1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
|
import builtins
import collections
import math
import operator
import warnings
from collections.abc import Iterable
from enum import Enum
from functools import partial, reduce, singledispatch, wraps
from typing import Callable, List, Optional, overload, Sequence, Tuple, Union
import torch
import torch._prims as prims
import torch._prims_common as utils
from torch._prims_common import (
check,
DeviceLikeType,
DimsSequenceType,
DimsType,
dtype_to_type,
ELEMENTWISE_TYPE_PROMOTION_KIND,
is_weakly_lesser_type,
Number,
NumberType,
REDUCTION_OUTPUT_TYPE_KIND,
ShapeType,
StrideType,
TensorLike,
TensorLikeType,
TensorOrNumberLikeType,
TensorSequenceType,
)
from torch._prims_common.wrappers import (
_maybe_convert_to_dtype,
_maybe_resize_out,
_safe_copy_out,
elementwise_type_promotion_wrapper,
elementwise_unary_scalar_wrapper,
out_wrapper,
)
# Experimental module containing prototype Python references for existing
# PyTorch operations.
__all__ = [
#
# Elementwise Unary References
#
"abs",
"acos",
"acosh",
"asinh",
"asin",
"atan",
"atanh",
"bitwise_not",
# "cbrt", # No corresponding torch operation
"ceil",
"conj_physical",
"cos",
"cosh",
"digamma",
"erf",
"erfinv",
"erfc",
"exp",
"expm1",
"exp2",
"fill",
"floor",
"frac",
"index_add",
"index_add_",
"index_copy",
"index_copy_",
"index_select",
"index_fill",
"index_fill_",
"isfinite",
"isinf",
"isnan",
"isreal",
"i0",
"lgamma",
"log",
"log1p",
"log2",
"log10",
"nan_to_num",
"neg",
"positive",
"reciprocal",
"round", # TODO: model kwargs
"sigmoid",
"sgn",
"sign",
"signbit",
"sin",
"sinc",
"sinh",
"sqrt",
"square",
"tan",
"tanh",
"trace",
"trunc",
#
# Elementwise Binary References
#
"add",
"atan2",
"bitwise_and",
"bitwise_left_shift",
"bitwise_or",
"bitwise_right_shift",
"bitwise_xor",
# "complex",
"copysign",
"div",
"eq",
"float_power",
"floor_divide",
"fmax",
"fmin",
"fmod",
"gcd",
"ge",
"gt",
"heaviside",
"hypot",
"igamma",
"igammac",
"imag",
"isclose",
"lcm",
# 'ldexp',
"le",
"logical_and",
"logical_not",
"logical_or",
"logical_xor",
"lt",
# 'max', # implement with reductions
"maximum",
# 'min', # implement with reductions
"minimum",
"mul",
"ne",
"nextafter",
# 'polar', # abs, cos, sin
"pow",
"real",
"rpow",
"remainder",
"rsub",
"rtruediv",
"rfloordiv",
# # special.xlog1py
# # special.zeta
"sub",
"true_divide",
"trunc_divide",
# 'xlogy', # where?, log, mul
#
# Elementwise Ternary References
#
"addcdiv",
"clamp",
#
# Conditional references
#
"masked_fill",
"where",
#
# Data conversion and movement references
#
"clone",
"copy_to", # TODO: add OpInfo (or implement .to)
"item", # TODO: add OpInfo
"to",
#
# Reduction ops
#
"all",
"amax",
"amin",
"any",
"mean",
"std_mean",
"var_mean",
"sum",
"sum_to_size",
"prod",
"var",
#
# Linear algebra ops
#
"addr",
#
# View & Shape Ops
#
"atleast_1d",
"atleast_2d",
"atleast_3d",
"as_strided",
"broadcast_shapes",
"broadcast_tensors",
"broadcast_to",
"cat",
"chunk",
"column_stack",
"conj",
"constant_pad_nd",
"contiguous",
"diag_embed",
"diagonal",
"dsplit",
"dstack",
"expand",
"expand_as",
"flatten",
"flip",
"fliplr",
"flipud",
"hsplit",
"hstack",
"meshgrid",
"movedim",
"narrow",
"native_layer_norm",
"permute",
"ravel",
"repeat",
"reshape",
"roll",
"rot90",
"rsqrt",
"stack",
"swap_axes", # alias for transpose
"squeeze",
"t",
"tensor_split",
"transpose",
"unfold_copy",
"unsqueeze",
"view",
"vsplit",
"vstack",
"unflatten",
"unbind",
"triu",
"tril",
"triu_indices",
"tril_indices",
#
# Tensor Creation
#
"arange",
"empty",
"empty_like",
"empty_strided",
"eye",
"full",
"full_like",
"linspace",
"logspace",
"ones",
"ones_like",
"randn",
"scalar_tensor",
"zeros",
"zeros_like",
#
# Randomness References
#
"uniform", # TODO: add OpInfo -- and testing for randomness?
#
# Test-related functions
#
"allclose",
"equal", # TODO: add OpInfo
]
Tensor = torch.Tensor
DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined]
def _broadcast_shapes(*_shapes):
shapes = tuple(
(x,) if isinstance(x, int) else x
for x in filter(lambda x: x is not None, _shapes)
)
# Short-circuits on no input
if len(shapes) == 0:
return None
# Type checking
# TODO: make common validations available as utils
for shape in shapes:
assert isinstance(shape, Sequence)
# Computes common shape
common_shape = [
1,
] * reduce(max, (len(shape) for shape in shapes))
for shape in shapes:
for idx in range(-1, -1 - len(shape), -1):
if common_shape[idx] == 1:
if shape[idx] < 0:
raise ValueError(
"Attempting to broadcast a dimension with negative length!"
)
common_shape[idx] = shape[idx]
elif shape[idx] != 1:
if common_shape[idx] != shape[idx]:
raise RuntimeError(
"Attempting to broadcast a dimension of length ",
str(shape[idx]),
"!",
)
return common_shape
def _maybe_broadcast(*args, preserve_cpu_scalar_tensors=True):
# Computes common shape
common_shape = _broadcast_shapes(
*map(lambda t: t.shape if isinstance(t, TensorLike) else None, args)
)
def __maybe_broadcast(x, shape):
if x is None:
return None
elif isinstance(x, Number):
return x
elif isinstance(x, TensorLike):
if preserve_cpu_scalar_tensors and utils.is_cpu_scalar_tensor(x):
return x
if not utils.same_shape(x.shape, common_shape):
return x.expand(common_shape)
return x
else:
raise RuntimeError(
"Unexpected type when broadcasting: " + str(type(x)) + "!"
)
return tuple(__maybe_broadcast(x, common_shape) for x in args)
# Utilities should come BEFORE this import
from torch._decomp import register_decomposition
#
# Elementwise unary references
#
infer_aten_op = object()
# TODO: add type promotion support
def _make_elementwise_unary_reference(
type_promotion_kind,
*,
aten_op=infer_aten_op,
disable_meta=False,
extra_meta=None,
) -> Callable:
def inner(prim: Callable):
nonlocal aten_op
@wraps(prim)
@out_wrapper()
@elementwise_unary_scalar_wrapper
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=type_promotion_kind,
)
def _ref(a: TensorLikeType) -> TensorLikeType:
if not isinstance(a, TensorLike):
raise RuntimeError(
"Expected a tensor input for an elementwise unary operation!"
)
if extra_meta is not None:
extra_meta(a)
return prim(a)
if aten_op is infer_aten_op:
aten_op = getattr(torch.ops.aten, prim.__name__)
if aten_op is not None:
register_decomposition(aten_op, disable_meta=disable_meta)(_ref)
return _ref
return inner
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT)
def abs(a):
return prims.abs(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def acos(a):
return prims.acos(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def acosh(a):
return prims.acosh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def asin(a):
return prims.asin(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def asinh(a):
return prims.asinh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def atan(a):
return prims.atan(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def atanh(a):
return prims.atanh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def bitwise_not(a):
return prims.bitwise_not(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def ceil(a):
return prims.ceil(a)
@register_decomposition(torch.ops.aten.conj_physical)
@out_wrapper()
def conj_physical(input: TensorLikeType):
if not utils.is_complex_dtype(input.dtype):
return input
return prims.conj_physical(input)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def cos(a):
return prims.cos(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def cosh(a):
return prims.cosh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def digamma(a):
return prims.digamma(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def erf(a):
return prims.erf(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def erfinv(a):
return prims.erf_inv(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def erfc(a):
return prims.erfc(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def exp(a):
return prims.exp(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def expm1(a):
return prims.expm1(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def exp2(a):
return prims.exp2(a)
# Fill has its own implementation because it has a value parameter
# CompositeImplicitAutograd - don't register decomp
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a,"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH,
)
def fill(a: TensorLikeType, value: NumberType) -> TensorLikeType:
assert isinstance(a, TensorLike)
assert isinstance(value, Number)
python_type = utils.dtype_to_type(a.dtype)
if not utils.is_weakly_lesser_type(type(value), python_type):
msg = "value argument of type {0} cannot be safely cast to type {1}!".format(
type(value), python_type
)
raise ValueError(msg)
return prims.fill(a, value)
def fill_(a: TensorLikeType, value: NumberType) -> TensorLikeType:
r = prims.fill(a, value)
prims.copy_to(a, r)
return a
def zero_(a: TensorLikeType) -> TensorLikeType:
r = prims.fill(a, 0)
prims.copy_to(a, r)
return a
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def floor(a):
return prims.floor(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def frac(x: TensorLikeType) -> TensorLikeType:
trunc_x = mul(floor(abs(x)), sign(x))
return sub(x, trunc_x)
# imag does not use _make_elementwise_unary_reference because it does not support out
def imag(a: TensorLikeType) -> TensorLikeType:
assert isinstance(a, TensorLike)
utils.check(
utils.is_complex_dtype(a.dtype), lambda: "imag only supports complex tensors."
)
return prims.imag(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
aten_op=None, # CompositeImplicitAutograd
)
def isfinite(a: TensorLikeType) -> TensorLikeType:
if utils.is_float_dtype(a.dtype) or utils.is_complex_dtype(a.dtype):
return prims.isfinite(a)
return ones_like(a, dtype=torch.bool)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL)
def isinf(a: TensorLikeType) -> TensorLikeType:
if utils.is_complex_dtype(a.dtype):
return logical_or(isinf(real(a)), isinf(imag(a)))
return logical_not(logical_or(isnan(a), isfinite(a)))
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL)
def isposinf(a: TensorLikeType) -> TensorLikeType:
utils.check(
not utils.is_complex_dtype(a.dtype),
lambda: f"Complex dtype is not supported for isposinf, got dtype {a.dtype}",
)
if utils.is_float_dtype(a.dtype):
return eq(a, float("inf"))
return zeros_like(a, dtype=torch.bool)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL)
def isneginf(a: TensorLikeType) -> TensorLikeType:
utils.check(
not utils.is_complex_dtype(a.dtype),
lambda: f"Complex dtype is not supported for isneginf, got dtype {a.dtype}",
)
if utils.is_float_dtype(a.dtype):
return eq(a, float("-inf"))
return zeros_like(a, dtype=torch.bool)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL)
def isnan(a: TensorLikeType) -> TensorLikeType:
return prims.ne(a, a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
aten_op=None, # CompositeImplicitAutograd
)
def isreal(a: TensorLikeType) -> TensorLikeType:
if utils.is_complex_dtype(a.dtype):
return torch.imag(a) == 0
return torch.ones_like(a, dtype=torch.bool)
# TODO: if this is special maybe it should be defined there and imported here?
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, aten_op=torch.ops.aten.special_i0
)
def i0(a):
return prims.bessel_i0(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def lgamma(a):
return prims.lgamma(a)
# alias
mvlgamma = torch.special.multigammaln # type: ignore[has-type]
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def log(a):
return prims.log(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def log1p(a):
return prims.log1p(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def log2(a):
return prims.log2(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def log10(a):
return prims.log10(a)
@out_wrapper()
def log_softmax(
a: TensorLikeType,
dim: int,
*,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
result_dtype = dtype or a.dtype
computation_dtype = utils.get_computation_dtype(a.dtype)
a_ = _maybe_convert_to_dtype(a, computation_dtype)
return _maybe_convert_to_dtype(a_ - logsumexp(a_, dim, keepdim=True), result_dtype) # type: ignore[return-value]
@out_wrapper()
def logsumexp(
a: TensorLikeType,
dim: DimsType,
keepdim: bool = False,
) -> TensorLikeType:
dim = utils.canonicalize_dims(a.ndim, dim)
# ATen specifies int[1] type dims which expands integers to tuples of length 1
if not isinstance(dim, Iterable):
dim = (dim,)
if utils.is_float_dtype(a.dtype) or utils.is_complex_dtype(a.dtype):
# For float and complex dtypes, we shift input to exp by a constant to avoid overflow
a_max = amax(a, dim, keepdim=True)
a_max = where(abs(a_max) == float("inf"), 0.0, a_max)
a_max_squeezed = prims.squeeze(a_max, dim) if not keepdim else a_max
result = log(sum(exp(a - a_max), dim, keepdim=keepdim)) + a_max_squeezed
else:
# This case covers boolean and integer dtypes and we use non-stabilized computation
result = log(sum(exp(a), dim, keepdim=keepdim))
return result
@register_decomposition(torch.ops.aten.nan_to_num)
@out_wrapper()
def nan_to_num(
a: TensorLikeType,
nan: Optional[NumberType] = 0.0,
posinf: Optional[NumberType] = None,
neginf: Optional[NumberType] = None,
) -> TensorLikeType:
assert isinstance(a, TensorLike)
if utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype):
return clone(a)
if nan is None:
nan = 0.0
if posinf is None:
posinf = prims.maximum_value(a.dtype)
if neginf is None:
neginf = prims.minimum_value(a.dtype)
result = where(isnan(a), nan, a)
is_neg = signbit(a)
is_neginf = bitwise_and(isinf(a), is_neg)
result = where(is_neginf, neginf, result)
is_posinf = bitwise_and(isinf(a), bitwise_not(is_neg))
result = where(is_posinf, posinf, result)
return result
def _neg_meta(a: TensorLikeType):
if a.dtype is torch.bool:
msg = "neg is not supported on bool tensors."
raise RuntimeError(msg)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, extra_meta=_neg_meta
)
def neg(a):
return prims.neg(a)
# positive does not use _make_elementwise_unary_reference because it does not support out
# CompositeImplicitAutograd - don't register decomp
def positive(a: TensorLikeType) -> TensorLikeType:
assert isinstance(a, TensorLike)
if a.dtype is torch.bool:
msg = "positive does not support bool tensors."
raise RuntimeError(msg)
return a
# real does not use _make_elementwise_unary_reference because it does not support out
def real(a: TensorLikeType) -> TensorLikeType:
assert isinstance(a, TensorLike)
if utils.is_complex_dtype(a.dtype):
return prims.real(a)
return a
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def reciprocal(a):
return prims.reciprocal(a)
# TODO: round takes additional kwargs
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=None, # TODO: this does need a decomp, but kwarg handling is needed
)
def round(a):
return prims.round(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def rsqrt(a):
return prims.rsqrt(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def sigmoid(a: TensorLikeType) -> TensorLikeType:
return true_divide(1, add(1, exp(neg(a))))
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def sgn(a):
if utils.is_complex_dtype(a.dtype):
a_abs = a.abs()
return torch.where(a_abs == 0, 0, a / a_abs)
else:
return a.sign()
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def sign(a):
return prims.sign(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL)
def signbit(a):
return prims.signbit(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def sin(a):
return prims.sin(a)
# Autograd note: This will give the right first derivative at zero (by chance),
# but not the right second derivative
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def sinc(a):
a = math.pi * a
return torch.where(a == 0, 1, torch.sin(a) / a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def sinh(a):
return prims.sinh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def sqrt(a):
return prims.sqrt(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG,
aten_op=None, # CompositeImplicitAutograd,
)
def square(a: TensorLikeType) -> TensorLikeType:
return mul(a, a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def tan(a):
return prims.tan(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT)
def tanh(a):
return prims.tanh(a)
@_make_elementwise_unary_reference(ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
def trunc(a):
return prims.trunc(a)
def _make_elementwise_binary_reference(
prim: Callable,
*,
type_promotion_kind,
aten_op=infer_aten_op,
has_out=True,
supports_lhs_python_scalar=True,
supports_rhs_python_scalar=True,
disable_meta=False,
) -> Callable:
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=type_promotion_kind,
)
def _ref(
a: Union[Tensor, NumberType],
b: Union[Tensor, NumberType],
) -> Tensor:
if not supports_lhs_python_scalar and isinstance(a, Number):
raise ValueError(
"Received a lhs Python scalar to an elementwise binary operation that does not accept lhs scalars!"
)
if not supports_rhs_python_scalar and isinstance(b, Number):
raise ValueError(
"Received a rhs Python scalar to an elementwise binary operation that does not accept rhs scalars!"
)
# TODO: enable this for operations that support it, like add
if isinstance(a, Number) and isinstance(b, Number):
raise ValueError(
"Receive two Number inputs to an elementwise binary operation!"
)
a, b = _maybe_broadcast(a, b)
return prim(a, b)
if has_out:
_ref = out_wrapper()(_ref)
if aten_op is infer_aten_op:
aten_op = getattr(torch.ops.aten, prim.__name__.split(".")[0])
if aten_op is not None:
register_decomposition(aten_op, disable_meta=disable_meta)(_ref)
return _ref
# Add has its own implementation because it has an alpha argument
@register_decomposition(torch.ops.aten.add)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def add(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
*,
alpha: Optional[NumberType] = None,
):
"""
Reference implementation of torch.add
"""
if isinstance(a, Number) and isinstance(b, Number):
raise ValueError(
"Receive two Number inputs to an elementwise binary operation!"
)
a, b = _maybe_broadcast(a, b)
if alpha is not None:
dtype = a.dtype if isinstance(a, TensorLike) else b.dtype # type: ignore[union-attr]
python_type = utils.dtype_to_type(dtype)
if not utils.is_weakly_lesser_type(type(alpha), python_type):
msg = (
"alpha argument of type {0} cannot be safely cast to type {1}!".format(
type(alpha), python_type
)
)
raise ValueError(msg)
b = prims.mul(b, alpha)
return prims.add(a, b)
# TODO: add docstring
atan2 = _make_elementwise_binary_reference(
prims.atan2, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
bitwise_and = _make_elementwise_binary_reference(
prims.bitwise_and, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
# TODO: add docstring
bitwise_left_shift = _make_elementwise_binary_reference(
prims.shift_left, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.bitwise_left_shift, # prim/aten name mismatch
)
# TODO: add docstring
bitwise_or = _make_elementwise_binary_reference(
prims.bitwise_or, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
# TODO: add docstring
bitwise_right_shift = _make_elementwise_binary_reference(
prims.shift_right_arithmetic, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.bitwise_right_shift, # prim/aten name mismatch
)
# TODO: add docstring
bitwise_xor = _make_elementwise_binary_reference(
prims.bitwise_xor, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def _copysign(
a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
):
if isinstance(b, Number) and isinstance(a, Tensor):
b = scalar_tensor(b, dtype=a.dtype, device=a.device)
elif isinstance(a, Tensor) and isinstance(b, Tensor) and a.device != b.device:
msg = "Expected divisor (b) to be on the same device ({0}) as dividend (a), but it is found on {1}!".format(
a.device, b.device
)
raise RuntimeError(msg)
return where(signbit(b), neg(abs(a)), abs(a))
# TODO: add docstring
copysign = _make_elementwise_binary_reference(
_copysign,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
supports_lhs_python_scalar=False,
aten_op=torch.ops.aten.copysign,
)
# TODO: add docstring
# complex = _make_elementwise_binary_reference(prims.complex, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT)
@register_decomposition(torch.ops.aten.div)
@out_wrapper()
def div(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
*,
rounding_mode: Optional[str] = None,
):
"""
Reference implementation of torch.div
"""
if rounding_mode is None:
return true_divide(a, b)
elif rounding_mode == "trunc":
return trunc_divide(a, b)
elif rounding_mode == "floor":
return floor_divide(a, b)
else:
msg = (
"div expected rounding_mode to be one of None, 'trunc', or 'floor' "
"but found {0}.".format(rounding_mode)
)
raise ValueError(msg)
# TODO: add docstring
eq = _make_elementwise_binary_reference(
prims.eq, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
def _pow(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
) -> TensorLikeType:
assert isinstance(a, TensorLikeType) or isinstance(b, TensorLikeType)
if isinstance(b, Number):
if b == 1.0:
return a.clone() # type: ignore[return-value,union-attr]
elif b == 2.0:
return a * a # type: ignore[return-value]
elif b == 0.5:
return torch.sqrt(a) # type: ignore[arg-type]
return prims.pow(a, b)
# TODO: add docstring
pow = _make_elementwise_binary_reference(
_pow,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG,
aten_op=torch.ops.aten.pow,
)
# TODO: add docstring
# Float power has its own implementation because it has unique type promotion.
# NB: aten_op not registered because CompositeExplicitAutograd
@out_wrapper()
def float_power(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
) -> Tensor:
if isinstance(a, Number) and isinstance(b, Number):
raise ValueError(
"Receive two Number inputs to an elementwise binary operation!"
)
# Handles type promotion
dtype = utils.get_higher_dtype(a, b)
assert dtype is not None
if utils.is_complex_dtype(dtype):
dtype = torch.complex128
else:
dtype = torch.float64
# Float power has the following contiguous cast behavior to be
# consistent with its C++ impl
if isinstance(a, TensorLike) and a.dtype != dtype:
a = prims.to_dtype(a, dtype)
if isinstance(b, TensorLike) and b.dtype != dtype:
b = prims.to_dtype(b, dtype)
a, b = _maybe_broadcast(a, b)
return pow(a, b)
# >>> a = torch.tensor(-0.2500, dtype=torch.float64)
# tensor(-0.250000000000000, dtype=torch.float64)
#
# >>> b = torch.tensor(-0.0010, dtype=torch.float64)
# tensor(-0.001000000000000, dtype=torch.float64)
#
# Note: In this case, casting float to double will expand the float mantissa with zeros,
# while creating a double generates a distinct mantissa.
# >>> torch.tensor(-0.001).to(dtype=torch.float64)
# tensor(-0.001000000047497, dtype=torch.float64)
#
# Floor Division
# The difference is caused because torch.remainder(a, b) = -0.001.
#
# >>> torch.floor(torch.true_divide(a, b))
# tensor(250., dtype=torch.float64)
#
# >>> torch.div(a, b, rounding_mode='floor')
# tensor(249., dtype=torch.float64)
#
# Definition: a // b = (a - remainder(a, b)) / b
# >>> torch.true_divide(torch.sub(a, torch.remainder(a, b)), b)
# tensor(249., dtype=torch.float64)
#
# For reference, see CPython's implementation:
# https://github.com/python/cpython/blob/ace008c531dd685a30c1dd68f9b5ba35f20171cf/Objects/floatobject.c#L636
def _floor_divide(
a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
):
# Wrap scalars because some references only accept tensor arguments.
if isinstance(a, Number) and isinstance(b, Number):
a = scalar_tensor(a)
b = scalar_tensor(b)
elif isinstance(b, Number) and isinstance(a, Tensor):
b = scalar_tensor(b, dtype=a.dtype, device=a.device)
elif isinstance(a, Number) and isinstance(b, Tensor):
a = scalar_tensor(a, dtype=b.dtype, device=b.device)
elif isinstance(a, Tensor) and isinstance(b, Tensor) and a.device != b.device:
if a.device == torch.device("cpu"):
msg = "Expected divisor (b) to be on the same device ({0}) as dividend (a), but it is found on {1}!".format(
a.device, b.device
)
raise RuntimeError(msg)
else:
b = prims.device_put(b, device=a.device)
assert isinstance(a, Tensor) and isinstance(b, Tensor)
dtype = a.dtype
if utils.is_float_dtype(dtype):
return _floor_divide_float(a, b)
elif utils.is_integer_dtype(dtype):
return _floor_divide_integer(a, b)
else:
check(False, lambda: f"{dtype} not supported for floor_divide")
def _floor_divide_integer(a: Tensor, b: Tensor) -> Tensor:
a, b = _maybe_broadcast(a, b)
if not a.dtype.is_signed:
return prims.div(a, b)
# Convert truncation to flooring:
offset = (torch.signbit(a) != torch.signbit(b)).logical_and(torch.fmod(a, b) != 0)
return prims.div(a, b) - prims.convert_element_type(offset, a.dtype)
def _floor_divide_float(a: Tensor, b: Tensor) -> Tensor:
mod = fmod(a, b)
div = true_divide(sub(a, mod), b)
# Ensure that the remainder has the same sign as denominator
different_signed_inputs = bitwise_xor(lt(a, 0), lt(b, 0))
non_zero_remainder = ne(mod, 0)
mask = bitwise_and(non_zero_remainder, different_signed_inputs)
div = where(mask, sub(div, 1), div)
# Map quotient to nearest integer value
floor_div = floor(div)
mask = gt(sub(div, floor_div), 0.5)
floor_div = where(mask, add(floor_div, 1), floor_div)
basic_div = true_divide(a, b)
zero_tensor = scalar_tensor(0, dtype=basic_div.dtype, device=basic_div.device)
# If quotient is zero, copy signbit from true_divide quotient
floor_div = where(ne(div, 0), floor_div, copysign(zero_tensor, basic_div))
# If denominator is zero, then follow true_divide behavior
return where(ne(b, 0), floor_div, basic_div)
# TODO: add docstring
floor_divide = _make_elementwise_binary_reference(
_floor_divide,
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.floor_divide,
)
# TODO: add docstring
fmax = _make_elementwise_binary_reference(
prims.fmax, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.fmax,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
fmin = _make_elementwise_binary_reference(
prims.fmin, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.fmin,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
fmod = _make_elementwise_binary_reference(
prims.fmod, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.fmod,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=True,
)
# TODO: add docstring
gcd = _make_elementwise_binary_reference(
prims.gcd, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.gcd,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
ge = _make_elementwise_binary_reference(
prims.ge, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
# TODO: add docstring
gt = _make_elementwise_binary_reference(
prims.gt, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
def _heaviside(input: TensorLikeType, values: TensorLikeType) -> TensorLikeType:
input_eq_zero = eq(input, 0)
input_lt_zero = logical_or(lt(input, 0), isnan(input))
zeros_and_ones = where(input_lt_zero, 0, 1)
output = where(input_eq_zero, values, zeros_and_ones)
return output
heaviside = _make_elementwise_binary_reference(
_heaviside,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
aten_op=torch.ops.aten.heaviside,
)
hypot = _make_elementwise_binary_reference(
prims.hypot, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
igamma = _make_elementwise_binary_reference(
prims.igamma, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
igammac = _make_elementwise_binary_reference(
prims.igammac, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
def _check_close_args(
name: str,
a: TensorLikeType,
b: TensorLikeType,
rtol: float,
atol: float,
) -> None:
check(
a.dtype == b.dtype,
lambda: "{0}: Attempting to compare tensors of different dtypes {1} and {2}!".format(
name, a.dtype, b.dtype
),
ValueError,
)
check(
rtol >= 0,
lambda: "{0}: rtol must be greater than or equal to zero, but got {1}!".format(
name, rtol
),
)
check(
atol >= 0,
lambda: "{0}: atol must be greater than or equal to zero, but got {1}!".format(
name, atol
),
)
# CompositeImplicitAutograd - don't register decomp
def isclose(
a: TensorLikeType,
b: TensorLikeType,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
) -> TensorLikeType:
_check_close_args(name="torch.isclose", a=a, b=b, rtol=rtol, atol=atol)
close = eq(a, b)
if equal_nan and (utils.is_float_dtype(a.dtype) or utils.is_complex_dtype(a.dtype)):
close = logical_or(close, logical_and(isnan(a), isnan(b)))
# Note: In case of zero tolerances the closeness inequality degenerates to an equality check.
# In this case, the short-circuit prevents false positives as detailed in the paragraph below.
if atol == 0 and rtol == 0:
return close
# Note [closeness error computation]
# atol and rtol are provided as doubles, so the computation
# rtol * other will produce a float or complex tensor.
# When the difference (self - other) is compared to it then the
# tensor representing the difference will also be cast to float or complex.
# However, since (self - other) in uint8 is very likely to produce a
# negative value, this moves the cast forward so the difference is
# always computed in a float or complex type.
# If the values of the integer tensors cannot be exactly represented
# by the default scalar type then this may cause an incorrect result.
if not utils.is_float_dtype(a.dtype) and not utils.is_complex_dtype(a.dtype):
a = prims.convert_element_type(a, torch.get_default_dtype())
b = prims.convert_element_type(b, torch.get_default_dtype())
allowed_error = add(atol, abs(mul(b, rtol)))
actual_error = abs(sub(a, b))
# Computes finite closeness
result = logical_or(
close, logical_and(isfinite(actual_error), le(actual_error, allowed_error))
)
return result
def _lcm(a: TensorLikeType, b: TensorLikeType):
dtype = a.dtype
promote_to_int = dtype in (torch.int8, torch.int16)
if promote_to_int:
a = prims.convert_element_type(a, torch.int32)
b = prims.convert_element_type(b, torch.int32)
g = torch.gcd(a, b)
# Avoid division by zero in case gcd(0, 0) == 0
g = torch.where(g == 0, 1, g)
res = torch.abs(prims.div(a, g) * b)
return res if not promote_to_int else prims.convert_element_type(res, dtype)
# TODO: add docstring
lcm = _make_elementwise_binary_reference(
_lcm,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.lcm,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
le = _make_elementwise_binary_reference(
prims.le, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
def _logical_and(a: TensorLikeType, b: TensorLikeType):
if not utils.is_boolean_dtype(a.dtype):
a = a != 0
if not utils.is_boolean_dtype(b.dtype):
b = b != 0
return a & b
logical_and = _make_elementwise_binary_reference(
_logical_and,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
aten_op=torch.ops.aten.logical_and,
)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL, aten_op=torch.ops.aten.logical_not
)
def logical_not(a: TensorLikeType):
if not utils.is_boolean_dtype(a.dtype):
return a == 0
return ~a
def _logical_or(a: TensorLikeType, b: TensorLikeType):
if not utils.is_boolean_dtype(a.dtype):
a = a != 0
if not utils.is_boolean_dtype(b.dtype):
b = b != 0
return bitwise_or(a, b)
logical_or = _make_elementwise_binary_reference(
_logical_or,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
aten_op=torch.ops.aten.logical_or,
)
def _logical_xor(a: TensorLikeType, b: TensorLikeType):
if not utils.is_boolean_dtype(a.dtype):
a = a != 0
if not utils.is_boolean_dtype(b.dtype):
b = b != 0
return a ^ b
# TODO: skip unnecessary conversion of long to float
logical_xor = _make_elementwise_binary_reference(
_logical_xor,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
aten_op=torch.ops.aten.logical_xor,
)
# TODO: add docstring
lt = _make_elementwise_binary_reference(
prims.lt, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
# TODO: add docstring
maximum = _make_elementwise_binary_reference(
prims.maximum, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
# TODO: add docstring
minimum = _make_elementwise_binary_reference(
prims.minimum, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
# TODO: add docstring
mul = _make_elementwise_binary_reference(
prims.mul, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
# TODO: add docstring
ne = _make_elementwise_binary_reference(
prims.ne, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL,
supports_lhs_python_scalar=False,
)
# TODO: add docstring
nextafter = _make_elementwise_binary_reference(
prims.nextafter, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH,
supports_lhs_python_scalar=False,
supports_rhs_python_scalar=False,
)
# TODO: add docstring
remainder = _make_elementwise_binary_reference(
prims.remainder, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=torch.ops.aten.remainder,
)
# reverse sub
def rsub(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
*,
alpha: Optional[NumberType] = None,
):
if isinstance(a, Number):
msg = "Received a Number for the first argument, but expected a Tensor"
raise ValueError(msg)
return sub(b, a, alpha=alpha)
# TODO: add docstring
# TODO: consider refactoring this with add impl
# sub has its own implementation because it has an alpha argument
@register_decomposition(torch.ops.aten.sub)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def sub(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
*,
alpha: Optional[NumberType] = None,
):
"""
Reference implementation of torch.sub
"""
if isinstance(a, Number) and isinstance(b, Number):
raise ValueError(
"Receive two Number inputs to an elementwise binary operation!"
)
a, b = _maybe_broadcast(a, b)
if alpha is not None:
dtype = a.dtype if isinstance(a, TensorLike) else b.dtype # type: ignore[union-attr]
python_type = utils.dtype_to_type(dtype)
if not utils.is_weakly_lesser_type(type(alpha), python_type):
msg = (
"alpha argument of type {0} cannot be safely cast to type {1}!".format(
type(alpha), python_type
)
)
raise ValueError(msg)
b = prims.mul(b, alpha)
return prims.sub(a, b)
# TODO: add docstring
true_divide = _make_elementwise_binary_reference(
prims.div, # type: ignore[has-type]
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
aten_op=None, # CompositeImplicitAutograd
)
def _trunc_divide(
a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]
):
dtype = utils.get_dtype(a)
if utils.is_integer_dtype(dtype):
return prims.div(a, b)
return trunc(prims.div(a, b))
# TODO: add docstring
trunc_divide = _make_elementwise_binary_reference(
_trunc_divide,
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
aten_op=None, # CompositeImplicitAutograd
)
#
# Elementwise Ternary References
#
@register_decomposition(torch.ops.aten.addcdiv)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("self", "tensor1", "tensor2"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def addcdiv(
self: TensorLikeType,
tensor1: TensorLikeType,
tensor2: TensorLikeType,
*,
value: NumberType = 1,
) -> TensorLikeType:
"""
Reference implementation of torch.addcdiv
"""
if value is not None:
dtype = self.dtype # no scalars allowed, see add
python_type = utils.dtype_to_type(dtype)
if not utils.is_weakly_lesser_type(type(value), python_type):
msg = (
"value argument of type {0} cannot be safely cast to type {1}!".format(
type(value), python_type
)
)
raise ValueError(msg)
return self + value * tensor1 / tensor2
@register_decomposition(torch.ops.aten.clamp)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "min", "max"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def clamp(
a: TensorLikeType,
min: Optional[TensorOrNumberLikeType] = None,
max: Optional[TensorOrNumberLikeType] = None,
) -> TensorLikeType:
# NOTE: grad behavior with implementation `where` is not consistent on `nan`
if min is None and max is None:
msg = "clamp called but both min and max are none!"
raise ValueError(msg)
if min is not None:
a_isnan = torch.isnan(a)
condition = torch.bitwise_or(torch.ge(a, min), a_isnan) # type: ignore[arg-type]
# we should also propagate `nan` coming from boundaries. However, that's
# not necessary since `ge` would already `False` when either operands has
# a `nan`. So this line below is redundant
# `condition = bitwise_and(condition, bitwise_not(isnan(min)))`
a = torch.where(condition, a, min) # type: ignore[arg-type]
if max is not None:
a_isnan = torch.isnan(a)
# same as above, no need to adjust `nan` from `max`
condition = torch.bitwise_or(torch.le(a, max), a_isnan) # type: ignore[arg-type]
a = torch.where(condition, a, max) # type: ignore[arg-type]
return a
@register_decomposition(torch.ops.aten.clamp_min)
@out_wrapper()
def clamp_min(
self: TensorLikeType,
min: TensorOrNumberLikeType = None,
) -> TensorLikeType:
return torch.clamp(self, min=min) # type: ignore[arg-type]
@register_decomposition(torch.ops.aten.clamp_max)
@out_wrapper()
def clamp_max(
self: TensorLikeType,
max: TensorOrNumberLikeType = None,
) -> TensorLikeType:
return torch.clamp(self, max=max) # type: ignore[arg-type]
#
# Conditional references
#
# https://pytorch.org/docs/stable/generated/torch.where.html
# TODO: implement alternate where
@register_decomposition(torch.ops.aten.where)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH,
)
def where(
pred: Tensor,
a: Optional[TensorOrNumberLikeType] = None,
b: Optional[TensorOrNumberLikeType] = None,
):
""" """
if a is None or b is None:
raise NotImplementedError
utils.check_same_device(pred, a, b, allow_cpu_scalar_tensors=True)
check(
pred.dtype is torch.bool,
lambda: f"expected predicate to be bool, got {pred.dtype}",
)
pred, a, b = _maybe_broadcast(pred, a, b)
return prims.where(pred, a, b)
#
# Data Movement References
#
@register_decomposition(torch.ops.aten.clone)
def clone(
a: TensorLikeType, *, memory_format: torch.memory_format = torch.preserve_format
) -> TensorLikeType:
result = torch.empty_like(
a, requires_grad=a.requires_grad, memory_format=memory_format
)
copy_to(result, a)
return result
def copy_to(a: Tensor, b: Tensor, *, allow_cross_device=True):
if not allow_cross_device and a.device != b.device:
msg = "Attempting to copy from device {0} to device {1}, but cross-device copies are not allowed!".format(
b.device, a.device
)
raise RuntimeError(msg)
return prims.copy_to(a, b)
@register_decomposition(torch.ops.aten.item)
def item(a: TensorLikeType) -> NumberType:
if a.numel() != 1:
msg = f"Can't convert a tensor with {a.numel()} elements to a number!"
raise ValueError(msg)
# NOTE: explicit conversion is necessary for bool!
# See https://github.com/pytorch/pytorch/issues/78071
number_type = utils.dtype_to_type(a.dtype)
return number_type(prims.item(a))
# fast path when `to` returns an alias to input. This mimics the same function in aten
def _to_will_alias(
a: TensorLikeType,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
copy: Optional[bool] = None,
layout: Optional[torch.layout] = None,
memory_format: Optional[torch.memory_format] = None,
pin_memory: Optional[bool] = False,
non_blocking: bool = False, # not using non_blocking
) -> bool:
return (
not copy
and (device is None or a.device == device)
and (dtype is None or a.dtype == dtype)
and (layout is None or a.layout == layout)
# is_pinned issue #84925
# and (pin_memory is None or pin_memory == a.is_pinned())
and (
memory_format is None
or memory_format == torch.preserve_format
or utils.is_contiguous_for_memory_format(a, memory_format=memory_format)
)
)
@singledispatch
def _to_dispatch(*args, **kwargs):
raise NotImplementedError
@_to_dispatch.register
def _to_device(
device: torch.device,
dtype: torch.dtype,
non_blocking: bool = False,
copy: bool = False,
memory_format: Optional[torch.memory_format] = None,
):
kwargs = {
"device": device,
"dtype": dtype,
"non_blocking": non_blocking,
"copy": copy,
"memory_format": memory_format,
}
return kwargs
@_to_dispatch.register
def _to_device_str(
device: str,
dtype: torch.dtype,
non_blocking: bool = False,
copy: bool = False,
memory_format: Optional[torch.memory_format] = None,
):
kwargs = {
"device": torch.device(device),
"dtype": dtype,
"non_blocking": non_blocking,
"copy": copy,
"memory_format": memory_format,
}
return kwargs
@_to_dispatch.register
def _to_dtype(
dtype: torch.dtype,
non_blocking: bool = False,
copy: bool = False,
memory_format: Optional[torch.memory_format] = None,
):
kwargs = {
"dtype": dtype,
"non_blocking": non_blocking,
"copy": copy,
"memory_format": memory_format,
}
return kwargs
@_to_dispatch.register
def _to_other(
other: Tensor,
non_blocking: bool = False,
copy: bool = False,
memory_format: Optional[torch.memory_format] = None,
):
device = other.device
dtype = other.dtype
layout = other.layout
# is_pinned issue #84925
# pin_memory = other.is_pinned()
kwargs = {
"device": device,
"dtype": dtype,
"layout": layout,
"non_blocking": non_blocking,
"copy": copy,
"memory_format": memory_format,
}
return kwargs
# remove to_kwargs that is already present in `a`
def canonicalize_to_arguments(a: Tensor, to_kwargs: dict):
options_to_check = ["dtype", "device", "layout", "memory_format"]
# "device" option could be passed a str instead torch.device
if "device" in to_kwargs and isinstance(to_kwargs["device"], str):
to_kwargs["device"] = torch.device(to_kwargs["device"])
for kw in options_to_check:
if kw in to_kwargs:
if (
(kw == "memory_format" and to_kwargs[kw] is torch.preserve_format)
or (
kw == "device"
and to_kwargs[kw].type == a.device.type
and (
not to_kwargs[kw].index or to_kwargs[kw].index == a.device.index
)
)
or (
getattr(a, kw, None) == to_kwargs[kw]
) # this also handles {"memory_format": None}
):
to_kwargs.pop(kw)
def to(a: TensorLikeType, *args, **kwargs) -> TensorLikeType:
# handled dispatch via positional arguments
if len(args) != 0:
kwargs = _to_dispatch(*args, **kwargs)
# TODO: is_pinned is not currently supported in refs or fake_tensor
# https://github.com/pytorch/pytorch/issues/84925
assert "pin_memory" not in kwargs
canonicalize_to_arguments(a, kwargs)
if _to_will_alias(a, **kwargs):
return a
copy = kwargs.pop("copy") if "copy" in kwargs else False
non_blocking = kwargs.pop("non_blocking") if "non_blocking" in kwargs else False
# short-circuit to `prims.convert_element_type` when `to` is just a dtype change
if (
(copy or (kwargs.get("dtype", a.dtype) != a.dtype))
and (not non_blocking)
and ("memory_format" not in kwargs)
and ("device" not in kwargs)
and ("layout" not in kwargs)
# is_pinned issue #84925
# and ("pin_memory" not in kwargs)
):
return prims.convert_element_type(a, kwargs.get("dtype", a.dtype))
result = torch.empty_like(a, **kwargs)
# TODO: non_blocking should be handled by `copy_to`
copy_to(result, a)
return result
#
# Reduction references
#
def _reduction(
a: TensorLikeType,
prim: Callable,
*,
has_identity: bool = True,
accepts_dim_tuple: bool = True, # to handle min/argmin that accept single dim only
dims: Optional[DimsType] = None,
keepdims: bool = False,
dtype: Optional[torch.dtype] = None, # should be specified for ops that support it
out: Optional[Tensor] = None,
output_dtype_kind: REDUCTION_OUTPUT_TYPE_KIND,
) -> TensorLikeType: # it is usually SAME, but I want
# ref writers to actually think about what to put here
assert isinstance(a, TensorLike)
if a.ndim > 64:
raise RuntimeError(
"Received a tensor with {0} dimensions, but only tensors with up to 64 dims are supported!".format(
a.ndim
)
)
if out is not None:
assert isinstance(out, TensorLike)
if dtype is not None:
# TODO - this is true for eager mode currently, but it's wrong behavior for complex norms
if dtype != out.dtype:
raise RuntimeError(
"dtype argument and out dtype must match in reduction"
)
if not accepts_dim_tuple:
assert dims is None or isinstance(dims, int)
if isinstance(dims, int):
dims = (dims,) # type: ignore[assignment]
dims = utils.reduction_dims(a.shape, dims)
if not has_identity:
valid_shape = a.ndim == 0 or py_all(a.shape[i] for i in dims)
if not valid_shape:
raise RuntimeError(
"reducing over zero-size dimension for reduction operation without identity"
)
computation_dtype, result_dtype = utils.reduction_dtypes(
a, output_dtype_kind, dtype
)
a_converted = prims.convert_element_type(a, computation_dtype)
result = prim(a_converted, dims)
if keepdims:
output_shape = [a.shape[i] if i not in dims else 1 for i in range(a.ndim)]
broadcast_dims = [i for i in range(a.ndim) if i not in dims]
result = prims.broadcast_in_dim(result, output_shape, broadcast_dims)
if out is not None:
assert result_dtype is not None
if dtype is not None and result_dtype != out.dtype:
raise RuntimeError(
"Expected the dtype of reduction result and out to match"
)
out = _maybe_resize_out(out, result.shape)
return _safe_copy_out(copy_from=result, copy_to=out) # type: ignore[arg-type]
if result.dtype != result_dtype and result_dtype is not None:
result = prims.convert_element_type(result, result_dtype)
return result
# Saves Python all
py_all = all
@register_decomposition(torch.ops.aten.all)
@out_wrapper()
def all(
a: TensorLikeType,
dim: Optional[DimsType] = None,
keepdim: bool = False,
) -> TensorLikeType:
# Computes nelem
if isinstance(dim, int):
dim = (dim,) # type: ignore[assignment]
a_ = _maybe_convert_to_dtype(a, torch.bool)
# avoid comparison with symbolic number of elements to make this op symint friendly
result = eq(sum(logical_not(a_), dim=dim, keepdim=keepdim), 0)
# Preserves uint8 -- probably a legacy mask thing
if a.dtype is torch.uint8:
return prims.convert_element_type(result, torch.uint8)
return result
# Saves Python any
py_any = any
@register_decomposition(torch.ops.aten.any)
@out_wrapper()
def any(
a: TensorLikeType,
dim: Optional[DimsType] = None,
keepdim: bool = False,
) -> TensorLikeType:
a_ = _maybe_convert_to_dtype(a, torch.bool)
result = ne(sum(a_, dim=dim, keepdim=keepdim), False) # type: ignore[arg-type]
# Preserves uint8 -- probably a legacy mask thing
if a.dtype is torch.uint8:
return prims.convert_element_type(result, torch.uint8)
return result
@register_decomposition(torch.ops.aten.sum)
def sum(
a: TensorLikeType,
dim: Union[Optional[int], Optional[List[int]]] = None,
keepdim: bool = False,
*,
dtype: Optional[torch.dtype] = None,
out: Optional[Tensor] = None,
) -> TensorLikeType:
if dtype is None:
if utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype):
dtype = torch.int64
else:
dtype = a.dtype
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
return _reduction(
a,
prims.sum,
dims=dim,
keepdims=keepdim,
dtype=dtype,
out=out,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME,
)
def sum_to_size(
a: Tensor,
*shape,
) -> Tensor:
shape = utils.extract_shape_from_varargs(shape, validate=False)
utils.check(
utils.is_expandable_to(shape, a.shape),
lambda: f'sum_to_size: size "{shape}" is not expandable to size "{a.shape}"',
)
# In ATen scalar tensors are sent through sum and the result is returned as
# type promoted
if utils.is_same_shape(shape, a.shape) and len(shape) > 0:
return prims.view_of(a)
leading_dims = a.ndim - len(shape)
reduce_dims = tuple(range(leading_dims)) + tuple(
i
for i in range(leading_dims, len(shape))
if shape[i - leading_dims] == 1 and a.shape[i] != 1
)
return torch.sum(a, dim=reduce_dims, keepdim=True, dtype=None)
@register_decomposition(torch.ops.aten.prod)
def prod(
a: TensorLikeType,
dim: Union[Optional[int], Optional[List[int]]] = None,
keepdim: bool = False,
*,
dtype=None,
out: Optional[Tensor] = None,
) -> TensorLikeType:
if dtype is None:
if utils.is_boolean_dtype(a.dtype) or utils.is_integer_dtype(a.dtype):
dtype = torch.int64
else:
dtype = a.dtype
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
return _reduction(
a,
prims.prod,
dims=dim,
keepdims=keepdim,
dtype=dtype,
out=out,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME,
)
@register_decomposition(torch.ops.aten.amin)
def amin(
a: TensorLikeType,
dim: Union[Optional[int], Optional[List[int]]] = None,
keepdim: bool = False,
*,
out: Optional[Tensor] = None,
) -> TensorLikeType:
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
return _reduction(
a,
prims.amin,
dims=dim,
keepdims=keepdim,
dtype=None,
out=out,
has_identity=False,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME,
)
@register_decomposition(torch.ops.aten.amax)
def amax(
a: TensorLikeType,
dim: Optional[DimsType] = None,
keepdim: bool = False,
*,
out: Optional[Tensor] = None,
) -> TensorLikeType:
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
return _reduction(
a,
prims.amax,
dims=dim,
keepdims=keepdim,
dtype=None,
out=out,
has_identity=False,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.SAME,
)
def _dim_var_dispatch(dim=None, unbiased=None):
# There's the following overload of torch.var:
# var(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
# We need to explicitly convert bool dims to unbiased arg
if unbiased is None and isinstance(dim, bool):
unbiased = dim
dim = None
return dim, unbiased
@out_wrapper()
def var(
a: TensorLikeType,
dim: Optional[DimsType] = None,
unbiased: Optional[bool] = None,
keepdim: bool = False,
*,
correction: Optional[int] = None,
) -> TensorLikeType:
dim, unbiased = _dim_var_dispatch(dim, unbiased)
correction = utils.set_correction(unbiased, correction)
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
result = _reduction(
a,
partial(prims.var, correction=correction),
dims=dim,
keepdims=keepdim,
dtype=None,
out=None,
has_identity=True,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT,
)
return result
@out_wrapper()
def std(
a: TensorLikeType,
dim: Union[Optional[int], Optional[List[int]]] = None,
unbiased: Optional[bool] = None,
keepdim: bool = False,
*,
correction: Optional[int] = None,
) -> TensorLikeType:
dim, unbiased = _dim_var_dispatch(dim, unbiased)
correction = utils.set_correction(unbiased, correction)
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
opmath_dtype, dtype = utils.reduction_dtypes(
a, REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT
)
result = _reduction(
a,
partial(prims.var, correction=correction),
dims=dim,
keepdims=keepdim,
dtype=opmath_dtype,
out=None,
has_identity=True,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT,
)
result = sqrt(result)
return _maybe_convert_to_dtype(result, dtype) # type: ignore[return-value,arg-type]
@register_decomposition(torch.ops.aten.mean)
def mean(
a: TensorLikeType,
dim: Optional[DimsType] = None,
keepdim: bool = False,
*,
dtype=None,
out=None,
) -> TensorLikeType:
# reduces over all dimensions if dim=() is passed
if dim == () or dim == []:
dim = None
if dtype is None:
dtype = a.dtype
# can't use out wrapper because of this argument
if out is not None and out.dtype != dtype:
raise RuntimeError("expected out dtype and dtype to match")
result = _reduction(
a,
prims.sum,
dims=dim,
keepdims=keepdim,
dtype=dtype,
out=None,
output_dtype_kind=REDUCTION_OUTPUT_TYPE_KIND.KEEP_PROMOTED_TYPE,
)
if utils.is_integer_dtype(dtype):
raise RuntimeError("result type should be floating point or complex")
if isinstance(dim, int):
dim = (dim,) # type: ignore[assignment]
dims = utils.reduction_dims(a.shape, dim) # type: ignore[arg-type]
nelem = 1 if a.ndim == 0 else reduce(operator.mul, (a.shape[i] for i in dims), 1)
result = true_divide(result, nelem)
result_dtype = a.dtype if dtype is None else dtype
result = _maybe_convert_to_dtype(result, result_dtype) # type: ignore[assignment]
if out is not None:
assert isinstance(out, TensorLike)
out = _maybe_resize_out(out, result.shape)
return _safe_copy_out(copy_from=result, copy_to=out) # type: ignore[arg-type]
return result
@register_decomposition(torch.ops.aten.std_mean.correction)
def std_mean(
a: TensorLikeType,
dim: Union[Optional[int], Optional[List[int]]] = None,
*,
unbiased: Optional[bool] = None,
keepdim: bool = False,
correction: Optional[int] = None,
):
dim, unbiased = _dim_var_dispatch(dim, unbiased)
s = std(a, dim, unbiased, keepdim, correction=correction)
m = mean(a, dim, keepdim)
return s, m
@register_decomposition(torch.ops.aten.var_mean)
def var_mean(
a: TensorLikeType,
dim: Optional[DimsType] = None,
unbiased: Optional[bool] = None,
keepdim: bool = False,
*,
correction: Optional[int] = None,
):
dim, unbiased = _dim_var_dispatch(dim, unbiased)
v = var(a, dim, unbiased, keepdim, correction=correction)
m = mean(a, dim, keepdim)
return v, m
@register_decomposition(torch.ops.aten.addr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("self", "vec1", "vec2"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def addr(
self: TensorLikeType,
vec1: TensorLikeType,
vec2: TensorLikeType,
*,
beta: NumberType = 1,
alpha: NumberType = 1,
) -> TensorLikeType:
check(
vec1.ndim == 1,
lambda: f"addr: Expected 1-D argument vec1, but got {vec1.ndim}-D",
)
check(
vec2.ndim == 1,
lambda: f"addr: Expected 1-D argument vec2, but got {vec2.ndim}-D",
)
self = self.expand(vec1.shape[0], vec2.shape[0])
if utils.is_boolean_dtype(self.dtype):
# Integers are accepted for booleans
check(
is_weakly_lesser_type(type(beta), int),
lambda: f"expected bool/int beta but got {type(beta)}",
)
check(
is_weakly_lesser_type(type(alpha), int),
lambda: f"expected bool/int alpha but got {type(beta)}",
)
if not beta:
return torch.outer(vec1, vec2) if alpha else torch.full_like(self, False)
else:
return torch.logical_or(
self,
torch.outer(vec1, vec2) if alpha else torch.full_like(self, False),
)
else:
check(
is_weakly_lesser_type(type(beta), dtype_to_type(self.dtype)),
lambda: f"cannot safely convert {type(beta)} to {self.dtype}",
)
check(
is_weakly_lesser_type(type(alpha), dtype_to_type(self.dtype)),
lambda: f"cannot safely convert {type(alpha)} to {self.dtype}",
)
if beta == 0:
# This means NaNs from self are dropped if beta is zero
return alpha * torch.outer(vec1, vec2)
else:
return beta * self + alpha * torch.outer(vec1, vec2)
# CompositeImplicitAutograd - don't register decomp
def atleast_1d(
arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType
) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]:
"""Reference implementation of :func:`torch.atleast_1d`."""
if not args and isinstance(arg, collections.abc.Sequence):
args_ = arg
else:
assert not isinstance(arg, collections.abc.Sequence)
args_ = (arg,) + args
res = tuple(a if a.ndim >= 1 else unsqueeze(a, 0) for a in args_)
return res if len(res) > 1 else res[0]
# Helper function with assert to avoid MyPy error
# of incompatible type passed to unsqueeze
def _unsqueeze_atleast(
at_least_fn: Callable, dim: int, arg: TensorLikeType
) -> TensorLikeType:
arg_ = at_least_fn(arg)
assert isinstance(arg_, TensorLike)
return unsqueeze(arg_, dim)
# CompositeImplicitAutograd - don't register decomp
def atleast_2d(
arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType
) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]:
"""Reference implementation of :func:`torch.atleast_2d`."""
if not args and isinstance(arg, collections.abc.Sequence):
args_ = arg
else:
assert not isinstance(arg, collections.abc.Sequence)
args_ = (arg,) + args
unsqueeze_atleast_1d = partial(_unsqueeze_atleast, atleast_1d, 0)
res = tuple(a if a.ndim >= 2 else unsqueeze_atleast_1d(a) for a in args_)
return res if len(res) > 1 else res[0]
# CompositeImplicitAutograd - don't register decomp
def atleast_3d(
arg: Union[TensorLikeType, Sequence[TensorLikeType]], *args: TensorLikeType
) -> Union[TensorLikeType, Tuple[TensorLikeType, ...]]:
"""Reference implementation of :func:`torch.atleast_3d`."""
if not args and isinstance(arg, collections.abc.Sequence):
args_ = arg
else:
assert not isinstance(arg, collections.abc.Sequence)
args_ = (arg,) + args
unsqueeze_atleast_2d = partial(_unsqueeze_atleast, atleast_2d, -1)
res = tuple(a if a.ndim >= 3 else unsqueeze_atleast_2d(a) for a in args_)
return res if len(res) > 1 else res[0]
def as_strided(
a: TensorLikeType, size: ShapeType, stride: StrideType, storage_offset: int = 0
) -> TensorLikeType:
return prims.as_strided(a, size, stride, storage_offset)
def broadcast_shapes(*shapes) -> ShapeType:
return torch.Size(_broadcast_shapes(*shapes))
@torch.ops.aten.broadcast_tensors.default.py_impl(DispatchKey.CompositeImplicitAutograd)
@torch.ops.aten.broadcast_tensors.default.py_impl(DispatchKey.Meta)
def broadcast_tensors(*tensors) -> List[TensorLikeType]:
if len(tensors) == 1 and not isinstance(tensors[0], Tensor):
tensors = tensors[0]
return list(_maybe_broadcast(*tensors, preserve_cpu_scalar_tensors=False))
# CompositeImplicitAutograd - don't register decomp
def broadcast_to(a: TensorLikeType, size: ShapeType) -> TensorLikeType:
start = len(size) - len(a.shape)
dims = tuple(range(start, len(a.shape) + start))
return prims.broadcast_in_dim(a, size, dims)
@register_decomposition(torch.ops.aten.cat)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("tensors",),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH,
)
def cat(tensors: TensorSequenceType, dim: int = 0) -> TensorLikeType:
if len(tensors) == 0:
msg = "cat expects at least one tensor, but received zero!"
raise ValueError(msg)
for tensor in tensors:
assert isinstance(tensor, TensorLike)
utils.check_same_device(*tensors, allow_cpu_scalar_tensors=False)
dim = utils.canonicalize_dim(tensors[0].ndim, dim)
utils.validate_idx(tensors[0].ndim, dim)
# Filters tensors with one dimension of length zero
filtered = tuple(x for x in tensors if not (x.ndim == 1 and x.numel() == 0))
if len(filtered) == 0:
t = tensors[0]
# TODO: fix this to work with meta tensors
try:
requires_grad = any(x.requires_grad for x in tensors)
except Exception:
requires_grad = False
return empty((0,), dtype=t.dtype, device=t.device, requires_grad=requires_grad)
return prims.cat(filtered, dim)
# CompositeImplicitAutograd - don't register decomp
@out_wrapper()
def column_stack(tensors: TensorSequenceType) -> TensorLikeType:
aligned_tensors = tuple(
x if x.ndim > 1 else x.reshape((x.numel(), 1)) for x in tensors
)
return cat(aligned_tensors, 1)
def conj(input: TensorLikeType) -> TensorLikeType:
if not utils.is_complex_dtype(input.dtype):
return input
if input.is_sparse:
return torch.conj_physical(input)
return prims.conj(input)
# This replicates at::constant_pad_nd, defined in ATen/native/PadNd.cpp
@register_decomposition(torch.ops.aten.constant_pad_nd)
def constant_pad_nd(
input: TensorLikeType, pad: List[int], value: NumberType = 0
) -> TensorLikeType:
check(
len(pad) % 2 == 0,
lambda: f"Length of pad must be even but instead it equals {len(pad)}",
)
input_sizes = input.shape
l_inp = len(input_sizes)
l_pad = len(pad) // 2
l_diff = l_inp - l_pad
check(
l_inp >= l_pad,
lambda: "Length of pad should be no more than twice the number of "
f"dimensions of the input. Pad length is {len(pad)} while the input has "
f"{l_inp} dimensions.",
)
c_input = input
for i in range(l_diff, l_inp):
pad_idx = 2 * (l_inp - i - 1)
if pad[pad_idx] < 0:
c_input = c_input.narrow(i, -pad[pad_idx], c_input.shape[i] + pad[pad_idx])
if pad[pad_idx + 1] < 0:
c_input = c_input.narrow(i, 0, c_input.shape[i] + pad[pad_idx + 1])
# if none of the pads are positive we can just return the result
if builtins.all(p <= 0 for p in pad):
return c_input.clone()
new_shape = list(input_sizes[:l_diff])
for i in range(l_pad):
pad_idx = len(pad) - ((i + 1) * 2)
new_dim = input_sizes[l_diff + i] + pad[pad_idx] + pad[pad_idx + 1]
check(
new_dim > 0,
lambda: f"The input size {input_sizes[l_diff + i]}, plus negative padding "
f"{pad[pad_idx]} and {pad[pad_idx + 1]} resulted in a negative output size, "
f"which is invalid. Check dimension {l_diff + i} of your input.",
)
new_shape.append(new_dim)
memory_format = utils.suggest_memory_format(input)
output = torch.empty(
new_shape,
dtype=input.dtype,
device=input.device,
requires_grad=input.requires_grad,
memory_format=memory_format,
)
if value == 0 and input.dtype == torch.bool:
value = False
# torch.fill isn't typed to allow complex values
output = torch.fill(output, value) # type: ignore[arg-type]
c_output = output
for i in range(l_diff, l_inp):
pad_idx = 2 * (l_inp - i - 1)
if pad[pad_idx] > 0:
c_output = c_output.narrow(
i, pad[pad_idx], c_output.shape[i] - pad[pad_idx]
)
if pad[pad_idx + 1] > 0:
c_output = c_output.narrow(i, 0, c_output.shape[i] - pad[pad_idx + 1])
prims.copy_to(c_output, c_input)
return output
def contiguous(
a: Tensor, *, memory_format: torch.memory_format = torch.contiguous_format
) -> Tensor:
check(
memory_format != torch.preserve_format,
lambda: "preserve memory format is unsupported by the contiguous operator",
)
if utils.is_contiguous_for_memory_format(a, memory_format=memory_format):
return a
return torch.clone(a, memory_format=memory_format)
@out_wrapper()
def dstack(tensors: TensorSequenceType) -> TensorLikeType:
check(len(tensors) > 0, lambda: "dstack expects a non-empty TensorList")
aligned_tensors = atleast_3d(*tensors)
return cat(aligned_tensors, 2)
@register_decomposition(torch.ops.aten.expand, disable_meta=True)
def expand(a: Tensor, *shape) -> Tensor:
# NOTE: cannot use utils.extract_shape_from_varargs here
# because that also validates the shape, but the shape
# given to expand may be "invalid"
if len(shape) == 1 and isinstance(shape[0], Sequence):
shape = tuple(shape[0])
check(
len(shape) >= len(a.shape),
lambda: "expand: the requested shape has too few dimensions!",
)
offset = len(shape) - len(a.shape)
shape_ = list(shape)
for idx, x in enumerate(a.shape):
offset_idx = idx + offset
requested_length = shape[offset_idx]
check(
requested_length == x or x == 1 or requested_length == -1,
lambda: f"expand: attempting to expand a dimension of length {x}!",
)
shape_[offset_idx] = requested_length if requested_length != -1 else x
# At this point shape must be valid
utils.validate_shape(shape_)
return prims.broadcast_in_dim(
a, shape_, tuple(range(offset, len(a.shape) + offset))
)
# CompositeImplicitAutograd - don't register decomp
def expand_as(a: Tensor, b: Tensor) -> Tensor:
return a.expand(b.shape)
def chunk(a: TensorLikeType, chunks: int, dim: int = 0) -> Tuple[TensorLikeType, ...]:
if chunks <= 0:
msg = "Expected at least one chunk, but got {0}!".format(chunks)
raise ValueError(msg)
dim = utils.canonicalize_dim(a.ndim, dim)
length = a.shape[dim]
chunk_size = math.ceil(length / chunks)
full_chunks = math.floor(length / chunk_size)
tail_chunk_size = length % chunk_size
result = []
for i in range(full_chunks):
result.append(narrow(a, dim, i * chunk_size, chunk_size))
if tail_chunk_size != 0:
result.append(narrow(a, dim, full_chunks * chunk_size, tail_chunk_size))
return tuple(result)
# Note: flatten, unlike prim.collapse and prim.collapse_view has an inclusive end_dim
# Note: flatten, unlike other shape operators, returns the input tensor on a no-op (unless
# a 0D tensor is flattened, in which case it's returned in 1D)
# CompositeImplicitAutograd - don't register decomp
def flatten(a: TensorLikeType, start_dim: int = 0, end_dim: int = -1) -> TensorLikeType:
start_dim = utils.canonicalize_dim(a.ndim, start_dim)
end_dim = utils.canonicalize_dim(a.ndim, end_dim)
# Short-circuits on no-op
if start_dim == end_dim and a.ndim != 0:
return a
# Tries to take a view
# TODO: we could look at directing collapse_view to skip its meta function here (unsafe_collapse_view)
new_shape, new_strides = prims._collapse_view_helper(a, start_dim, end_dim + 1)
if new_shape is not None:
return prims.collapse_view(a, start_dim, end_dim + 1)
# Makes a copy if it can't make a view
return prims.collapse(a, start_dim, end_dim + 1)
@register_decomposition(torch.ops.aten.flip)
def flip(a: TensorLikeType, dims: DimsSequenceType) -> TensorLikeType:
if not isinstance(dims, tuple) and not isinstance(dims, list):
raise ValueError("dims has to be a sequence of ints")
dims = utils.canonicalize_dims(a.ndim, dims) # type: ignore[assignment]
utils.validate_no_repeating_dims(dims)
return prims.rev(a, dims)
# CompositeImplicitAutograd - don't register decomp
def fliplr(a: TensorLikeType) -> TensorLikeType:
if a.ndim < 2:
raise RuntimeError("Input must be >= 2-d.")
return flip(a, (1,))
# CompositeImplicitAutograd - don't register decomp
def flipud(a: TensorLikeType) -> TensorLikeType:
if a.ndim < 1:
raise RuntimeError("Input must be >= 1-d.")
return flip(a, (0,))
# CompositeImplicitAutograd - don't register decomp
def narrow(a: TensorLikeType, dim: int, start: int, length: int) -> TensorLikeType:
dim = utils.canonicalize_dim(a.ndim, dim)
return prims.slice_in_dim(a, start, start + length, axis=dim)
def _normalize(
a: Tensor, norm_dims: DimsType, eps: float
) -> Tuple[Tensor, Tensor, Tensor]:
"""Computes mean and 1/std of a tensor along norm_dims.
Used as a helper function for normalization layers.
Args:
a (Tensor): input tensor
norm_dims (DimsType): dimensions to normalize over
eps (float): epsilon for numerical stability
Returns:
out (Tensor): normalized tensor.
mean (Tensor): mean of the tensor along norm_dims.
rstd (Tensor): 1/std of the tensor along norm_dims.
"""
computation_dtype = utils.get_computation_dtype(a.dtype)
a_acc = _maybe_convert_to_dtype(a, computation_dtype)
assert isinstance(a_acc, TensorLike) # to avoid mypy error for var_mean
biased_var, mean = torch.var_mean(
a_acc, dim=norm_dims, unbiased=False, keepdim=True
)
rstd = torch.rsqrt(biased_var + eps)
out = (a - mean) * rstd
return out, mean, rstd
@register_decomposition(torch.ops.aten.native_layer_norm)
def native_layer_norm(
input: Tensor,
normalized_shape: ShapeType,
weight: Optional[Tensor],
bias: Optional[Tensor],
eps: float,
) -> Tuple[Tensor, Tensor, Tensor]:
normalized_ndim = len(normalized_shape)
utils.check(
normalized_ndim >= 1,
lambda: "Expected normalized_shape to be at least 1-dimensional, i.e., "
+ "containing at least one element, but got normalized_shape = "
+ str(normalized_shape),
)
# torch.Size([1, 2, 3]) == [1, 2, 3] evaluates to False
# while torch.Size([1, 2, 3]) == (1, 2, 3) is True
# therefore we use tuple(normalized_shape)
utils.check(
weight is None or weight.shape == tuple(normalized_shape),
lambda: "Expected weight to be of same shape as normalized_shape, but got "
+ "weight of shape "
+ str(weight.shape) # type: ignore[union-attr]
+ " and normalized_shape = "
+ str(normalized_shape),
)
utils.check(
bias is None or bias.shape == tuple(normalized_shape),
lambda: "Expected bias to be of same shape as normalized_shape, but got "
+ "bias of shape "
+ str(bias.shape) # type: ignore[union-attr]
+ " and normalized_shape = "
+ str(normalized_shape),
)
utils.check(
input.ndim >= normalized_ndim
and input.shape[(input.ndim - normalized_ndim) :] == tuple(normalized_shape),
lambda: "Given normalized_shape="
+ str(normalized_shape)
+ ", expected input with shape "
+ str(normalized_shape)
+ ", but got input of size "
+ str(input.shape),
)
input = input.contiguous()
if weight is not None:
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
axis = input.ndim - normalized_ndim
reduction_dims = list(range(axis, input.ndim))
out, mean, rstd = _normalize(input, reduction_dims, eps)
if weight is None and bias is not None:
out = out + bias
elif weight is not None and bias is None:
out = out * weight
elif weight is not None and bias is not None:
out = out * weight + bias
out = prims.convert_element_type(out, input.dtype)
if input.device.type == "cpu":
mean = prims.convert_element_type(mean, input.dtype)
rstd = prims.convert_element_type(rstd, input.dtype)
return (out, mean, rstd)
# TODO: Adding this as a meta function causes functorch tests to fail when compiled with debug mode.
# test/test_eager_transforms.py::TestFunctionalizeCPU::test_functionalize_fx_transpose_simple_cpu
@register_decomposition(torch.ops.aten.permute, disable_meta=True)
def permute(a: TensorLikeType, *dims) -> TensorLikeType:
_permutation = utils.canonicalize_dims(
a.ndim, utils.extract_dims_from_varargs(dims)
)
return prims.transpose(a, _permutation)
# Get the new shape and stride after applying unfold to an input tensor
def _get_unfold_copy_shape_stride(
a_shape: ShapeType, a_stride: StrideType, dimension: int, size: int, step: int
):
a_ndim = len(a_shape)
dimension = utils.canonicalize_dim(a_ndim, dimension)
max_size = 1 if a_ndim == 0 else a_shape[dimension]
last_stride = 1 if a_ndim == 0 else a_stride[dimension]
utils.check(
size <= max_size,
lambda: "Maximum size for tensor at dimension "
+ str(dimension)
+ " is "
+ str(max_size)
+ " but size is "
+ str(size),
)
utils.check(
step > 0,
lambda: "Step is " + str(step) + " but must be > 0",
)
new_size = []
new_stride = []
for d, (dim_size, dim_stride) in enumerate(zip(a_shape, a_stride)):
if d == dimension:
new_size.append((dim_size - size) // step + 1)
new_stride.append(step * dim_stride)
else:
new_size.append(dim_size)
new_stride.append(dim_stride)
new_size.append(size)
new_stride.append(last_stride)
return new_size, new_stride
@register_decomposition(torch.ops.aten.repeat)
def repeat(a: Tensor, *repeat_shape) -> Tensor:
repeat_shape = utils.extract_shape_from_varargs(repeat_shape, validate=False)
utils.check(
len(repeat_shape) >= len(a.shape),
lambda: "repeat: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor",
)
if len(repeat_shape) == 0:
return torch.clone(a)
num_new_dimensions = len(repeat_shape) - a.ndim
padded_shape = [1] * num_new_dimensions
for dim_size in a.shape:
padded_shape.append(dim_size)
target_shape = tuple(
padded_size * repeat_size
for padded_size, repeat_size in zip(padded_shape, repeat_shape)
)
# return an empty tensor if one of the repeat_shape dimensions is zero
if 0 in repeat_shape:
return torch.empty(
target_shape,
dtype=a.dtype,
device=a.device,
requires_grad=a.requires_grad,
memory_format=utils.suggest_memory_format(a),
)
urtensor_shape = target_shape
urtensor_stride = utils.make_contiguous_strides_for(target_shape)
for dim, dim_size in enumerate(padded_shape):
# repeat each dimension by using unfold_copy operation
urtensor_shape, urtensor_stride = _get_unfold_copy_shape_stride(
urtensor_shape, urtensor_stride, dim, dim_size, max(dim_size, 1)
)
# derive permute order by sorting urtensor strides
enumerated_stride = list(enumerate(urtensor_stride))
enumerated_stride.sort(key=lambda item: item[1], reverse=True)
permute_order, sorted_stride = zip(*enumerated_stride)
# add new and expand dimensions according to urtensor
repeat_xtensor = a.expand(urtensor_shape)
# clone tensor to concretize expanded dimensions
cloned_result = torch.clone(repeat_xtensor)
# transpose axis so strides are in sorted order
permuted_result = cloned_result.permute(permute_order)
# reshape to get contiguous tensor with correct target shape
return permuted_result.reshape(target_shape)
def _reshape_view_helper(a: TensorLikeType, *shape, allow_copy: bool) -> TensorLikeType:
# Creates a valid shape
shape = utils.extract_shape_from_varargs(shape, validate=False)
# Reshape may be given a shape with a -1 length
# This indicates that the dimension's length should be inferred
shape = utils.infer_size(shape, a.numel())
# Short-circuits if shape is the same
if tuple(a.shape) == tuple(shape):
return prims.view_of(a)
# Special-cases tensors with no elements
if a.numel() == 0:
return as_strided(a, shape, utils.make_contiguous_strides_for(shape))
# Special-cases reshaping zero dim tensors
if a.ndim == 0:
_a = a
for length in shape:
assert length == 1
_a = unsqueeze(_a, -1)
return _a
# Special-cases reshaping to zero dim tensors
if len(shape) == 0:
_a = a
for length in a.shape:
assert length == 1
_a = squeeze(_a, -1)
return _a
# Handles general case: a 1+D tensor reshaped into a distinct 1+D shape
# NOTE [Reshape Algorithm]
# This algorithm works by attempting to greedily construct the desired dimensions in
# the output shape, left to right. It does this by, conceptually, accumulating
# dimensions of the original tensor, also left to right, until the dimension
# can be constructed using prims.split_dim.
# The algorithm also has special handling for tail squeezes/unsqueezes, like
# if a reshape from (5, 5) to (5, 5, 1) or vice versa.
#
# This algorithm does not flatten the original tensor and then split dims as appropriate
# because that would create copies more often than this algorithm. flatten is the only
# operation below which can create a view or a copy, and while it prefers creating
# views it may sometimes create a copy if the tensor's strides do not permit a view.
# As a result, this algorithm tries to minimize flattening.
#
# Note that a better version of this algorithm may exist. Regions which could be
# flattened without creating a copy can be identified in advance, and that might
# allow fewer flatten calls or faster short-circuiting to make a copy.
idx = 0
a_ = a
for length in shape:
# Handles tail unsqueezes
if idx >= a_.ndim:
assert length == 1
last_dim = a_.ndim - 1
# NOTE: using split_dim instead of unsqueeze may seem silly here,
# but it's necessary to get the strides correct
a_ = prims.split_dim(a_, last_dim, a_.shape[last_dim])
idx = idx + 1
continue
# Skips dimensions that are already the correct length
if length == a_.shape[idx]:
idx = idx + 1
continue
# Gathers enough original dimensions such that this new dimension can be created
# Note that this accumulation will terminate because we've verified a and the shape
# specify the same number of elements above
accum = a_.shape[idx]
end = idx
while accum % length != 0:
end = end + 1
accum = accum * a_.shape[end]
if end != idx:
# NOTE: in this case multiple dimensions must be flatten to create the desired dimension
# This flattening is why reshape sometimes creates a copy -- because flattening
# may return a view of a copy
# Checks if collapse can be a view and short-circuits to copying reshape if it can't
new_shape, new_strides = prims._collapse_view_helper(a_, idx, end + 1)
if new_shape is None:
if allow_copy:
return prims.reshape(a, shape)
msg = "Cannot view a tensor with shape {0} and strides {1} as a tensor with shape {2}!".format(
a.shape, a.stride(), shape
)
raise ValueError(msg)
a_ = flatten(a_, idx, end)
# Splits the (possibly flattened) dimension to create the desired dim length
if accum != length:
a_ = prims.split_dim(a_, idx, length)
idx = idx + 1
# Squeezes tail
while idx < a_.ndim:
assert a_.shape[idx] == 1
a_ = squeeze(a_, idx)
return a_
# CompositeImplicitAutograd - don't register decomp
# NOTE: shape is a vararg because Tensor.reshape can be called with as
# Tensor.reshape(a, b, c) or Tensor.reshape((a, b, c)) Function call
# torch.reshape doesn't support unpacked shapes
def reshape(a: TensorLikeType, *shape: ShapeType) -> TensorLikeType:
return _reshape_view_helper(a, *shape, allow_copy=True)
# CompositeImplicitAutograd - don't register decomp
def reshape_as(self: TensorLikeType, other: TensorLikeType) -> TensorLikeType:
return self.reshape(other.size())
@register_decomposition(torch.ops.aten.roll)
def roll(
a: TensorLikeType, shifts: DimsType, dims: DimsType = tuple()
) -> TensorLikeType:
"""Reference implementation of :func:`torch.roll`."""
dims = utils.canonicalize_dims(a.ndim, dims)
# ATen specifies int[1] type for shifts and dims which expands integers to tuples of length 1
if not isinstance(shifts, Iterable):
shifts = (shifts,)
if not isinstance(dims, Iterable):
dims = (dims,)
# Avoid modulo by zero
if a.numel() == 0:
# Keeping this as ref for now as FakeTensor runs into some issues with complex tensors
return clone(a)
len_shifts = len(shifts)
len_dims = len(dims)
if len_shifts != 1 or len_dims != 1:
if len_shifts == 0:
raise RuntimeError("`shifts` required")
# Takes care of the case when dims is not specified (default)
# By default, the tensor is flattened before shifting, after which the original shape is restored
if len_dims == 0 and len_shifts == 1:
return torch.roll(torch.flatten(a), shifts, 0).view(a.shape)
if len_shifts != len_dims:
raise RuntimeError(
f"shifts and dimensions must align. shifts: {len_shifts}, dims: {len_dims}"
)
assert len_dims > 1
tail_shifts = shifts[1:]
tail_dims = dims[1:]
first_dim_rolled = torch.roll(a, shifts[0], dims[0])
return torch.roll(first_dim_rolled, tail_shifts, tail_dims)
# This path is taken when only one dimension is rolled
# For example to get `first_dim_rolled` above
dim = dims[0]
size = a.shape[dim]
start = (size - shifts[0]) % size
t0 = torch.narrow(a, dim, start, size - start)
t1 = torch.narrow(a, dim, 0, start)
return torch.cat((t0, t1), dim)
@register_decomposition(torch.ops.aten.rot90)
def rot90(
a: TensorLikeType, k: int = 1, dims: DimsSequenceType = (0, 1)
) -> TensorLikeType:
"""Reference implementation of :func:`torch.rot90`."""
if len(dims) != 2:
raise RuntimeError(
f"expected total rotation dims == 2, but got dims = {len(dims)}"
)
if a.ndim < 2:
raise RuntimeError(f"expected total dims >= 2, but got total dims = {a.ndim}")
# Do this after the initial checks to be compatible with the behavior in
# core.
dims = utils.canonicalize_dims(a.ndim, dims)
if dims[0] == dims[1]:
raise RuntimeError(
f"expected rotation dims to be different, but got dim0 = {dims[0]} and dim1 = {dims[1]}"
)
k = k % 4 # Rotation direction is from the second towards the first axis for k < 0
if k == 1:
return torch.transpose(torch.flip(a, (dims[1],)), dims[0], dims[1])
elif k == 2:
return torch.flip(a, dims)
elif k == 3:
return torch.transpose(torch.flip(a, (dims[0],)), dims[0], dims[1])
else:
return clone(a)
def _check_stack_inputs(tensors: TensorSequenceType) -> None:
entry_shape = tensors[0].shape
for i in range(1, len(tensors)):
assert tensors[i].shape == entry_shape, (
f"stack expects each tensor to be equal size, but got {entry_shape} at entry 0"
f"and {tensors[i].shape} at entry {i}"
)
@register_decomposition(torch.ops.aten.stack)
@out_wrapper()
def stack(tensors: TensorSequenceType, dim: int = 0) -> TensorLikeType:
assert len(tensors) > 0, "stack expects a non-empty TensorList"
wrapped_dim = utils.canonicalize_dim(tensors[0].ndim + 1, dim)
# Refs need sparse support to check other condition
if wrapped_dim < tensors[0].ndim: # and not tensors[0].is_sparse:
_check_stack_inputs(tensors)
result_sizes = list(tensors[0].shape)
result_sizes.insert(wrapped_dim, len(tensors))
out = torch.cat(tensors, wrapped_dim)
return out.view(result_sizes)
# If dim == tensors[0].ndim, view cannot efficiently handle it
return torch.cat([t.unsqueeze(wrapped_dim) for t in tensors], dim)
@out_wrapper()
def softmax(
a: TensorLikeType,
dim: int,
*,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
result_dtype = dtype or a.dtype
computation_dtype = utils.get_computation_dtype(a.dtype)
a_ = _maybe_convert_to_dtype(a, computation_dtype)
assert isinstance(a_, TensorLike) # to avoid MyPy error for amax
a_max = amax(a_, dim, keepdim=True)
a_exp = exp(a_ - a_max)
return _maybe_convert_to_dtype(
true_divide(a_exp, sum(a_exp, dim, keepdim=True)), result_dtype
) # type: ignore[return-value]
# CompositeImplicitAutograd - don't register decomp
@out_wrapper()
def hstack(tensors: TensorSequenceType) -> TensorLikeType:
check(len(tensors) > 0, lambda: "hstack expects a non-empty TensorList")
aligned_tensors = atleast_1d(*tensors)
if aligned_tensors[0].ndim == 1:
return cat(aligned_tensors, 0)
return cat(aligned_tensors, 1)
# CompositeImplicitAutograd - don't register decomp
@out_wrapper()
def vstack(tensors: TensorSequenceType) -> TensorLikeType:
check(len(tensors) > 0, lambda: "vstack expects a non-empty TensorList")
aligned_tensors = atleast_2d(*tensors)
return cat(aligned_tensors, 0)
# CompositeImplicitAutograd - don't register decomp
def unflatten(a: TensorLikeType, dim: int, sizes: ShapeType) -> TensorLikeType:
dim = utils.canonicalize_dim(a.ndim, dim)
utils.check(len(sizes) != 0, lambda: "unflatten: sizes must be non-empty")
return a.view(tuple(a.shape[:dim]) + tuple(sizes) + tuple(a.shape[dim + 1 :]))
@register_decomposition(torch.ops.aten.unbind)
def unbind(t: TensorLikeType, dim: int = 0) -> TensorSequenceType:
dim = utils.canonicalize_dim(t.ndim, dim)
check(
len(t.shape) > 0,
lambda: "dimension specified as 0 but tensor has no dimensions",
IndexError,
)
return tuple(
torch.squeeze(s, dim) for s in torch.tensor_split(t, t.shape[dim], dim)
)
@register_decomposition(torch.ops.aten.index_copy)
@out_wrapper()
def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
return x.clone().index_copy_(dim, index, tensor)
@register_decomposition(torch.ops.aten.index_copy_)
def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
dim = utils.canonicalize_dims(x.ndim, dim)
utils.check(
index.ndim <= 1,
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
)
# Treat scalars as elements of \R^1
y = x.unsqueeze(0) if x.ndim == 0 else x
idx = (slice(None),) * dim + (index,)
y[idx] = tensor
return x
@register_decomposition(torch.ops.aten.index_fill)
def index_fill(
x: TensorLike, dim: int, index: TensorLike, value: Union[NumberType, TensorLike]
):
return x.clone().index_fill_(dim, index, value) # type: ignore[arg-type]
@register_decomposition(torch.ops.aten.index_fill_)
def index_fill_(
x: TensorLike, dim: int, index: TensorLike, value: Union[NumberType, TensorLike]
):
if isinstance(value, TensorLike):
utils.check(
value.ndim == 0,
lambda: "Only supports 0-dimensional value tensor. " # type: ignore[union-attr]
f"Got a tensor with {value.ndim} dimensions.",
) # type: ignore[arg-type]
return x.clone().index_copy_(dim, index, value)
dim = utils.canonicalize_dims(x.ndim, dim)
utils.check(
index.ndim <= 1,
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
)
idx = (slice(None),) * dim + (index,)
# Treat scalars as elements of \R^1
y = x.unsqueeze(0) if x.ndim == 0 else x
y[idx] = value # type: ignore[assignment]
return x
@register_decomposition(torch.ops.aten.index_add)
@out_wrapper()
def index_add(
x: TensorLike,
dim: int,
index: TensorLike,
tensor: TensorLike,
*,
alpha: NumberType = 1,
):
return x.clone().index_add_(dim, index, tensor, alpha=alpha) # type: ignore[arg-type]
# The decomposition of this function dispatches to aten.index_put_ for efficiency
# We cannot do that in Python, as torch.index_put_ does not support slice(None)s See
# https://github.com/pytorch/pytorch/pull/85002#issuecomment-1248524492
def index_add_(
x: TensorLike,
dim: int,
index: TensorLike,
tensor: TensorLike,
*,
alpha: NumberType = 1,
):
dim = utils.canonicalize_dims(x.ndim, dim)
utils.check(
index.ndim <= 1,
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
)
if alpha != 1:
python_type = utils.dtype_to_type(x.dtype)
utils.check(
utils.is_weakly_lesser_type(type(alpha), python_type),
lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!",
)
tensor = prims.mul(tensor, alpha)
# Treat scalars as elements of \R^1
y = x.unsqueeze(0) if x.ndim == 0 else x
idx = (slice(None),) * dim + (index,)
y[idx] += tensor
return x
@register_decomposition(torch.ops.aten.index_select, disable_meta=True)
@out_wrapper()
def index_select(x: TensorLike, dim: int, index: TensorLike):
dim = utils.canonicalize_dims(x.ndim, dim)
utils.check(
index.ndim <= 1,
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
)
# Treat scalars as elements of \R^1
if x.ndim == 0:
return x.unsqueeze(0)[index].squeeze(0).clone()
idx = (slice(None),) * dim + (index,)
return x[idx]
# Note: although squeeze is documented as having the out= kwarg it doesn't
@register_decomposition(torch.ops.aten.squeeze, disable_meta=True)
def squeeze(a: TensorLikeType, dim: Optional[int] = None) -> TensorLikeType:
if dim is not None:
dim = utils.canonicalize_dim(a.ndim, dim)
# Short-circuits if the tensor has no dimensions
if len(a.shape) == 0:
assert dim == 0
return prims.view_of(a)
# Note: squeeze does not modify tensors when the given dim is not a dimension of length 1
if a.shape[dim] != 1:
return prims.view_of(a)
return prims.squeeze(a, (dim,))
dims = tuple(idx for idx in range(len(a.shape)) if a.shape[idx] == 1)
return prims.squeeze(a, dims)
# Note: does not work with TensorMetas because of data-dependent control-flow
# CompositeImplicitAutograd - don't register decomp
def tensor_split(
a: TensorLikeType,
indices_or_sections: Union[Tensor, DimsType],
dim: int = 0,
) -> Tuple[TensorLikeType, ...]:
_dim = utils.canonicalize_dim(a.ndim, dim)
if a.ndim == 0:
msg = "tensor_split: received a rank zero tensor, but expected a tensor of rank one or greater!"
raise ValueError(msg)
# If indices_or_sections is a tensor, it must be a CPU Long tensor
if isinstance(indices_or_sections, TensorLike):
if not indices_or_sections.device.type == "cpu":
msg = "tensor_split: if indices_or_sections is a tensor it must be on the CPU, but received one on {0}".format(
indices_or_sections.device
)
raise ValueError(msg)
if indices_or_sections.dtype != torch.long:
msg = "tensor_split: if indices_or_sections is a tensor it must have long dtype, "
" but received one with dtype {0}".format(indices_or_sections.dtype)
raise ValueError(msg)
# Case 0 -- indices_or_sections is an integer or a scalar tensor n and a is split along dim into n parts of equal-ish length
if isinstance(indices_or_sections, int) or (
isinstance(indices_or_sections, TensorLike) and indices_or_sections.ndim == 0
):
sections: int = (
indices_or_sections # type: ignore[assignment]
if isinstance(indices_or_sections, Number)
else indices_or_sections.item()
)
if sections <= 0:
msg = "tensor_split: number of sections must be greater than 0, but was {0}".format(
sections
)
raise ValueError(msg)
splits = []
dim_size = a.shape[_dim]
min_split_size = math.floor(dim_size / sections)
num_splits_one_extra = dim_size % sections
start_idx = 0
for split_idx in range(sections):
split_size = (
min_split_size + 1
if (split_idx < num_splits_one_extra)
else min_split_size
)
s = prims.slice_in_dim(a, start_idx, start_idx + split_size, axis=_dim)
splits.append(s)
start_idx = start_idx + split_size
return tuple(splits)
# Case 1 -- indices_or_sections is a sequence of integers or a 1D tensor describing the splits
else:
indices = indices_or_sections
if isinstance(indices_or_sections, TensorLike):
if indices_or_sections.ndim != 1:
msg = "tensor_split: non-scalar indices_or_sections tensors must have only one dimension, "
"but received a tensor with {0} dimensions".format(
indices_or_sections.ndim
)
raise ValueError(msg)
indices = indices_or_sections.tolist()
splits = []
start_idx = 0
for x in indices:
splits.append(prims.slice_in_dim(a, start_idx, x, axis=_dim))
start_idx = x
splits.append(prims.slice_in_dim(a, start_idx, a.shape[_dim], axis=_dim))
return tuple(splits)
# CompositeImplicitAutograd - don't register decomp
def hsplit(
a: TensorLikeType, indices_or_sections: DimsType
) -> Tuple[TensorLikeType, ...]:
check(
a.ndim >= 1,
lambda: (
"torch.hsplit requires a tensor with at least 1 dimension, but got a tensor with "
+ str(a.ndim)
+ " dimensions!"
),
)
dim = 0 if a.ndim == 1 else 1
if isinstance(indices_or_sections, int):
split_size = indices_or_sections
check(
(split_size != 0 and a.shape[dim] % split_size == 0),
lambda: (
"torch.hsplit attempted to split along dimension "
+ str(dim)
+ ", but the size of the dimension "
+ str(a.shape[dim])
+ " is not divisible by the split_size "
+ str(split_size)
+ "!"
),
)
return tensor_split(a, split_size, dim)
check(
isinstance(indices_or_sections, (list, tuple)),
lambda: (
"hsplit(): received an invalid combination of arguments. "
"Expected indices_or_sections to be of type int, list of ints or tuple of ints "
f"but got type {type(indices_or_sections)}"
),
exc_type=TypeError,
)
split_sizes = indices_or_sections
return tensor_split(a, split_sizes, dim)
# CompositeImplicitAutograd - don't register decomp
def vsplit(
a: TensorLikeType, indices_or_sections: DimsType
) -> Tuple[TensorLikeType, ...]:
check(
a.ndim >= 2,
lambda: (
"torch.vsplit requires a tensor with at least 2 dimension, but got a tensor with "
+ str(a.ndim)
+ " dimensions!"
),
)
if isinstance(indices_or_sections, int):
split_size = indices_or_sections
check(
(split_size != 0 and a.shape[0] % split_size == 0),
lambda: (
"torch.vsplit attempted to split along dimension 0 "
+ ", but the size of the dimension "
+ str(a.shape[0])
+ " is not divisible by the split_size "
+ str(split_size)
+ "!"
),
)
return tensor_split(a, split_size, 0)
check(
isinstance(indices_or_sections, (list, tuple)),
lambda: (
"vsplit(): received an invalid combination of arguments. "
"Expected indices_or_sections to be of type int, list of ints or tuple of ints "
f"but got type {type(indices_or_sections)}"
),
exc_type=TypeError,
)
split_sizes = indices_or_sections
return tensor_split(a, split_sizes, 0)
@register_decomposition(torch.ops.aten.diagonal, disable_meta=True)
def diagonal(
self: TensorLikeType,
offset: int = 0,
dim1: int = 0,
dim2: int = 1,
) -> TensorLikeType:
"""
Reference implementation of torch.diagonal
"""
num_dims = self.dim()
dim1 = utils.canonicalize_dim(idx=dim1, rank=num_dims)
dim2 = utils.canonicalize_dim(idx=dim2, rank=num_dims)
check(
dim1 != dim2, lambda: f"diagonal dimensions cannot be identical {dim1}, {dim2}"
)
storage_offset = self.storage_offset()
if offset >= 0:
diag_size = max(min(self.size()[dim1], self.size()[dim2] - offset), 0)
else:
diag_size = max(min(self.size()[dim1] + offset, self.size()[dim2]), 0)
if diag_size > 0:
if offset >= 0:
storage_offset += offset * self.stride()[dim2]
else:
storage_offset -= offset * self.stride()[dim1]
sizes = [s for i, s in enumerate(self.size()) if i not in (dim1, dim2)]
sizes.append(diag_size)
strides = [s for i, s in enumerate(self.stride()) if i not in (dim1, dim2)]
strides.append(self.stride()[dim1] + self.stride()[dim2])
result = self.as_strided(size=sizes, stride=strides, storage_offset=storage_offset)
return result
@register_decomposition(torch.ops.aten.diag_embed)
def diag_embed(
t: TensorLikeType,
offset: int = 0,
dim1: int = -2,
dim2: int = -1,
) -> TensorLikeType:
"""
Reference implementation of torch.diag_embed
"""
# as per the docs, exchanging dims is equivalent to changing the sign of
# offset
if dim1 > dim2:
dim1, dim2 = dim2, dim1
offset = -offset
# convert from negative dims
rank = t.ndim + 1
dim1 = utils.canonicalize_dim(rank=rank, idx=dim1)
dim2 = utils.canonicalize_dim(rank=rank, idx=dim2)
check(
dim1 != dim2, lambda: f"diagonal dimensions cannot be identical {dim1}, {dim2}"
)
# as per the docs, the size of last dim is placed at dim1 and dim2
last_dim = t.size(-1)
if offset != 0:
# add padding to match the new size
t_shape = list(t.shape)
t_shape[-1] = builtins.abs(offset)
z = torch.zeros(t_shape, dtype=t.dtype, device=t.device, requires_grad=False)
pair = (z, t) if offset > 0 else (t, z)
t = torch.cat(pair, dim=-1)
# make sure the diagonal always has the same size
last_dim += builtins.abs(offset)
# preserve original data, but place 1 at dim1 and move last dim to dim2
t = t.unsqueeze(dim1).movedim(-1, dim2)
# generate ranges shifting indices based on offset
a_range = torch.arange(last_dim, device=t.device, dtype=torch.int64)
b_range = torch.arange(
offset, last_dim + offset, device=t.device, dtype=torch.int64
)
# broadcast
cond = a_range == b_range.unsqueeze(-1)
cond_shape = [last_dim if i in (dim1, dim2) else 1 for i in range(len(t.shape))]
cond = cond.reshape(cond_shape)
return utils.mask_tensor(cond, t)
# CompositeImplicitAutograd - don't register decomp
def dsplit(a: TensorLikeType, sections: DimsType) -> TensorSequenceType:
if a.ndim < 3:
raise RuntimeError(
f"torch.dsplit requires a tensor with at least 3 dimension, but got a tensor with {a.ndim} dimensions!"
)
if isinstance(sections, int) and (sections == 0 or a.shape[2] % sections != 0):
raise RuntimeError(
"torch._refs.dsplit attempted to split along dimension 2, "
+ f"but the size of the dimension {a.shape[2]} is not divisible by the split_size {sections}!"
)
return tensor_split(a, sections, 2)
@register_decomposition(torch.ops.aten.t.default, disable_meta=True)
def t(a: TensorLikeType):
# TODO: Add sparse support
# if a.is_sparse:
# sparse_dim = a.sparse_dim()
# dense_dim = a.dense_dim()
# if not (sparse_dim <= 2 and dense_dim == 0):
# raise RuntimeError(
# f"t() expects a tensor with <= 2 sparse and 0 dense dimensions, but got {sparse_dim} sparse and"
# f"{dense_dim} dense dimensions"
# )
if a.ndim > 2:
raise RuntimeError(
f"t() expects a tensor with <= 2 dimensions, but self is {a.ndim}D"
)
return torch.transpose(a, 0, 0 if a.ndim < 2 else 1)
@register_decomposition(torch.ops.aten.transpose, disable_meta=True)
def transpose(a: TensorLikeType, dim0: int, dim1: int) -> TensorLikeType:
_dim0, _dim1 = utils.canonicalize_dims(a.ndim, (dim0, dim1)) # type: ignore[misc]
if a.ndim <= 1 or dim0 == dim1:
return prims.view_of(a)
_permutation = list(range(0, a.ndim))
_permutation[_dim0] = _dim1
_permutation[_dim1] = _dim0
return torch.permute(a, _permutation)
# Aliases for transpose
swap_axes = transpose
@register_decomposition(torch.ops.aten.unfold_copy)
def unfold_copy(a: TensorLikeType, dimension: int, size: int, step: int):
new_size, new_stride = _get_unfold_copy_shape_stride(
a.shape, a.stride(), dimension, size, step
)
return a.as_strided(new_size, new_stride)
@register_decomposition(torch.ops.aten.cumsum)
def cumsum(
a: TensorLikeType,
dim: int,
*,
keepdim: bool = False,
dtype: Optional[torch.dtype] = None,
out: Optional[Tensor] = None,
) -> TensorLikeType:
# We implement all the kwargs of a reduction. ATen just handles dtype
# nb. This decomposition may not be as efficient as a backend-specific implementation
ndim = a.ndim
dim = utils.canonicalize_dim(ndim, dim)
if ndim == 0:
return sum(a.unsqueeze(0), dim=0, keepdim=keepdim, dtype=dtype, out=out)
a = a.unsqueeze(dim + 1)
rg = torch.arange(a.shape[dim], device=a.device)
mask = rg.unsqueeze(1) <= rg
for _ in range(ndim - dim - 1):
mask = mask.unsqueeze(-1)
masked_a = utils.mask_tensor(mask, a)
return sum(masked_a, dim=dim, keepdim=keepdim, dtype=dtype, out=out)
@register_decomposition(torch.ops.aten.unsqueeze, disable_meta=True)
def unsqueeze(a: TensorLikeType, dim: int) -> TensorLikeType:
# Note that unsqueeze canonicalizes with rank + 1 because it allows
# a new innermost dimension to be specified
ndim = a.ndim + 1
dim = utils.canonicalize_dim(ndim, dim)
return prims.expand_dims(a, (dim,), ndim=ndim)
# NOTE: shape is a vararg because Tensor.reshape can be called with as
# Tensor.view(a, b, c) or Tensor.view((a, b, c)) Function call torch.view
# doesn't support unpacked shapes
# TODO: Turn this into a decomposition (currently fails on reshape meta tests)
@register_decomposition(torch.ops.aten.view, disable_meta=True)
def view(a: TensorLikeType, *shape: ShapeType) -> TensorLikeType:
return _reshape_view_helper(a, *shape, allow_copy=False)
# CompositeImplicitAutograd - don't register decomp
def view_as(self: TensorLikeType, other: TensorLikeType) -> TensorLikeType:
return self.view(other.size())
# CompositeImplicitAutograd - don't register decomp
def ravel(a: TensorLikeType) -> TensorLikeType:
return reshape(a, (-1,))
@register_decomposition(torch.ops.aten.empty)
@out_wrapper()
def empty(
*shape,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False,
pin_memory: bool = False,
memory_format: torch.memory_format = torch.contiguous_format,
) -> TensorLikeType:
check(
memory_format != torch.preserve_format,
lambda: "torch.empty: the Preserve memory format is not supported",
)
shape = utils.extract_shape_from_varargs(shape)
if memory_format == torch.contiguous_format:
strides = utils.make_contiguous_strides_for(shape)
elif memory_format == torch.channels_last_3d:
strides = utils.make_channels_last_3d_strides_for(shape)
else: # memory_format == torch.channels_last
check(
memory_format == torch.channels_last,
lambda: f"torch.empty: received an unknown memory format {memory_format}!",
)
strides = utils.make_channels_last_2d_strides_for(shape)
return torch.empty_strided(
shape,
strides,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.new_empty)
def new_empty(
a: TensorLikeType,
size: ShapeType,
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
) -> TensorLikeType:
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
return torch.empty(
size,
dtype=dtype,
device=device,
pin_memory=pin_memory,
layout=layout,
)
@register_decomposition(torch.ops.aten.new_empty_strided)
def new_empty_strided(
a: TensorLikeType,
size: ShapeType,
stride: StrideType,
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
) -> TensorLikeType:
"""
Reference implementation of torch.Tensor.new_empty_strided
"""
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
return torch.empty_strided(
size,
stride,
dtype=dtype,
device=device,
pin_memory=pin_memory,
layout=layout,
)
@register_decomposition(torch.ops.aten.zeros)
@out_wrapper()
def zeros(
*size,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
size = utils.extract_shape_from_varargs(size)
if dtype is None:
dtype = torch.get_default_dtype()
return torch.full(
size,
False if dtype == torch.bool else 0,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.new_zeros)
def new_zeros(
a: TensorLikeType,
size: ShapeType,
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
return torch.full(
size,
False if dtype == torch.bool else 0,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.ones)
@out_wrapper()
def ones(
*size,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
size = utils.extract_shape_from_varargs(size)
if dtype is None:
dtype = torch.get_default_dtype()
return torch.full(
size,
True if dtype == torch.bool else 1,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.new_ones)
def new_ones(
a: TensorLikeType,
size: ShapeType,
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
return torch.full(
size,
True if dtype == torch.bool else 1,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.new_full)
def new_full(
a: TensorLikeType,
size: ShapeType,
fill_value: Union[int, float, bool],
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
) -> TensorLikeType:
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
return torch.full(
size,
fill_value,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
)
@register_decomposition(torch.ops.aten.empty_like)
def empty_like(
a: TensorLikeType,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
layout: Optional[torch.layout] = None,
pin_memory: bool = False,
requires_grad: bool = False,
memory_format: torch.memory_format = torch.preserve_format,
) -> TensorLikeType:
dtype = a.dtype if dtype is None else dtype
layout = a.layout if layout is None else layout
device = a.device if device is None else device
strides: Tuple[int, ...]
if memory_format != torch.preserve_format:
return torch.empty(
a.shape,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad,
pin_memory=pin_memory,
memory_format=memory_format,
)
# memory_format == torch.preserve_format
strides = utils.compute_elementwise_output_strides(a)
return torch.empty_strided(
a.shape,
strides,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(
[
torch.ops.aten.arange.default,
torch.ops.aten.arange.start,
torch.ops.aten.arange.start_step,
]
)
@out_wrapper()
def arange(
start: NumberType = 0,
end: Optional[NumberType] = None,
step: NumberType = 1,
*,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
utils.check_layout(layout)
utils.check_pin_memory(pin_memory)
# Case: torch.arange(5)
if end is None:
end = start
start = 0
return prims.arange(
start,
end,
step,
dtype=dtype,
# layout=layout,
device=device,
# pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.linspace)
@out_wrapper()
def linspace(
start: NumberType,
end: NumberType,
steps: NumberType,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
layout: torch.layout = torch.strided,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
if dtype is None:
dtype = torch.get_default_dtype()
# NB: NumPy actually doesn't do this cast, but for this ref, I'd rather have this
# cast than not, because it allows us to always go into the precise path
# if dtype is integral and not worry about whether start/end are float
if prims.utils.is_integer_dtype(dtype):
if isinstance(start, float):
start = int(start)
if isinstance(end, float):
end = int(end)
if py_any(isinstance(arg, complex) for arg in (start, end, steps)):
raise NotImplementedError
assert not isinstance(start, complex) and not isinstance(end, complex) # for mypy
check(
isinstance(steps, int),
lambda: "steps must be int, not float",
exc_type=TypeError,
)
assert isinstance(steps, int) # for mypy
check(steps >= 0, lambda: "number of steps must be non-negative")
factory_kwargs = {
"layout": layout,
"device": device,
"pin_memory": pin_memory,
"requires_grad": requires_grad,
}
if steps == 0:
ret = torch.full((0,), 0, dtype=dtype, **factory_kwargs) # type: ignore[call-overload]
elif steps == 1:
ret = torch.full((1,), start, dtype=dtype, **factory_kwargs) # type: ignore[call-overload]
elif start == end:
ret = torch.full((steps,), start, dtype=dtype, **factory_kwargs) # type: ignore[call-overload]
else:
if prims.utils.is_integer_dtype(dtype):
# We need to cast to int, so to avoid off-by-one issues
# do the entire computation with ints when we can
assert isinstance(start, int) and isinstance(end, int)
step_size_x_denom = end - start
eps = 1 if end > start else -1
denom = steps - 1
ret = prims.to_dtype(
torch.arange(
start * denom,
end * denom + eps,
step_size_x_denom,
dtype=torch.int64,
**factory_kwargs, # type: ignore[arg-type]
)
/ denom,
dtype,
)
else:
step_size = (end - start) / (steps - 1)
eps = step_size / 2
ret = prims.to_dtype(
torch.arange( # type: ignore[call-overload]
start, end + eps, step_size, dtype=torch.float64, **factory_kwargs
),
dtype,
)
return ret
@register_decomposition(torch.ops.aten.logspace)
@out_wrapper()
def logspace(
start: NumberType,
end: NumberType,
steps: NumberType,
base: NumberType = 10,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
layout: torch.layout = torch.strided,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
if dtype is None:
dtype = torch.get_default_dtype()
# NB: NumPy doesn't have this cast
if prims.utils.is_integer_dtype(dtype):
if isinstance(start, float):
start = int(start)
if isinstance(end, float):
end = int(end)
assert not isinstance(base, complex) # for mypy
if base < 0:
raise NotImplementedError
ret = torch.linspace(
start,
end,
steps,
dtype=torch.float64,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
return prims.to_dtype(torch.pow(base, ret), dtype)
@overload
def meshgrid(tensors: Sequence[TensorLikeType], indexing: str):
pass
@overload
def meshgrid(*tensors: TensorLikeType, indexing: str):
pass
@register_decomposition(torch.ops.aten.meshgrid)
def meshgrid(
*tensors: Union[TensorLikeType, List[TensorLikeType], Tuple[TensorLikeType]],
indexing: str,
) -> List[TensorLikeType]:
# This ref simultaneously handles two overloads (see stubs above)
# The `indexing` argument is currently optional for torch.meshgrid, but we
# plan to make the argument required: https://github.com/pytorch/pytorch/issues/50276
if isinstance(tensors[0], list) or isinstance(tensors[0], tuple):
assert len(tensors) == 1
tensors = tuple(tensors[0])
check(
py_all(isinstance(a, TensorLike) for a in tensors),
lambda: "meshgrid expects its inputs to be tensors",
)
check(len(tensors) > 0, lambda: "meshgrid expects a non-empty TensorList")
for i in range(len(tensors) - 1):
check(
tensors[i].dtype == tensors[i + 1].dtype, # type: ignore[union-attr]
lambda: "meshgrid expects all tensors to have the same dtype",
)
check(
tensors[i].device == tensors[i + 1].device, # type: ignore[union-attr]
lambda: "meshgrid expects all tensors to have the same device",
)
swap_first_and_second_tensors = False
if indexing == "xy":
swap_first_and_second_tensors = len(tensors) >= 2
if swap_first_and_second_tensors:
tensors = (tensors[1], tensors[0], *tensors[2:])
else:
check(
indexing == "ij",
lambda: (
'torch.meshgrid: indexing must be one of "xy" or "ij", '
f"but received: {indexing}"
),
)
result_shape: List[int] = []
for t in tensors:
assert isinstance(t, TensorLike) # mypy
check(
t.ndim == 0 or t.ndim == 1,
lambda: f"torch.meshgrid: Expected 0D or 1D tensor in the tensor list but got: {t}",
)
result_shape.append(t.numel())
grids: List[TensorLikeType] = []
for i, t in enumerate(tensors):
assert isinstance(t, TensorLike) # mypy
if t.ndim == 0:
t = t.view((1,))
grids.append(prims.broadcast_in_dim(t, result_shape, (i,)))
if swap_first_and_second_tensors:
# Swap outputs if we originally swapped at the beginning
grids[0], grids[1] = grids[1], grids[0]
return grids
# CompositeImplicitAutograd - don't register decomp
def movedim(
input: TensorLikeType,
source: Union[int, DimsSequenceType],
destination: Union[int, DimsSequenceType],
) -> TensorLikeType:
"""
Reference implementation of torch.movedim
"""
if type(source) is int:
source = (source,)
if type(destination) is int:
destination = (destination,)
utils.check(
len(source) == len(destination), # type: ignore[arg-type]
lambda: (
"movedim: Invalid source or destination dims: source "
f"({source} dims) should contain the same number of dims as "
f"destination ({destination} dims)"
),
)
rank = input.ndim
ss = tuple(utils.canonicalize_dims(rank=rank, indices=source)) # type: ignore[arg-type]
ds = tuple(utils.canonicalize_dims(rank=rank, indices=destination)) # type: ignore[arg-type]
sss = set(ss)
dss = set(ds)
utils.check(
len(ss) == len(sss),
lambda: f"movedim: repeated dim in `source` {source}",
)
utils.check(
len(ds) == len(dss),
lambda: f"movedim: repeated dim in `destination` {destination}",
)
m = dict(zip(ds, ss))
dims = []
si = 0 # source index
for di in range(rank):
# check if the destination index is in the mapping
s = m.get(di)
if s is not None:
# insert source index if found
dims.append(s)
else:
# insert source index sequentially, skipping indices from the mapping
while si in sss:
si += 1
dims.append(si)
si += 1
result = torch.permute(input, tuple(dims))
return result
# NOTE: for convenience, shape can be a tuple of ints or a tuple containing a tuple of ints
@register_decomposition(torch.ops.aten.empty_strided)
def empty_strided(
shape: Union[ShapeType, Tuple[ShapeType]],
strides: StrideType,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
layout: torch.layout = torch.strided,
requires_grad: bool = False,
pin_memory: bool = False,
) -> TensorLikeType:
# Layout == strided, pin_memory is False
utils.check_layout(layout)
utils.check_pin_memory(pin_memory)
shape = utils.extract_shape_from_varargs(shape)
dtype = torch.get_default_dtype() if dtype is None else dtype
device = torch.device("cpu") if device is None else device
return prims.empty_strided(
shape,
strides,
dtype=dtype,
device=device,
requires_grad=requires_grad,
)
@register_decomposition(torch.ops.aten.eye)
@out_wrapper()
def eye(
n: int,
m: Optional[int] = None,
*,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False, # TODO: unused
) -> TensorLikeType:
"""
Reference implementation of torch.eye
"""
if m is None:
m = n
check(n >= 0, lambda: f"n must be greater or equal to 0, got {n}")
check(m >= 0, lambda: f"m must be greater or equal to 0, got {m}")
range_n = torch.arange(n, dtype=torch.int64, device=device, requires_grad=False)
range_m = torch.arange(m, dtype=torch.int64, device=device, requires_grad=False)
cond = range_n.unsqueeze(-1) == range_m
if dtype is torch.bool:
return cond
else:
one = torch.ones(
(1,),
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=False,
)
return torch.where(cond, one, 0)
# TODO: Use requires_grad. All refs taking the requires_grad kwarg must
# return a leaf tensor.
# result.requires_grad_(requires_grad)
@out_wrapper()
def full(
shape: ShapeType,
fill_value: NumberType,
*,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
) -> TensorLikeType:
e = empty(
shape,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
)
return fill(e, fill_value)
def full_like(
a: TensorLikeType,
fill_value: NumberType,
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
memory_format: torch.memory_format = torch.preserve_format,
) -> TensorLikeType:
e = torch.empty_like(
a,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
requires_grad=requires_grad,
memory_format=memory_format,
)
return fill(e, fill_value)
zeros_like = partial(full_like, fill_value=False)
ones_like = partial(full_like, fill_value=True)
# TODO: add pin_memory support
@register_decomposition(torch.ops.aten.randn)
@out_wrapper()
def randn(
*shape,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
layout: Optional[torch.layout] = None,
requires_grad: bool = False,
pin_memory: Optional[bool] = None,
) -> TensorLikeType:
check(pin_memory is None, lambda: "pin_memory parameter is not supported!")
shape_ = utils.extract_shape_from_varargs(shape)
dtype = utils.dtype_or_default(dtype)
device = utils.device_or_default(device)
layout = utils.layout_or_default(layout)
return prims.normal(
shape_,
mean=0.0,
std=1.0,
dtype=dtype,
device=device,
requires_grad=requires_grad,
)
def scalar_tensor(
a: NumberType,
*,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
pin_memory: bool = False,
) -> TensorLikeType:
utils.check_layout(layout)
utils.check_pin_memory(pin_memory)
dtype = dtype if dtype is not None else utils.type_to_dtype(type(a))
device = device if device is not None else torch.device("cpu")
return prims.scalar_tensor(a, dtype=dtype, device=device)
#
# Randomness References
#
@register_decomposition(torch.ops.aten.uniform)
def uniform(
shape: ShapeType,
low: Union[bool, int, float] = 0.0,
high: Union[bool, int, float] = 1.0,
*,
dtype: torch.dtype,
device: DeviceLikeType,
) -> TensorLikeType:
utils.validate_shape(shape)
assert isinstance(low, (bool, int, float))
assert isinstance(high, (bool, int, float))
low = float(low)
high = float(high)
assert isinstance(dtype, torch.dtype)
device = utils.canonicalize_device(device)
return prims.uniform(shape, low=low, high=high, dtype=dtype, device=device)
@register_decomposition(
[torch.ops.aten.masked_fill.Scalar, torch.ops.aten.masked_fill.Tensor]
)
def masked_fill(a: TensorLikeType, mask: TensorLikeType, value: TensorOrNumberLikeType):
python_type = utils.dtype_to_type(a.dtype)
if isinstance(value, Number):
value_type = type(value)
else:
# NOTE: Could not use value = item(value) as it resulted in
# RuntimeError: Cannot cast FakeTensor(cpu) to number
value_ndim = value.ndim
check(
value_ndim == 0,
lambda: f"only supports a 0-dimensional value tensor, but got tensor with {value_ndim} dimension",
)
# `masked_fill` allows cpu scalar to be moved to cuda but not otherwise.
check(
a.device.type == "cuda" or value.device == a.device,
lambda: "Expected `value` to be on same device as `a`",
)
value_type = utils.dtype_to_type(value.dtype)
if utils.is_cpu_scalar_tensor(value):
value = value.item()
if value_type is complex:
# only downcasting from complex to lower type is not allowed.
# We allow casting `value` to lower type for other case
# Eg. float -> int.
# Ref: https://github.com/pytorch/pytorch/issues/79195
check(
utils.is_weakly_lesser_type(value_type, python_type),
lambda: f"could not convert to type {python_type} without overflow",
)
# Since `where` allows type-promotion,
# cast value to correct type before passing to `where`
if isinstance(value, Number):
return torch.where(mask, python_type(value), a)
assert isinstance(value, TensorLike)
return torch.where(mask, prims.to_dtype(value, a.dtype), a)
# CompositeImplicitAutograd - don't register decomp
def allclose(
a: TensorLikeType,
b: TensorLikeType,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
) -> bool:
"""
Reference implementation of torch.allclose
"""
_check_close_args(name="torch.allclose", a=a, b=b, rtol=rtol, atol=atol)
return bool(
torch.all(torch.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)).item()
)
# TODO: add OpInfo for torch.equal and refs.equal
def equal(a: TensorLikeType, b: TensorLikeType) -> bool:
utils.check_same_device(a, b, allow_cpu_scalar_tensors=False)
utils.check_same_dtype(a, b)
# Shape check
if a.ndim != b.ndim:
return False
for x, y in zip(a.shape, b.shape):
if x != y:
return False
# Short-circuits if there are no elements to validate
if a.numel() == 0:
return True
return item(all(eq(a, b))) # type: ignore[return-value]
@out_wrapper(exact_dtype=True)
def norm(
input: TensorLikeType,
p: Optional[Union[float, str]] = "fro",
dim: Optional[DimsType] = None,
keepdim: bool = False,
*,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
# In these cases we compute the "Frobenius norm"
if (
p == "fro" and (dim is None or isinstance(dim, int) or len(dim) <= 2)
) or p is None:
p = 2
if isinstance(dim, int):
dim = [dim]
if isinstance(p, str):
# Here we either call the nuclear norm, or we call matrix_norm with some arguments
# that will throw an error
if dim is None:
dim = tuple(range(input.ndim))
return torch.linalg.matrix_norm(input, p, dim, keepdim, dtype=dtype)
else:
return torch.linalg.vector_norm(input, p, dim, keepdim, dtype=dtype)
@register_decomposition(torch.ops.aten.trace)
def trace(self: TensorLikeType) -> TensorLikeType:
utils.check(
self.ndim == 2, lambda: "expected a matrix, but got tensor with dim {self.ndim}"
)
return torch.sum(torch.diag(self, 0))
def _make_r_binary_op(base_op):
def rop(
a: Union[TensorLikeType, NumberType],
b: Union[TensorLikeType, NumberType],
) -> TensorLikeType:
return base_op(b, a)
return rop
rtruediv = _make_r_binary_op(true_divide)
rfloordiv = _make_r_binary_op(floor_divide)
rpow = _make_r_binary_op(pow)
@register_decomposition(torch.ops.aten.triu)
@out_wrapper()
def triu(a: TensorLikeType, diagonal: int = 0) -> TensorLikeType:
utils.check(
a.ndim >= 2, lambda: "triu: input tensor must have at least 2 dimensions"
)
h, w = a.shape[-2:]
mask = (
torch.arange(w, device=a.device).unsqueeze(-2)
- torch.arange(h, device=a.device).unsqueeze(-1)
) >= diagonal
return utils.mask_tensor(mask, a)
@register_decomposition(torch.ops.aten.tril)
@out_wrapper()
def tril(a: TensorLikeType, diagonal: int = 0) -> TensorLikeType:
utils.check(
a.ndim >= 2, lambda: "tril: input tensor must have at least 2 dimensions"
)
h, w = a.shape[-2:]
mask = (
torch.arange(w, device=a.device).unsqueeze(-2)
- torch.arange(h, device=a.device).unsqueeze(-1)
) <= diagonal
return utils.mask_tensor(mask, a)
# This is based on get_tril_size in aten/src/ATen/native/TensorFactories.h
# The components of the matrix that belong to the lower triangle with offset
# form a pentagon that can be broken down into a top trapezoid and a bottom
# rectangle. For the implementation of tril_indices, we need the sizes of
# both of these, as well as the length of the top side of the trapezoid.
def _get_tril_sizes(row: int, col: int, offset: int) -> Tuple[int, int, int]:
if row == 0 or col == 0:
return 0, 0, 0
m_first_row = min(col, 1 + offset) if offset > 0 else int(row + offset > 0)
m_last_row = max(0, min(col, row + offset))
n_row_all = max(0, min(row, row + offset))
n_row_trapezoid = m_last_row - m_first_row + 1
# Number of elements in top trapezoid
trapezoid_size = (m_first_row + m_last_row) * n_row_trapezoid // 2
# Number of elements in bottom rectangle
diff_row = n_row_all - n_row_trapezoid
rectangle_size = max(0, diff_row * col)
return trapezoid_size, rectangle_size, m_first_row
def _trilu_checks(
name: str,
row: int,
col: int,
dtype: torch.dtype,
layout: torch.layout,
pin_memory: bool,
):
check(row >= 0, lambda: f"row must be non-negative, got {row}")
check(col >= 0, lambda: f"col must be non-negative, got {col}")
check(
dtype in (torch.int32, torch.int64),
lambda: f"\"{name}\" not implemented for '{dtype}'",
)
# This is based on tril_indices_cuda in aten/src/ATen/native/cuda/TensorFactories.cu
@register_decomposition(torch.ops.aten.tril_indices)
def tril_indices(
row: int,
col: int,
offset: int = 0,
*,
dtype: torch.dtype = torch.long,
layout: torch.layout = torch.strided,
device: DeviceLikeType = "cpu",
pin_memory: bool = False,
) -> TensorLikeType:
_trilu_checks("tril_indices", row, col, dtype, layout, pin_memory)
trapezoid_size, rectangle_size, m_first_row = _get_tril_sizes(row, col, offset)
row_offset = max(0, -offset)
arange_kw = partial(
torch.arange, layout=layout, device=device, pin_memory=pin_memory
)
# first we do the indices for top trapezoid
xs1 = arange_kw(0, trapezoid_size, dtype=torch.float64)
b = m_first_row - 0.5
row_inds1 = torch.floor(-b + torch.sqrt(b * b + 2 * xs1))
col_inds1 = torch.floor(xs1 - (2 * m_first_row - 1 + row_inds1) * row_inds1 * 0.5)
row_inds1 = prims.to_dtype(row_inds1 + row_offset, dtype)
col_inds1 = prims.to_dtype(col_inds1, dtype)
# then bottom rectangle
xs2 = arange_kw(0, rectangle_size, dtype=dtype)
row_inds2 = xs2 // col + (col - m_first_row + 1 + row_offset)
col_inds2 = xs2 % col
return torch.stack(
(torch.cat((row_inds1, row_inds2)), torch.cat((col_inds1, col_inds2)))
)
# Similar to _get_tril_sizes above, but here there is a top trapezoid and
# a bottom rectangle instead. Note that you can't reduce this to
# _get_tril_sizes(col, row, -offset) because that would correspond to
# decomposing into a left trapezoid and right rectangle.
def _get_triu_sizes(row: int, col: int, offset: int) -> Tuple[int, int, int]:
if row == 0 or col == 0:
return 0, 0, 0
m_first_row = max(0, col - offset) if offset > 0 else col
# Number of elements in top rectangle
rectangle_size = max(0, min(row, -offset) * col)
# Number of elements in bottom trapezoid
trapezoid_size_tril, rectangle_size_tril, _ = _get_tril_sizes(row, col, offset - 1)
triu_size = row * col - (trapezoid_size_tril + rectangle_size_tril)
trapezoid_size = triu_size - rectangle_size
return trapezoid_size, rectangle_size, m_first_row
@register_decomposition(torch.ops.aten.triu_indices)
def triu_indices(
row: int,
col: int,
offset: int = 0,
*,
dtype: torch.dtype = torch.long,
layout: torch.layout = torch.strided,
device: DeviceLikeType = "cpu",
pin_memory: bool = False,
) -> TensorLikeType:
_trilu_checks("triu_indices", row, col, dtype, layout, pin_memory)
trapezoid_size, rectangle_size, m_first_row = _get_triu_sizes(row, col, offset)
col_offset = max(0, offset)
arange_kw = partial(
torch.arange, layout=layout, device=device, pin_memory=pin_memory
)
# indices for top rectangle
xs2 = arange_kw(0, rectangle_size, dtype=dtype)
row_inds2 = xs2 // col
col_inds2 = xs2 % col
# bottom trapezoid
xs1 = arange_kw(0, trapezoid_size, dtype=torch.float64)
b = -0.5 - m_first_row
row_inds1 = torch.floor(-b - torch.sqrt(b * b - 2 * xs1))
col_inds1 = torch.floor(xs1 - ((2 * m_first_row - 1 - row_inds1) * row_inds1) * 0.5)
row_inds1 = prims.to_dtype(row_inds1, dtype)
col_inds1 = prims.to_dtype(col_inds1, dtype)
if col:
row_inds1 = row_inds1 + (rectangle_size // col)
col_inds1 = col_inds1 + col_offset
return torch.stack(
(torch.cat((row_inds2, row_inds1)), torch.cat((col_inds2, col_inds1)))
)
import torch._refs.fft
import torch._refs.linalg
import torch._refs.nn.functional
import torch._refs.special
|