1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
|
import contextlib
import functools
import itertools
import sys
import warnings
import weakref
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union
import torch
from torch._ops import OpOverload
from torch._subclasses.meta_utils import MetaConverter, WeakTensorRefKey
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import PyTree, tree_flatten, tree_map
pytree = torch.utils._pytree
T = TypeVar("T")
TensorWeakRef = Any
aten = torch.ops.aten
CONSTANT_NUMEL_LIMIT = 1
@dataclass
class UnsupportedFakeTensorException(RuntimeError):
reason: str
@dataclass
class DynamicOutputShapeException(RuntimeError):
func: OpOverload
@dataclass
class DataDependentOutputException(RuntimeError):
func: OpOverload
_device_not_kwarg_ops = (
aten._resize_output_.default,
aten._nested_tensor_from_tensor_list.default,
aten._nested_tensor_from_tensor_list.out,
aten.pin_memory.default,
aten.is_pinned.default,
aten.to.device,
aten.to.prim_Device,
aten._pin_memory.default,
aten._pin_memory.out,
aten._resize_output.default,
aten._resize_output.out,
)
# this op is never actually used
_non_kwarg_device_constructors = (aten._list_to_tensor,)
def contains_tensor_types(type):
tensor_type = torch._C.TensorType.get()
return type.isSubtypeOf(tensor_type) or any(
contains_tensor_types(e) for e in type.containedTypes()
)
_like_tensor_constructors = (
aten.empty_like.default,
aten.empty_like.out,
aten.full_like.default,
aten.full_like.out,
aten.ones_like.default,
aten.ones_like.out,
aten.rand_like.default,
aten.rand_like.out,
aten.randn_like.default,
aten.randn_like.out,
aten.randint_like.default,
aten.randint_like.out,
aten.randint_like.low_dtype,
aten.randint_like.low_dtype_out,
aten.zeros_like.default,
aten.zeros_like.out,
aten.new_empty.default,
aten.new_empty.out,
aten.new_empty_strided.default,
aten.new_empty_strided.out,
aten.new_full.default,
aten.new_full.out,
aten.new_zeros.default,
aten.new_zeros.out,
aten.new_ones.default,
aten.new_ones.out,
)
@functools.lru_cache(None)
def _is_tensor_constructor(func: OpOverload):
assert isinstance(func, OpOverload)
schema = func._schema
if any(contains_tensor_types(arg.type) for arg in schema.arguments):
return False
# TODO: no real reason to restrict multiple outputs
return (
len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get()
)
@functools.lru_cache(None)
def get_schema_info(func):
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
def tree_flatten_only(ty: Type[T], pytree: PyTree):
flat_vals, _ = tree_flatten(pytree)
return [elem for elem in flat_vals if isinstance(elem, ty)]
# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakTensorRefKey` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter(object):
tensor_memo: weakref.WeakValueDictionary
meta_converter: MetaConverter
constant_storage_mapping: Dict[StorageWeakRef, List[TensorWeakRef]]
def __init__(self):
# FakeTensors store the FakeTensorMode which in turn stores a
# FakeTensor, so we need to hold a weak reference to the FakeTensor
# otherwise we would induce a circular reference
self.tensor_memo = weakref.WeakValueDictionary()
self.meta_converter = MetaConverter()
# map from to storage to corresponding constant tensors
self.constant_storage_mapping = {}
def add_constant_storage_mapping(self, fake_tensor):
# when you have a constant, aliased tensor:
# const_tensor.add_(torch.rand([1]))
# all aliases of it must become no longer const
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
weak_st = StorageWeakRef(fake_tensor.constant.storage())
# we need a map from a weak storage to all of its corresponding
# constant tensors. python doesn't have the weak value equivalent
# of defaultdict(list), so we are using a WeakValueDictionary as one
if weak_st not in self.constant_storage_mapping:
self.constant_storage_mapping[weak_st] = []
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
def invalidate_constant_aliases(self, tensor):
assert not isinstance(tensor, FakeTensor)
weak_st = StorageWeakRef(tensor.storage())
if weak_st not in self.constant_storage_mapping:
return
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
ten = weak_tensor_ref()
if ten is not None:
ten._fix_weakref()
ten.constant = None
del self.constant_storage_mapping[weak_st]
def _get_memo(self, t):
if WeakTensorRefKey(t) in self.tensor_memo:
out = self.tensor_memo[WeakTensorRefKey(t)]
out._fix_weakref()
return out
return None
def set_tensor_memo(self, t, v):
th = WeakTensorRefKey(t)
# hold a weak ref to self, otherwise it will be kept alive
# by the del_ten closure
self_weak_ref = weakref.ref(self)
def del_ten():
self_ref = self_weak_ref()
if self_ref is None:
return
# on shutdown, th may not be in memo
self_ref.tensor_memo.pop(th, None)
weakref.finalize(t, del_ten)
self.tensor_memo[th] = v
def from_real_tensor(self, fake_mode, t, make_constant=False, shape_env=None):
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
existing_device = t.device
# not yet supported in metatensors
if t.is_quantized:
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
with no_dispatch():
meta_t = self.meta_converter(t, shape_env=shape_env)
if meta_t.device.type != "meta":
raise UnsupportedFakeTensorException("meta converter nyi")
out = FakeTensor(
fake_mode,
meta_t,
existing_device,
constant=t if make_constant else None,
)
out.requires_grad_(t.requires_grad)
if make_constant:
self.add_constant_storage_mapping(out)
if type(t) is torch.nn.Parameter:
assert not make_constant
out = torch.nn.Parameter(out, requires_grad=out.requires_grad) # type: ignore[assignment]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
grad_not_none = t.grad is not None
if grad_not_none:
out.grad = self.from_real_tensor(fake_mode, t.grad)
self.set_tensor_memo(t, out)
return out
def from_meta_and_device(self, fake_mode, t, device):
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
out = FakeTensor(fake_mode, t, device)
self.set_tensor_memo(t, out)
return out
# There are two ways to call this. First, you can have manually constructed
# a meta tensor and you need to turn it into a fake tensor. In that case,
# pass a meta tensor and a device argument. Alternately, you can have a
# real tensor that you need to convert into a fake tensor; in that case,
# omit the device.
#
# The disallowed case: if you specify the device, it MUST be a meta tensor.
# However, you're allowed to pass a meta tensor to be turned into a fake
# tensor; although an odd thing to do, this can occur if you're doing
# cross ref testing and the inner test is already operating on meta tensors
def __call__(
self, fake_mode, t, device=None, *, make_constant=False, shape_env=None
):
if device is None:
return self.from_real_tensor(
fake_mode, t, make_constant, shape_env=shape_env
)
else:
assert make_constant is False
assert t.device.type == "meta"
return self.from_meta_and_device(fake_mode, t, device)
op_implementations = []
def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]):
def impl_decorator(op_impl):
global op_implementations
if isinstance(run_impl_check, OpOverload):
op_implementations.append((lambda func: func == run_impl_check, op_impl))
else:
op_implementations.append((run_impl_check, op_impl))
return op_impl
return impl_decorator
@register_op_impl(
lambda func: (_is_tensor_constructor(func) or func in _like_tensor_constructors)
)
def constructors(fake_mode, func, *args, **kwargs):
assert func not in _non_kwarg_device_constructors
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
if func in _like_tensor_constructors:
default_device = new_kwargs["input"].device
# TODO: file issue
args = (new_kwargs.pop("input"),)
else:
# cpu is default device if none is specified
default_device = torch.device("cpu")
args = ()
out_device = new_kwargs.pop("device", None)
out_device = out_device if out_device is not None else default_device
new_kwargs["device"] = torch.device("meta")
r = func(*args, **new_kwargs)
return FakeTensor(fake_mode, r, out_device)
@register_op_impl(lambda func: func in (aten.to.prim_Device, aten.to.device))
def non_kwarg_to(fake_mode, func, *args, **kwargs):
_, new_kwargs = normalize_function(
func, args, kwargs, normalize_to_only_use_kwargs=True
)
input_device = new_kwargs["device"]
out_device = input_device if input_device else new_kwargs["input"].device
new_kwargs["device"] = torch.device("meta")
r = func(*args, **new_kwargs)
return fake_mode.fake_tensor_converter(fake_mode, r, out_device)
# Dont default to default device handling,
# since the device of `the_template` is ignored
@register_op_impl(aten.resize_as_.default)
def resize_as_(fake_mode, func, *args, **kwargs):
return func(*args, **kwargs)
@register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default)
def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs):
# TODO: remove me
return constructors(fake_mode, func, *args, **kwargs)
# _to_copy fails when run with FakeTensors to cuda device
# TODO: debug
@register_op_impl(aten._to_copy.default)
def to_copy(fake_mode, func, *args, **kwargs):
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
input_device = new_kwargs.pop("device", None)
out_device = input_device if input_device else new_kwargs["input"].device
with no_dispatch(), in_kernel_invocation_manager(fake_mode):
input = new_kwargs.pop("input").to("meta")
return FakeTensor(fake_mode, aten._to_copy(input, **new_kwargs), out_device)
# index.Tensor data-dependent in only some conditions
@register_op_impl(
lambda func: torch.Tag.dynamic_output_shape in func.tags # type: ignore[attr-defined]
and func != aten.index.Tensor
)
def dyn_shape(fake_mode, func, *args, **kwargs):
raise DynamicOutputShapeException(func)
@register_op_impl(
lambda func: torch.Tag.data_dependent_output in func.tags # type: ignore[attr-defined]
)
def data_dep(fake_mode, func, *args, **kwargs):
if fake_mode.throw_on_data_dependent_ops:
raise DataDependentOutputException(func)
return NotImplemented
# Bool Indices get Expanded as Masks
# See: IndexingUtils.h:expandTensors
def check_no_bool_index_tensors(func, self, indices):
for index in indices:
if index is not None and index.dtype in (torch.bool, torch.uint8):
raise DynamicOutputShapeException(func)
def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs):
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
out_device = new_kwargs["input"].device
with in_kernel_invocation_manager(fake_mode):
out = func(*args, **kwargs)
return FakeTensor(fake_mode, out, out_device)
# Dont default to default device handling,
# Since op can take in non-zero sized cpu
# index tensors with cuda self
@register_op_impl(aten.index.Tensor)
def index_tensor(fake_mode, func, *args, **kwargs):
# dynamic shape op if indices are bool/uint8
check_no_bool_index_tensors(func, *args, **kwargs)
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
# takes in multiple-devices, dont default to default device handling
@register_op_impl(aten.index_put.default)
def index_put(fake_mode, func, *args, **kwargs):
return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)
# same with index_put, but return the input
@register_op_impl(aten.index_put_.default)
def index_put_(fake_mode, func, *args, **kwargs):
with in_kernel_invocation_manager(fake_mode):
out = func(*args, **kwargs)
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
return new_kwargs["input"]
@register_op_impl(lambda fn: fn in _device_not_kwarg_ops)
def nyi(fake_mode, func, *args, **kwargs):
assert func not in _device_not_kwarg_ops, f"NYI: {func}"
# Meta tensors give you the ability to run PyTorch code without having to
# actually do computation through tensors allocated on a `meta` device.
# Because the device is `meta`, meta tensors do not model device propagation.
# FakeTensor extends MetaTensors to also carry an additional `fake_device`
# which tracks devices that would have been used.
@contextlib.contextmanager
def in_kernel_invocation_manager(fake_mode):
# See: note [Fake Tensor Dispatch Keys]
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
prev = fake_mode.in_kernel_invocation
fake_mode.in_kernel_invocation = True
if not meta_in_tls:
torch._C._add_meta_to_tls_dispatch_include()
try:
yield
finally:
fake_mode.in_kernel_invocation = prev
if not meta_in_tls:
torch._C._remove_meta_from_tls_dispatch_include()
class FakeTensor(torch.Tensor):
fake_device: torch.device
fake_mode: "FakeTensorMode"
constant: Optional[torch.Tensor]
# Note: [Fake Tensor Dispatch Keys]
# In order to model the behavior of device-specific autocast
# and autograd logic, we update the dispatch keys of FakeTensors
# to reflect their fake device. This includes the BackendComponent
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
# related Autocast and Autograd keys. __torch__dispatch__ sits below
# Autocast and Autograd, and is only invoked when we are at the
# kernel for the BackendComponent. Then, we add Meta to the
# thread-local dispatch include set to hit the meta kernel
# instead of the kernel of the BackendComponent for the fake device.
# The `device_for_backend_keys` does that below
@staticmethod
def __new__(cls, fake_mode, elem, device, constant=None):
return torch.Tensor._make_subclass(
cls,
elem,
elem.requires_grad,
dispatch_device=True,
device_for_backend_keys=device,
)
def __init__(
self,
fake_mode,
elem,
device: Union[torch.device, str],
constant: Optional[torch.Tensor] = None,
):
assert elem.device.type == "meta", elem.device.type
device = device if isinstance(device, torch.device) else torch.device(device)
# NB: it is fine, if a little confusing, for device to be meta
# (we are faking a meta tensor in that case). However, it often
# indicates some sort of confusion (e.g., you accidentally passed
# in a meta tensor when you should have passed in the real tensor).
# So by default we disallow meta, and if you are working in a situation
# where it is helpful (e.g., crossref testing) you can turn it back
# on
if not fake_mode.allow_meta:
assert device.type != "meta"
# normalize cuda device.
if device.type == "cuda" and device.index is None:
device = torch.device(f"cuda:{torch.cuda.current_device()}")
self.fake_device = device
self.fake_mode = fake_mode
self.constant = constant
@staticmethod
def from_tensor(t, fake_mode):
return fake_mode.from_tensor(t)
# TODO: resolve error in default __repr__
def __repr__(self):
with in_kernel_invocation_manager(self.fake_mode):
self_repr = super().__repr__()
return f"FakeTensor({self_repr}, {self.fake_device})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
# need to handle here to avoid infinite recursion
# see [in_kernel_invocation]
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# Because fake mode can return NotImplemented (if it sees a subclass
# it doesn't know how to deal with), this test here is important
# because the next dispatch after a fake mode will attempt to use
# subclasses of tensors to dispatch, and any FakeTensor arguments
# will be considered eligible.
if any(not issubclass(t, FakeTensor) and t is not torch.Tensor for t in types):
return NotImplemented
fake_mode = None
for arg in itertools.chain(tree_flatten(args)[0], tree_flatten(kwargs)[0]):
if isinstance(arg, FakeTensor):
if fake_mode is None:
fake_mode = arg.fake_mode
else:
assert fake_mode is arg.fake_mode, "Mixing modes NYI"
assert fake_mode is not None
with fake_mode: # type: ignore[attr-defined]
return func(*args, **kwargs)
@staticmethod
def _find_common_device(func, args, kwargs):
# cpu - zero-dim tensors can be called in cuda kernels,
# so overwrite the common_device if it the only existing
# device comes from a cpu zero-dim tensor
common_device = None
is_cpu_zero_dim = None
def cpu_zero_dim(t):
return t.device.type == "cpu" and t.dim() == 0
def merge_devices(t):
nonlocal common_device
nonlocal is_cpu_zero_dim
if not isinstance(t, FakeTensor):
return
if common_device is None:
common_device = t.device
is_cpu_zero_dim = cpu_zero_dim(t)
return
t_is_cpu_zero_dim = cpu_zero_dim(t)
if t.device == common_device:
if is_cpu_zero_dim:
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices !
# if current tensor is cpu 0 dim, defer to existing device
if t_is_cpu_zero_dim:
return
# current device is from cpu 0 dim tensor, overwrite
if is_cpu_zero_dim:
common_device = t.device
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices of non-zero dim tensors, throw
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
raise RuntimeError(
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
)
tree_map(merge_devices, args)
tree_map(merge_devices, kwargs)
# some functions that allow Python numbers to bind to Tensors
# if we have failed to find a device, and we're running one of these operators,
# we must have scalar only inputs
if (
torch._C._should_allow_numbers_as_tensors(
func.name().split("::")[-1].split(".")[0]
)
and common_device is None
):
common_device = torch.device("cpu")
assert common_device is not None, f"Could not find common device for {func}"
return common_device
__torch_function__ = torch._C._disabled_torch_function_impl
# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly incraese.
class FakeTensorMode(TorchDispatchMode):
def __init__(
self,
*,
allow_fallback_kernels=True,
allow_meta=False,
throw_on_data_dependent_ops=False,
):
self.allow_fallback_kernels = allow_fallback_kernels
self.fake_tensor_converter = FakeTensorConverter()
self.allow_meta = allow_meta
# TODO: delete arg and default to true. waiting on dynamo perf regression testing
self.throw_on_data_dependent_ops = throw_on_data_dependent_ops
# [in_kernel_invocation]
# when FakeTensor is invoked in user code, .device should return
# the fake_device of the tensor so that code such as as `if x.is_cuda`
# or torch.zeros([10, 10], device=x.device) continues to execute as if
# the FakeTensor were real. However, within kernel execution, we return
# the `Meta` device because all computation within the kernels should
# behave as if the Tensors are on meta devices. Kernels should allocate
# new tensors on meta devices, and checks like `is_meta` should return true.
# within python refs, we always return the real device by defining
# the device property
self.in_kernel_invocation = False
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
flat_arg_fake_tensors = tree_flatten_only(FakeTensor, (args, kwargs))
flat_symints = tree_flatten_only(torch.SymIntNode, (args, kwargs))
has_symbolic_sizes = (
any([i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors])
or len(flat_symints) > 0
)
converter = self.fake_tensor_converter
# If this is a lift, the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point
if func in self.lift_fns:
out = func(*args, **kwargs)
if self.may_turn_const(out):
with no_dispatch():
return converter(self, out.clone(), make_constant=True)
with no_dispatch():
flat_arg_tensors = tree_flatten_only(torch.Tensor, (args, kwargs))
# See [subclass inputs] below
# NB: If you're seeing a mysterious infinite loop involving fake
# tensor, it might be related to this line. Though I'm not sure
# how you'll know to read this comment, as this line won't show up
# in the stack trace.
if self.check_for_subclass(flat_arg_tensors):
return NotImplemented
# if we are in the dispatch mode, we will enter this function even if the inputs
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
# and just support constructors.
# this is generated from torch.tensor(), which does not use the
# dispatcher, to allow wrapper subclasses to wrap the new tensor
if func in self.lift_fns:
assert (
len(kwargs) == 0
and len(args) == 1
and type(args[0]) is torch.Tensor
), f"{args} {kwargs}"
return converter(self, args[0])
if self.check_for_non_fake(flat_arg_tensors):
raise Exception(
"Invoking operators with non-Fake Tensor inputs in FakeTensorMode is not yet supported. "
f"Please convert all Tensors to FakeTensors first. Found in {func}(*{args}, **{kwargs})"
)
# The current constant handling only support tracing systems
# (aot autograd, torchdynamo) where each operation is run consecutively.
# Because each operation is run in order, we can trace out and support
# sequences like: x = torch.tensor(0.); y = x.add_(1)
# Whenver a constant is written to but with inputs that cannot be evaluated
# statically, such as random_(), we invalidate all constants that alias the input
# We will rely on functionalization for use of fake tensors constants as persistent
# objects on an FX Graph.
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
if (
torch.Tag.nondeterministic_seeded not in func.tags # type: ignore[attr-defined]
and torch.Tag.inplace_view not in func.tags # type: ignore[attr-defined]
and all_constant
and len(flat_arg_fake_tensors) != 0
and not has_symbolic_sizes
):
with no_dispatch():
const_args, const_kwargs = pytree.tree_map_only(
FakeTensor, lambda t: t.constant, (args, kwargs)
)
out = func(*const_args, **const_kwargs)
all_constant = pytree.tree_all_only(
torch.Tensor, lambda t: self.may_turn_const(t), out
)
if all_constant:
return pytree.tree_map_only(
torch.Tensor,
lambda t: converter(self, t, make_constant=True),
out,
)
# we weren't able to turn outputs to constants,
# so invalidate all constants that might be aliases of the outputs
for ten in tree_flatten_only(torch.Tensor, out):
converter.invalidate_constant_aliases(ten)
# we are falling through to running non constant tensors, any input constant that
# is written to must be invalidated
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
# IDK: feels bad man, sym_numel on as_strided infinite loops otherwise
if (
has_symbolic_sizes
and func not in self.functions_with_cpp_meta_impl_that_support_symint
):
# TODO: Find better approach for this
# Avoid circular import
from torch._decomp import decomposition_table
from torch._meta_registrations import meta_table
with no_dispatch():
if func == aten.size.default:
sys.stderr.write(
"Trying to call aten.size on a tensor with symbolic shapes. "
"It's likely that this is from calling tensor.shape in C++"
)
# We do this to allow for better error localization with `TORCH_SHOW_CPP_STACKTRACES=1`
return None
with self:
if func in meta_table:
r = meta_table[func](*args, **kwargs)
return r
if func in decomposition_table:
return decomposition_table[func](*args, **kwargs)
# Decomposes CompositeImplicitAutograd ops
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
# prims already wrap FakeTensor inputs to FakeTensor outputs
# and do device logic, we dont need do anything but run them
# and ensure that Meta kernels are dispatched to (see)
# Fake Tensor Dispatch Keys
# TODO - we should be use the prim aten impl
if (
"prims::" in func._schema.name
and len(flat_arg_fake_tensors) != 0
and hasattr(func, "prim_meta_impl")
):
with self:
return func.prim_meta_impl(*args, **kwargs)
if has_symbolic_sizes:
if func not in self.functions_with_cpp_meta_impl_that_support_symint:
raise RuntimeError(
f"{func} - couldn't find symbolic meta function/decomposition"
)
with no_dispatch():
# special handling for funcs registered through `register_op_impl`,
# e.g., manipulating args on constructor calls to construct meta tensors
# and then afterwards wrapping them to a FakeTensor
for run_impl_check, op_impl in op_implementations:
if run_impl_check(func):
op_impl_out = op_impl(self, func, *args, **kwargs)
if op_impl_out != NotImplemented:
return op_impl_out
# run kernel registered to meta for func, which include
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
try:
with in_kernel_invocation_manager(self):
r = func(*args, **kwargs)
except NotImplementedError as not_implemented_error:
# no meta kernel registered, fallback to kernel for the device
if not self.allow_fallback_kernels:
raise not_implemented_error
return run_fallback_kernel(
self, func, args, kwargs, not_implemented_error
)
return self.wrap_meta_outputs_with_default_device_logic(
r, func, args, kwargs
)
# [subclass inputs]
# Suppose we enable fake tensor mode. This means that fake tensor
# mode will run first. But what if we do an operation that
# involves a tensor subclass that will desugar into normal tensor
# operations? Without returning NotImplemented, fake tensor mode will run first,
# decide that a conversion was made (since there was a non fake
# tensor argument), and report an error that converting non
# fake tensor is not supported. What we actually wanted to happen
# was to give the subclass a chance to figure out what it wants to
# before erroring out. Returning NotImplemented here allows this.
def check_for_subclass(self, flat_arg_tensors):
return any(
not isinstance(x, FakeTensor)
and type(x) is not torch.Tensor
and type(x) is not torch.nn.Parameter
for x in flat_arg_tensors
)
def check_for_non_fake(self, flat_arg_tensors):
return any(
isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor)
for x in flat_arg_tensors
)
def wrap_meta_outputs_with_default_device_logic(self, r, func, args, kwargs):
wrap = self.gen_wrap_fn(func, args, kwargs)
# if device is specified, use that
if kwargs.get("device", None):
return tree_map(partial(wrap, device=kwargs["device"]), r)
return tree_map(partial(wrap), r)
def gen_wrap_fn(self, func, args, kwargs):
converter = self.fake_tensor_converter
# Lazily initialized, in case there are no tensor returns
common_device = None
def wrap(e, device=None):
nonlocal common_device
if isinstance(e, torch.Tensor) and not isinstance(e, FakeTensor):
if common_device is None:
common_device = FakeTensor._find_common_device(func, args, kwargs)
return converter(self, e, device or common_device)
else:
return e
return wrap
@property
def functions_with_cpp_meta_impl_that_support_symint(self):
return [
aten.empty_strided.default,
aten.as_strided.default,
aten.zeros.default,
aten.detach.default,
]
@property
def lift_fns(self):
return (aten.lift_fresh.default, aten.lift_fresh_copy.default)
def may_turn_const(self, t):
return (
t.numel() <= CONSTANT_NUMEL_LIMIT
and not t.is_sparse
and not isinstance(t, FakeTensor)
)
def invalidate_written_to_constants(
self, func, flat_arg_fake_tensors, args, kwargs
):
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
if any_constant and get_schema_info(func).is_mutable():
schema_info = get_schema_info(func)
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
for k, v in new_kwargs.items():
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
if (
isinstance(v, FakeTensor)
and schema_info.is_mutable(k)
and v.constant is not None
):
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
def from_tensor(self, tensor, shape_env=None):
return self.fake_tensor_converter(self, tensor, shape_env=shape_env)
# NB: returns fake tensors
def run_fallback_kernel(fake_mode, func, args, kwargs, orig_not_implemented_exception):
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags: # type: ignore[attr-defined]
raise orig_not_implemented_exception
with no_dispatch():
inp_impls = {}
def to_real_tensor(e):
if isinstance(e, FakeTensor):
out = torch.zeros_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
args = tree_map(to_real_tensor, args)
kwargs = tree_map(to_real_tensor, kwargs)
r = func(*args, **kwargs)
tensor_impls = set()
storages = set()
for e in tree_flatten((args, kwargs))[0]:
if isinstance(e, torch.Tensor):
if not e.is_sparse:
storages.add(e.storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
for e in tree_flatten(r)[0]:
if id(e) not in inp_impls and (
isinstance(e, torch.Tensor)
and not e.is_sparse
and e.storage()._cdata in storages
):
raise orig_not_implemented_exception
def map_out(e):
if isinstance(e, torch.Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return fake_mode.fake_tensor_converter(fake_mode, e)
else:
return e
return tree_map(map_out, r)
# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
def __init__(self, fake_mode):
self.fake_mode = fake_mode
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
# clone will get called in Parameter deepcopy
if func == torch._C._TensorBase.clone:
return func(self.fake_mode.from_tensor(args[0]), **kwargs)
elif func == torch.Tensor.__deepcopy__:
assert len(args) == 2 and len(kwargs) == 0
tensor, memo = args
if id(tensor) in memo:
return memo[id(tensor)]
out = self.fake_mode.from_tensor(tensor)
memo[id(tensor)] = out
return out
else:
with torch._C.DisableTorchFunction():
return func(*args, **kwargs)
|