1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
# Module for defining "primitive" operations executable by the nvFuser. This
# list exists to decouple main set of primitives from the ones that provide a
# lowering of the op to nvFuser’s Python interface. Mostly torch.ops.nvprims is
# a subset of the primitives in torch.ops.prims, but some additional primitives
# can be added in the future for the corresponding higher-level torch/aten
# functions.
from typing import Any, Dict, Optional
import torch
from torch._prims_common import (
DimsSequenceType,
ELEMENTWISE_TYPE_PROMOTION_KIND,
getnvFuserDtype,
make_contiguous_strides_for,
ShapeType,
TensorLikeType,
)
from torch._prims_common.wrappers import (
backwards_not_supported,
elementwise_type_promotion_wrapper,
)
nvprim_namespace = "nvprims"
nvprim = torch.library.Library(nvprim_namespace, "DEF")
nvprim_impl = torch.library.Library(
nvprim_namespace, "IMPL", "CompositeExplicitAutograd"
)
nvprim_implicit_impl = torch.library.Library(
nvprim_namespace, "IMPL", "CompositeImplicitAutograd"
)
nvprim_autograd_impl = torch.library.Library(nvprim_namespace, "IMPL", "Autograd")
nvprim_meta_impl = torch.library.Library(nvprim_namespace, "IMPL", "Meta")
nvprim_names = [
"abs",
"acos",
"asin",
"atan",
"atanh",
"cos",
"cosh",
"bitwise_not",
"ceil",
"erf",
"erfc",
"exp",
"expm1",
"floor",
"imag",
"isfinite",
"lgamma",
"log",
"log1p",
"log2",
"log10",
"real",
"reciprocal",
"neg",
"round",
"rsqrt",
"sign",
"sin",
"sinh",
"sqrt",
"tan",
"tanh",
"transpose",
"trunc",
"add",
"atan2",
"bitwise_and",
"bitwise_or",
"bitwise_xor",
"div",
"eq",
"fmod",
"ge",
"gt",
"le",
"lt",
"mul",
"ne",
"pow",
"remainder",
"sub",
"squeeze",
"view_of",
"broadcast_in_dim",
"where",
"convert_element_type",
"sum",
"var",
"amax",
"amin",
]
_nvfuser_impls: Dict[str, Any] = {}
_nvfuser_unary_ops = {
"abs",
"acos",
"asin",
"atan",
"atanh",
"cos",
"cosh",
"bitwise_not",
"ceil",
"erf",
"erfc",
"exp",
"expm1",
"floor",
"imag",
"isfinite",
"lgamma",
"log",
"log1p",
"log2",
"log10",
"reciprocal",
"neg",
"real",
"round",
"rsqrt",
"sign",
"sin",
"sinh",
"sqrt",
"tan",
"tanh",
"trunc",
}
def _assert_nvfuser_op_exists(fname: str):
try:
from torch._C._nvfuser import FusionDefinition as fd # type: ignore[import]
assert getattr(fd.Operators, fname)
except ImportError:
# Not all PyTorch builds have nvfuser
pass
for fname in _nvfuser_unary_ops:
exec(
f"""
# Ensure that the nvfuser implementation exists
_assert_nvfuser_op_exists("{fname}")
def _{fname}_nvfuser(fd, a):
return fd.ops.{fname}(a) # type: ignore[attr-defined]
_nvfuser_impls["{fname}"] = _{fname}_nvfuser
"""
)
_nvfuser_binary_ops = {
"add",
"atan2",
"bitwise_and",
"bitwise_or",
"bitwise_xor",
"div",
"eq",
"fmod",
"ge",
"gt",
"le",
"lt",
"mul",
"ne",
"pow",
"remainder",
"sub",
}
for fname in _nvfuser_binary_ops:
exec(
f"""
# Ensure that the nvfuser implementation exists
_assert_nvfuser_op_exists("{fname}")
def _{fname}_nvfuser(fd, a, b):
return fd.ops.{fname}(a, b) # type: ignore[attr-defined]
_nvfuser_impls["{fname}"] = _{fname}_nvfuser
"""
)
_nvfuser_ternary_ops = {
"where",
}
for fname in _nvfuser_ternary_ops:
exec(
f"""
# Ensure that the nvfuser implementation exists
_assert_nvfuser_op_exists("{fname}")
def _{fname}_nvfuser(fd, a, b, c):
return fd.ops.{fname}(a, b, c) # type: ignore[attr-defined]
_nvfuser_impls["{fname}"] = _{fname}_nvfuser
"""
)
def _native_batch_norm_nvfuser(
fd, input, weight, bias, running_mean, running_var, training, momentum, eps
):
if weight is None:
weight = fd.define_null_tensor()
if bias is None:
bias = fd.define_null_tensor()
if running_mean is None:
running_mean = fd.define_null_tensor()
if running_var is None:
running_var = fd.define_null_tensor()
return fd.ops.batch_norm(
input,
weight,
bias,
running_mean,
running_var,
training,
momentum,
eps,
)
def _broadcast_in_dim_nvfuser(
fd: Any,
a: TensorLikeType,
shape: ShapeType,
broadcast_dimensions: ShapeType,
):
return fd.ops.broadcast_in_dim(a, shape, broadcast_dimensions) # type: ignore[attr-defined]
def _convert_element_type_nvfuser(fd: Any, a: TensorLikeType, dtype: torch.dtype):
nvfuser_dtype = getnvFuserDtype(dtype)
return fd.ops.cast(a, nvfuser_dtype) # type: ignore[attr-defined]
def _transpose_nvfuser(fd, a, permutation):
return fd.ops.permute(a, permutation) # type: ignore[attr-defined]
def _squeeze_nvfuser(fd, a, a_shape, dimensions):
for idx in reversed(sorted(dimensions)):
a = fd.ops.squeeze(a, a_shape, idx)
a_shape = a_shape[:idx] + a_shape[idx + 1 :]
return a
def _view_of_nvfuser(fd, a):
return fd.ops.set(a)
def _sum_nvfuser(
fd: Any,
a: TensorLikeType,
dims: DimsSequenceType,
):
keep_dims = False
output_dtype = torch._C._nvfuser.DataType.Null
return fd.ops.sum(a, dims, keep_dims, output_dtype)
def _var_nvfuser(
fd: Any,
a: TensorLikeType,
dims: DimsSequenceType,
*,
correction: int,
):
keep_dims = False
return fd.ops.var(a, dims, correction, keep_dims)
def _var_mean_nvfuser(
fd: Any,
a: TensorLikeType,
dims: DimsSequenceType,
unbiased: Optional[bool] = None,
keepdim: bool = False,
*,
correction: int,
):
# Unbiased arg shouldn't be set when this function is called
assert unbiased is None
# Ignore keepdim arg, because currently it's automatically converted into nvfuser's symbolic scalar
# keepdim is handled by the reference implementation
keepdim = False
return fd.ops.var_mean(a, dims, correction, keepdim)
def _rand_like_nvfuser(fd: Any, a: TensorLikeType):
return fd.ops.rand_like(a)
def _amax_nvfuser(
fd: Any,
a: TensorLikeType,
dims: DimsSequenceType,
):
keep_dims = False
return fd.ops.max(a, dims, keep_dims)
def _amin_nvfuser(
fd: Any,
a: TensorLikeType,
dims: DimsSequenceType,
):
keep_dims = False
return fd.ops.min(a, dims, keep_dims)
_nvfuser_impls["native_batch_norm"] = _native_batch_norm_nvfuser
_nvfuser_impls["broadcast_in_dim"] = _broadcast_in_dim_nvfuser
_nvfuser_impls["convert_element_type"] = _convert_element_type_nvfuser
_nvfuser_impls["transpose"] = _transpose_nvfuser
_nvfuser_impls["squeeze"] = _squeeze_nvfuser
_nvfuser_impls["view_of"] = _view_of_nvfuser
_nvfuser_impls["rand_like"] = _rand_like_nvfuser
_nvfuser_impls["sum"] = _sum_nvfuser
_nvfuser_impls["var"] = _var_nvfuser
_nvfuser_impls["var_mean"] = _var_mean_nvfuser
_nvfuser_impls["amax"] = _amax_nvfuser
_nvfuser_impls["amin"] = _amin_nvfuser
def register_native_batch_norm():
"""This function is used to register the native_batch_norm function in torch.ops.nvprims module."""
name = "native_batch_norm"
nvprim.define(
f"{name}(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, "
+ "bool training, float momentum, float eps)"
+ " -> (Tensor, Tensor, Tensor)"
)
def _prim_impl(
input, weight, bias, running_mean, running_var, training, momentum, eps
):
return torch.native_batch_norm(
input, weight, bias, running_mean, running_var, training, momentum, eps
)
nvprim_impl.impl(name, _prim_impl)
nvprim_autograd_impl.impl(
name, backwards_not_supported(torch.ops.nvprims.native_batch_norm.default)
)
prim_packet = torch.ops.nvprims.native_batch_norm
prim = prim_packet.default
for p in (prim_packet, prim):
p.__doc__ = "Computes batch normalization."
p.impl_nvfuser = _nvfuser_impls["native_batch_norm"]
p.return_type = torch._prims_common.RETURN_TYPE.NEW # type: ignore[attr-defined]
def register_rand_like():
name = "rand_like"
nvprim.define(
"rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, "
+ "Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"
)
def _meta_rand_like(
self,
*,
dtype=None,
layout=None,
device=None,
pin_memory=None,
memory_format=None,
):
strides = make_contiguous_strides_for(self.shape)
return torch._prims.TensorMeta(
self,
shape=self.shape,
strides=strides,
dtype=dtype,
device=device,
)
def _prim_impl(
self,
*,
dtype=None,
layout=None,
device=None,
pin_memory=None,
memory_format=None,
):
return torch.rand_like(
self,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
memory_format=memory_format,
)
nvprim_impl.impl(name, _prim_impl)
nvprim_meta_impl.impl(name, _meta_rand_like)
prim_packet = getattr(torch.ops.nvprims, name)
prim = prim_packet.default
nvprim_autograd_impl.impl(name, backwards_not_supported(prim))
for p in (prim_packet, prim):
p.__doc__ = "Computes rand_like"
p.impl_nvfuser = _nvfuser_impls["rand_like"]
p.return_type = torch._prims_common.RETURN_TYPE.NEW # type: ignore[attr-defined]
def register_var_mean():
"""This function is used to register the var_mean function in torch.ops.nvprims module."""
name = "var_mean.main"
# This overload must be default for correct dispatching of var_mean(Tensor, bool)
nvprim.define("var_mean(Tensor inp, bool unbiased) -> (Tensor, Tensor)")
# This signature tries to combine several overloads of the torch.var_mean function into one overload.
nvprim.define(
f"{name}(Tensor inp, int[1]? dim=None, bool? unbiased=None, bool keepdim=False, *, int? correction=None)"
+ " -> (Tensor, Tensor)"
)
# This function is used for device="meta" Tensors.
def _meta_var_mean(inp, dim=None, unbiased=None, keepdim=False, *, correction=None):
if torch._prims_common.is_complex_dtype(inp.dtype):
output_dtype = torch._prims_common.corresponding_real_dtype(inp.dtype)
else:
output_dtype = inp.dtype
var = torch._prims._reduction_meta(inp, dim, output_dtype=output_dtype)
mean = torch._prims._reduction_meta(inp, dim, output_dtype=inp.dtype)
if keepdim:
output_shape = [
inp.shape[i] if i not in dim else 1 for i in range(inp.ndim)
]
broadcast_dims = [i for i in range(inp.ndim) if i not in dim]
var = torch.ops.nvprims.broadcast_in_dim(var, output_shape, broadcast_dims)
mean = torch.ops.nvprims.broadcast_in_dim(
mean, output_shape, broadcast_dims
)
return (var, mean)
# This function is used under _AutoDispatchBelowAutograd context
def _prim_impl(inp, dim=None, unbiased=None, keepdim=False, *, correction=None):
correction = torch._prims_common.set_correction(unbiased, correction)
return torch.var_mean(inp, dim, correction=correction, keepdim=keepdim)
nvprim_impl.impl(name, _prim_impl)
nvprim_meta_impl.impl(name, _meta_var_mean)
prim_packet = torch.ops.nvprims.var_mean
prim = prim_packet.main
def _unbiased_overload_impl(inp, unbiased):
return prim(inp, dim=None, unbiased=unbiased)
nvprim_implicit_impl.impl("var_mean", _unbiased_overload_impl)
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT,
)
def _var_mean_ref(a, dim=None, unbiased=None, keepdim=False, *, correction=None):
correction = torch._prims_common.set_correction(unbiased, correction)
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
dim = torch._prims_common.reduction_dims(a.shape, dim)
# For complex tensors eager computes the variance as the sum of variances of
# the real and imaginary parts
# TODO: Creating a complex tensor from real and imaginary parts is not supported
if torch._prims_common.is_complex_dtype(a.dtype):
raise NotImplementedError("Complex tensors are not supported")
var_mean = prim(a, dim, correction=correction)
if keepdim:
output_shape = [a.shape[i] if i not in dim else 1 for i in range(a.ndim)]
broadcast_dims = [i for i in range(a.ndim) if i not in dim]
var, mean = var_mean
var = torch.ops.nvprims.broadcast_in_dim(var, output_shape, broadcast_dims)
mean = torch.ops.nvprims.broadcast_in_dim(
mean, output_shape, broadcast_dims
)
var_mean = (var, mean)
return var_mean
def _var_mean_autograd(
a, dim=None, unbiased=None, keepdim=False, *, correction=None
):
# This wrapper is needed to convert prims calls inside
# elementwise_type_promotion_wrapper to nvprims calls
from torch._prims.context import NvfuserPrimsMode
with NvfuserPrimsMode():
return backwards_not_supported(_var_mean_ref)(
a, dim, unbiased, keepdim, correction=correction
)
nvprim_autograd_impl.impl(name, _var_mean_autograd)
for p in (prim_packet, prim):
p.__doc__ = "Computes the variance and mean of x over the list of dimensions specified in the dim argument"
p.impl_nvfuser = _nvfuser_impls["var_mean"]
p.return_type = torch._prims_common.RETURN_TYPE.NEW # type: ignore[attr-defined]
def register_nvprims():
"""Registers all nvFuser primitives in the torch.ops.nvprims module."""
register_var_mean()
register_native_batch_norm()
register_rand_like()
for name in nvprim_names:
main_prim = getattr(torch.ops.prims, name)
nvprim.define(main_prim.schema)
nvprim_impl.impl(name, main_prim.prim_impl)
nvprim_meta_impl.impl(name, main_prim.prim_meta_impl)
prim_packet = getattr(torch.ops.nvprims, name)
prim = prim_packet.default
nvprim_autograd_impl.impl(name, backwards_not_supported(prim))
for p in (prim_packet, prim):
p.__doc__ = main_prim.__doc__
p.impl_nvfuser = _nvfuser_impls[name]
p.return_type = main_prim.return_type # type: ignore[attr-defined]
|