elif weight is not None:
        d_weight = torch.zeros_like(weight)  # should be None but doesn't work with vjp
    else:
        d_weight = torch.zeros(())  # should be None but doesn't work with vjp

    if output_mask[2] and bias is not None:
        if len(outer_dim_indices) > 0:
            d_bias: Optional[Tensor] = torch.sum(grad_out, outer_dim_indices, False)
        else:
            d_bias = grad_out.clone()
    elif bias is not None:
        d_bias = torch.zeros_like(bias)  # should be None but doesn't work with vjp
    else:
        d_bias = torch.zeros(())  # should be None but doesn't work with vjp

    return (d_input, d_weight, d_bias)


def prod(x: List[int]):
    r = 1
    for i in x:
        r *= i
    return r


@register_decomposition_for_jvp(aten.native_batch_norm_backward)
def native_batch_norm_backward(
    grad_out: Tensor,
    input: Tensor,
    weight: Optional[Tensor],
    running_mean: Optional[Tensor],
    running_var: Optional[Tensor],
    save_mean: Optional[Tensor],
    save_invstd: Optional[Tensor],
    train: bool,
    eps: float,
    output_mask: List[bool],
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
    input_shape = input.shape
    input_rank = input.dim()
    assert input_rank >= 2, "rank of the input must be at least 2"

    axis = 1
    num_features = prod(input_shape) / input_shape[axis]  # type: ignore[arg-type]
    mean = save_mean
    invstd = save_invstd
    if train:
        assert (
            save_mean is not None and save_invstd is not None
        ), "when train=True, save_mean and save_invstd are required"

        reduciton_dims = [0] + list(range(2, input.dim()))
        assert invstd is not None  # for typing
        mean, invstd = recompute_mean_var(input, invstd, reduciton_dims, keepdim=False)
    else:
        assert running_mean is not None and running_var is not None
        mean = running_mean
        invstd = torch.rsqrt(running_var + eps)

    assert invstd is not None and mean is not None

    broadcast_mask = [1] * input_rank
    broadcast_mask[axis] = input_shape[axis]

    reduction_axes: List[int] = []
    for i in range(input_rank):
        if i != axis:
            reduction_axes.append(i)

    mean = torch.reshape(mean, broadcast_mask)
    norm = 1.0 / num_features
    grad_output_sum = torch.sum(grad_out, reduction_axes)
    dot_p = torch.sum(grad_out * (input - mean), reduction_axes)

    grad_mean = torch.reshape(grad_output_sum * norm, broadcast_mask)
    proj_scale = torch.reshape(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask)

    if weight is None:
        grad_scale = torch.reshape(invstd, broadcast_mask) * 1.0
    else:
        grad_scale = torch.reshape(invstd * weight, broadcast_mask)

    if train:
        proj = (input - mean) * proj_scale
        grad_input = ((grad_out - proj) - grad_mean) * grad_scale
    else:
        grad_input = grad_out * grad_scale

    if output_mask[1]:
        grad_weight = dot_p * invstd
    elif weight is not None:
        grad_weight = torch.zeros_like(
            weight
        )  # should be None but doesn't work with vjp
    else:
        grad_weight = torch.zeros(())  # should be None but doesn't work with vjp

    if output_mask[2]:
        grad_bias = grad_output_sum
    else:
        grad_bias = torch.zeros_like(
            grad_output_sum
        )  # should be None but doesn't work with vjp

    return (grad_input, grad_weight, grad_bias)


_register_jit_decomposition_for_jvp(torch.ops.aten.trace.default, use_python=True)
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss2d_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten._log_softmax_backward_data.default)
_register_jit_decomposition_for_jvp(torch.ops.aten._softmax_backward_data.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.log_sigmoid_forward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.native_layer_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.native_batch_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.cudnn_batch_norm_backward.default)