File: fake_tensor.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (981 lines) | stat: -rw-r--r-- 37,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
import contextlib
import functools
import itertools
import sys
import warnings
import weakref
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union

import torch
from torch._ops import OpOverload
from torch._subclasses.meta_utils import MetaConverter, WeakTensorRefKey
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode

from torch.utils._pytree import PyTree, tree_flatten, tree_map

pytree = torch.utils._pytree
T = TypeVar("T")
TensorWeakRef = Any

aten = torch.ops.aten

CONSTANT_NUMEL_LIMIT = 1


@dataclass
class UnsupportedFakeTensorException(RuntimeError):
    reason: str


@dataclass
class DynamicOutputShapeException(RuntimeError):
    func: OpOverload


@dataclass
class DataDependentOutputException(RuntimeError):
    func: OpOverload


_device_not_kwarg_ops = (
    aten._resize_output_.default,
    aten._nested_tensor_from_tensor_list.default,
    aten._nested_tensor_from_tensor_list.out,
    aten.pin_memory.default,
    aten.is_pinned.default,
    aten.to.device,
    aten.to.prim_Device,
    aten._pin_memory.default,
    aten._pin_memory.out,
    aten._resize_output.default,
    aten._resize_output.out,
)

# this op is never actually used
_non_kwarg_device_constructors = (aten._list_to_tensor,)


def contains_tensor_types(type):
    tensor_type = torch._C.TensorType.get()
    return type.isSubtypeOf(tensor_type) or any(
        contains_tensor_types(e) for e in type.containedTypes()
    )


_like_tensor_constructors = (
    aten.empty_like.default,
    aten.empty_like.out,
    aten.full_like.default,
    aten.full_like.out,
    aten.ones_like.default,
    aten.ones_like.out,
    aten.rand_like.default,
    aten.rand_like.out,
    aten.randn_like.default,
    aten.randn_like.out,
    aten.randint_like.default,
    aten.randint_like.out,
    aten.randint_like.low_dtype,
    aten.randint_like.low_dtype_out,
    aten.zeros_like.default,
    aten.zeros_like.out,
    aten.new_empty.default,
    aten.new_empty.out,
    aten.new_empty_strided.default,
    aten.new_empty_strided.out,
    aten.new_full.default,
    aten.new_full.out,
    aten.new_zeros.default,
    aten.new_zeros.out,
    aten.new_ones.default,
    aten.new_ones.out,
)


@functools.lru_cache(None)
def _is_tensor_constructor(func: OpOverload):
    assert isinstance(func, OpOverload)
    schema = func._schema
    if any(contains_tensor_types(arg.type) for arg in schema.arguments):
        return False
    # TODO: no real reason to restrict multiple outputs
    return (
        len(schema.returns) == 1 and schema.returns[0].type is torch._C.TensorType.get()
    )


@functools.lru_cache(None)
def get_schema_info(func):
    return torch._C._SchemaInfo(func._schema)  # type: ignore[attr-defined]


def tree_flatten_only(ty: Type[T], pytree: PyTree):
    flat_vals, _ = tree_flatten(pytree)
    return [elem for elem in flat_vals if isinstance(elem, ty)]


# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakTensorRefKey` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter(object):
    tensor_memo: weakref.WeakValueDictionary
    meta_converter: MetaConverter
    constant_storage_mapping: Dict[StorageWeakRef, List[TensorWeakRef]]

    def __init__(self):
        # FakeTensors store the FakeTensorMode which in turn stores a
        # FakeTensor, so we need to hold a weak reference to the FakeTensor
        # otherwise we would induce a circular reference
        self.tensor_memo = weakref.WeakValueDictionary()
        self.meta_converter = MetaConverter()

        # map from to storage to corresponding constant tensors
        self.constant_storage_mapping = {}

    def add_constant_storage_mapping(self, fake_tensor):
        # when you have a constant, aliased tensor:
        # const_tensor.add_(torch.rand([1]))
        # all aliases of it must become no longer const
        assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
        weak_st = StorageWeakRef(fake_tensor.constant.storage())

        # we need a map from a weak storage to all of its corresponding
        # constant tensors. python doesn't have the weak value equivalent
        # of defaultdict(list), so we are using a WeakValueDictionary as one
        if weak_st not in self.constant_storage_mapping:
            self.constant_storage_mapping[weak_st] = []
        self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))

    def invalidate_constant_aliases(self, tensor):
        assert not isinstance(tensor, FakeTensor)

        weak_st = StorageWeakRef(tensor.storage())
        if weak_st not in self.constant_storage_mapping:
            return

        for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
            ten = weak_tensor_ref()
            if ten is not None:
                ten._fix_weakref()
                ten.constant = None

        del self.constant_storage_mapping[weak_st]

    def _get_memo(self, t):
        if WeakTensorRefKey(t) in self.tensor_memo:
            out = self.tensor_memo[WeakTensorRefKey(t)]
            out._fix_weakref()
            return out
        return None

    def set_tensor_memo(self, t, v):
        th = WeakTensorRefKey(t)

        # hold a weak ref to self, otherwise it will be kept alive
        # by the del_ten closure
        self_weak_ref = weakref.ref(self)

        def del_ten():
            self_ref = self_weak_ref()
            if self_ref is None:
                return
            # on shutdown, th may not be in memo
            self_ref.tensor_memo.pop(th, None)

        weakref.finalize(t, del_ten)
        self.tensor_memo[th] = v

    def from_real_tensor(self, fake_mode, t, make_constant=False, shape_env=None):
        maybe_memo = self._get_memo(t)
        if maybe_memo is not None:
            return maybe_memo
        existing_device = t.device
        # not yet supported in metatensors
        if t.is_quantized:
            raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
        with no_dispatch():
            meta_t = self.meta_converter(t, shape_env=shape_env)
            if meta_t.device.type != "meta":
                raise UnsupportedFakeTensorException("meta converter nyi")
            out = FakeTensor(
                fake_mode,
                meta_t,
                existing_device,
                constant=t if make_constant else None,
            )
            out.requires_grad_(t.requires_grad)
            if make_constant:
                self.add_constant_storage_mapping(out)
        if type(t) is torch.nn.Parameter:
            assert not make_constant
            out = torch.nn.Parameter(out, requires_grad=out.requires_grad)  # type: ignore[assignment]
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
            grad_not_none = t.grad is not None
        if grad_not_none:
            out.grad = self.from_real_tensor(fake_mode, t.grad)
        self.set_tensor_memo(t, out)
        return out

    def from_meta_and_device(self, fake_mode, t, device):
        maybe_memo = self._get_memo(t)
        if maybe_memo is not None:
            return maybe_memo
        out = FakeTensor(fake_mode, t, device)
        self.set_tensor_memo(t, out)
        return out

    # There are two ways to call this.  First, you can have manually constructed
    # a meta tensor and you need to turn it into a fake tensor.  In that case,
    # pass a meta tensor and a device argument.  Alternately, you can have a
    # real tensor that you need to convert into a fake tensor; in that case,
    # omit the device.
    #
    # The disallowed case: if you specify the device, it MUST be a meta tensor.
    # However, you're allowed to pass a meta tensor to be turned into a fake
    # tensor; although an odd thing to do, this can occur if you're doing
    # cross ref testing and the inner test is already operating on meta tensors
    def __call__(
        self, fake_mode, t, device=None, *, make_constant=False, shape_env=None
    ):
        if device is None:
            return self.from_real_tensor(
                fake_mode, t, make_constant, shape_env=shape_env
            )
        else:
            assert make_constant is False
            assert t.device.type == "meta"
            return self.from_meta_and_device(fake_mode, t, device)


op_implementations = []


def register_op_impl(run_impl_check: Union[Callable[[OpOverload], bool], OpOverload]):
    def impl_decorator(op_impl):
        global op_implementations
        if isinstance(run_impl_check, OpOverload):
            op_implementations.append((lambda func: func == run_impl_check, op_impl))
        else:
            op_implementations.append((run_impl_check, op_impl))

        return op_impl

    return impl_decorator


@register_op_impl(
    lambda func: (_is_tensor_constructor(func) or func in _like_tensor_constructors)
)
def constructors(fake_mode, func, *args, **kwargs):
    assert func not in _non_kwarg_device_constructors
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )
    if func in _like_tensor_constructors:
        default_device = new_kwargs["input"].device
        # TODO: file issue
        args = (new_kwargs.pop("input"),)
    else:
        # cpu is default device if none is specified
        default_device = torch.device("cpu")
        args = ()
    out_device = new_kwargs.pop("device", None)
    out_device = out_device if out_device is not None else default_device
    new_kwargs["device"] = torch.device("meta")
    r = func(*args, **new_kwargs)
    return FakeTensor(fake_mode, r, out_device)


@register_op_impl(lambda func: func in (aten.to.prim_Device, aten.to.device))
def non_kwarg_to(fake_mode, func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args, kwargs, normalize_to_only_use_kwargs=True
    )
    input_device = new_kwargs["device"]
    out_device = input_device if input_device else new_kwargs["input"].device
    new_kwargs["device"] = torch.device("meta")
    r = func(*args, **new_kwargs)
    return fake_mode.fake_tensor_converter(fake_mode, r, out_device)


# Dont default to default device handling,
# since the device of `the_template` is ignored
@register_op_impl(aten.resize_as_.default)
def resize_as_(fake_mode, func, *args, **kwargs):
    return func(*args, **kwargs)


@register_op_impl(aten._sparse_coo_tensor_with_dims_and_tensors.default)
def _sparse_coo_tensor_with_dims_and_tensors(fake_mode, func, *args, **kwargs):
    # TODO: remove me
    return constructors(fake_mode, func, *args, **kwargs)


# _to_copy fails when run with FakeTensors to cuda device
# TODO: debug
@register_op_impl(aten._to_copy.default)
def to_copy(fake_mode, func, *args, **kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    input_device = new_kwargs.pop("device", None)
    out_device = input_device if input_device else new_kwargs["input"].device
    with no_dispatch(), in_kernel_invocation_manager(fake_mode):
        input = new_kwargs.pop("input").to("meta")
        return FakeTensor(fake_mode, aten._to_copy(input, **new_kwargs), out_device)


# index.Tensor data-dependent in only some conditions
@register_op_impl(
    lambda func: torch.Tag.dynamic_output_shape in func.tags  # type: ignore[attr-defined]
    and func != aten.index.Tensor
)
def dyn_shape(fake_mode, func, *args, **kwargs):
    raise DynamicOutputShapeException(func)


@register_op_impl(
    lambda func: torch.Tag.data_dependent_output in func.tags  # type: ignore[attr-defined]
)
def data_dep(fake_mode, func, *args, **kwargs):
    if fake_mode.throw_on_data_dependent_ops:
        raise DataDependentOutputException(func)
    return NotImplemented


# Bool Indices get Expanded as Masks
# See: IndexingUtils.h:expandTensors
def check_no_bool_index_tensors(func, self, indices):
    for index in indices:
        if index is not None and index.dtype in (torch.bool, torch.uint8):
            raise DynamicOutputShapeException(func)


def run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs):
    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    out_device = new_kwargs["input"].device
    with in_kernel_invocation_manager(fake_mode):
        out = func(*args, **kwargs)

    return FakeTensor(fake_mode, out, out_device)


# Dont default to default device handling,
# Since op can take in non-zero sized cpu
# index tensors with cuda self
@register_op_impl(aten.index.Tensor)
def index_tensor(fake_mode, func, *args, **kwargs):
    # dynamic shape op if indices are bool/uint8
    check_no_bool_index_tensors(func, *args, **kwargs)

    return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)


# takes in multiple-devices, dont default to default device handling
@register_op_impl(aten.index_put.default)
def index_put(fake_mode, func, *args, **kwargs):
    return run_and_return_new_tensor_of_input_device(fake_mode, func, args, kwargs)


# same with index_put, but return the input
@register_op_impl(aten.index_put_.default)
def index_put_(fake_mode, func, *args, **kwargs):
    with in_kernel_invocation_manager(fake_mode):
        out = func(*args, **kwargs)

    _, new_kwargs = normalize_function(
        func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
    )

    return new_kwargs["input"]


@register_op_impl(lambda fn: fn in _device_not_kwarg_ops)
def nyi(fake_mode, func, *args, **kwargs):
    assert func not in _device_not_kwarg_ops, f"NYI: {func}"


# Meta tensors give you the ability to run PyTorch code without having to
# actually do computation through tensors allocated on a `meta` device.
# Because the device is `meta`, meta tensors do not model device propagation.
# FakeTensor extends MetaTensors to also carry an additional `fake_device`
# which tracks devices that would have been used.


@contextlib.contextmanager
def in_kernel_invocation_manager(fake_mode):
    # See: note [Fake Tensor Dispatch Keys]
    meta_in_tls = torch._C._meta_in_tls_dispatch_include()
    prev = fake_mode.in_kernel_invocation

    fake_mode.in_kernel_invocation = True
    if not meta_in_tls:
        torch._C._add_meta_to_tls_dispatch_include()
    try:
        yield
    finally:
        fake_mode.in_kernel_invocation = prev
        if not meta_in_tls:
            torch._C._remove_meta_from_tls_dispatch_include()


class FakeTensor(torch.Tensor):
    fake_device: torch.device
    fake_mode: "FakeTensorMode"
    constant: Optional[torch.Tensor]

    # Note: [Fake Tensor Dispatch Keys]
    # In order to model the behavior of device-specific autocast
    # and autograd logic, we update the dispatch keys of FakeTensors
    # to reflect their fake device. This includes the BackendComponent
    # (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
    # related Autocast and Autograd keys. __torch__dispatch__ sits below
    # Autocast and Autograd, and is only invoked when we are at the
    # kernel for the BackendComponent. Then, we add Meta to the
    # thread-local dispatch include set to hit the meta kernel
    # instead of the kernel of the BackendComponent for the fake device.
    # The `device_for_backend_keys` does that below

    @staticmethod
    def __new__(cls, fake_mode, elem, device, constant=None):
        return torch.Tensor._make_subclass(
            cls,
            elem,
            elem.requires_grad,
            dispatch_device=True,
            device_for_backend_keys=device,
        )

    def __init__(
        self,
        fake_mode,
        elem,
        device: Union[torch.device, str],
        constant: Optional[torch.Tensor] = None,
    ):
        assert elem.device.type == "meta", elem.device.type
        device = device if isinstance(device, torch.device) else torch.device(device)
        # NB: it is fine, if a little confusing, for device to be meta
        # (we are faking a meta tensor in that case).  However, it often
        # indicates some sort of confusion (e.g., you accidentally passed
        # in a meta tensor when you should have passed in the real tensor).
        # So by default we disallow meta, and if you are working in a situation
        # where it is helpful (e.g., crossref testing) you can turn it back
        # on
        if not fake_mode.allow_meta:
            assert device.type != "meta"
        # normalize cuda device.
        if device.type == "cuda" and device.index is None:
            device = torch.device(f"cuda:{torch.cuda.current_device()}")
        self.fake_device = device
        self.fake_mode = fake_mode
        self.constant = constant

    @staticmethod
    def from_tensor(t, fake_mode):
        return fake_mode.from_tensor(t)

    # TODO: resolve error in default __repr__
    def __repr__(self):
        with in_kernel_invocation_manager(self.fake_mode):
            self_repr = super().__repr__()
        return f"FakeTensor({self_repr}, {self.fake_device})"

    @classmethod
    def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
        # need to handle here to avoid infinite recursion
        # see [in_kernel_invocation]
        if func == torch.ops.prim.device.default:
            assert len(args) == 1 and isinstance(args[0], FakeTensor)
            if args[0].fake_mode.in_kernel_invocation:
                return torch.device("meta")
            else:
                return args[0].fake_device

        # Because fake mode can return NotImplemented (if it sees a subclass
        # it doesn't know how to deal with), this test here is important
        # because the next dispatch after a fake mode will attempt to use
        # subclasses of tensors to dispatch, and any FakeTensor arguments
        # will be considered eligible.
        if any(not issubclass(t, FakeTensor) and t is not torch.Tensor for t in types):
            return NotImplemented

        fake_mode = None
        for arg in itertools.chain(tree_flatten(args)[0], tree_flatten(kwargs)[0]):
            if isinstance(arg, FakeTensor):
                if fake_mode is None:
                    fake_mode = arg.fake_mode
                else:
                    assert fake_mode is arg.fake_mode, "Mixing modes NYI"

        assert fake_mode is not None
        with fake_mode:  # type: ignore[attr-defined]
            return func(*args, **kwargs)

    @staticmethod
    def _find_common_device(func, args, kwargs):
        # cpu - zero-dim tensors can be called in cuda kernels,
        # so overwrite the common_device if it the only existing
        # device comes from a cpu zero-dim tensor
        common_device = None
        is_cpu_zero_dim = None

        def cpu_zero_dim(t):
            return t.device.type == "cpu" and t.dim() == 0

        def merge_devices(t):
            nonlocal common_device
            nonlocal is_cpu_zero_dim
            if not isinstance(t, FakeTensor):
                return

            if common_device is None:
                common_device = t.device
                is_cpu_zero_dim = cpu_zero_dim(t)
                return

            t_is_cpu_zero_dim = cpu_zero_dim(t)
            if t.device == common_device:
                if is_cpu_zero_dim:
                    is_cpu_zero_dim = t_is_cpu_zero_dim
                return

            # mismatching devices !
            # if current tensor is cpu 0 dim, defer to existing device
            if t_is_cpu_zero_dim:
                return

            # current device is from cpu 0 dim tensor, overwrite
            if is_cpu_zero_dim:
                common_device = t.device
                is_cpu_zero_dim = t_is_cpu_zero_dim
                return

            # mismatching devices of non-zero dim tensors, throw
            # This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
            raise RuntimeError(
                f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
            )

        tree_map(merge_devices, args)
        tree_map(merge_devices, kwargs)

        # some functions that allow Python numbers to bind to Tensors
        # if we have failed to find a device, and we're running one of these operators,
        # we must have scalar only inputs
        if (
            torch._C._should_allow_numbers_as_tensors(
                func.name().split("::")[-1].split(".")[0]
            )
            and common_device is None
        ):
            common_device = torch.device("cpu")

        assert common_device is not None, f"Could not find common device for {func}"

        return common_device

    __torch_function__ = torch._C._disabled_torch_function_impl


# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly incraese.


class FakeTensorMode(TorchDispatchMode):
    def __init__(
        self,
        *,
        allow_fallback_kernels=True,
        allow_meta=False,
        throw_on_data_dependent_ops=False,
    ):
        self.allow_fallback_kernels = allow_fallback_kernels
        self.fake_tensor_converter = FakeTensorConverter()
        self.allow_meta = allow_meta

        # TODO: delete arg and default to true. waiting on dynamo perf regression testing
        self.throw_on_data_dependent_ops = throw_on_data_dependent_ops

        # [in_kernel_invocation]
        # when FakeTensor is invoked in user code, .device should return
        # the fake_device of the tensor so that code such as as `if x.is_cuda`
        # or torch.zeros([10, 10], device=x.device) continues to execute as if
        # the FakeTensor were real. However, within kernel execution, we return
        # the `Meta` device because all computation within the kernels should
        # behave as if the Tensors are on meta devices. Kernels should allocate
        # new tensors on meta devices, and checks like `is_meta` should return true.
        # within python refs, we always return the real device by defining
        # the device property
        self.in_kernel_invocation = False

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        kwargs = kwargs if kwargs else {}

        if func == torch.ops.prim.device.default:
            assert len(args) == 1 and isinstance(args[0], FakeTensor)
            if args[0].fake_mode.in_kernel_invocation:
                return torch.device("meta")
            else:
                return args[0].fake_device

        flat_arg_fake_tensors = tree_flatten_only(FakeTensor, (args, kwargs))
        flat_symints = tree_flatten_only(torch.SymIntNode, (args, kwargs))
        has_symbolic_sizes = (
            any([i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors])
            or len(flat_symints) > 0
        )

        converter = self.fake_tensor_converter

        # If this is a lift, the input tensor is guaranteed to be a
        # constant, so we keep a copy of the original argument along so
        # we can query it if we're asked to item() it at some later point
        if func in self.lift_fns:
            out = func(*args, **kwargs)
            if self.may_turn_const(out):
                with no_dispatch():
                    return converter(self, out.clone(), make_constant=True)

        with no_dispatch():
            flat_arg_tensors = tree_flatten_only(torch.Tensor, (args, kwargs))
            # See [subclass inputs] below
            # NB: If you're seeing a mysterious infinite loop involving fake
            # tensor, it might be related to this line.  Though I'm not sure
            # how you'll know to read this comment, as this line won't show up
            # in the stack trace.
            if self.check_for_subclass(flat_arg_tensors):
                return NotImplemented

            # if we are in the dispatch mode, we will enter this function even if the inputs
            # are not FakeTensors. For now, throw if any non-Fake Tensor inputs
            # and just support constructors.

            # this is generated from torch.tensor(), which does not use the
            # dispatcher, to allow wrapper subclasses to wrap the new tensor
            if func in self.lift_fns:
                assert (
                    len(kwargs) == 0
                    and len(args) == 1
                    and type(args[0]) is torch.Tensor
                ), f"{args} {kwargs}"
                return converter(self, args[0])

            if self.check_for_non_fake(flat_arg_tensors):
                raise Exception(
                    "Invoking operators with non-Fake Tensor inputs in FakeTensorMode is not yet supported. "
                    f"Please convert all Tensors to FakeTensors first. Found in {func}(*{args}, **{kwargs})"
                )

        # The current constant handling only support tracing systems
        # (aot autograd, torchdynamo) where each operation is run consecutively.
        # Because each operation is run in order, we can trace out and support
        # sequences like: x = torch.tensor(0.); y = x.add_(1)
        # Whenver a constant is written to but with inputs that cannot be evaluated
        # statically, such as random_(), we invalidate all constants that alias the input
        # We will rely on functionalization for use of fake tensors constants as persistent
        # objects on an FX Graph.

        # We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
        all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
        if (
            torch.Tag.nondeterministic_seeded not in func.tags  # type: ignore[attr-defined]
            and torch.Tag.inplace_view not in func.tags  # type: ignore[attr-defined]
            and all_constant
            and len(flat_arg_fake_tensors) != 0
            and not has_symbolic_sizes
        ):
            with no_dispatch():
                const_args, const_kwargs = pytree.tree_map_only(
                    FakeTensor, lambda t: t.constant, (args, kwargs)
                )
                out = func(*const_args, **const_kwargs)

                all_constant = pytree.tree_all_only(
                    torch.Tensor, lambda t: self.may_turn_const(t), out
                )

                if all_constant:
                    return pytree.tree_map_only(
                        torch.Tensor,
                        lambda t: converter(self, t, make_constant=True),
                        out,
                    )

                # we weren't able to turn outputs to constants,
                # so invalidate all constants that might be aliases of the outputs
                for ten in tree_flatten_only(torch.Tensor, out):
                    converter.invalidate_constant_aliases(ten)

        # we are falling through to running non constant tensors, any input constant that
        # is written to must be invalidated
        self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)

        # IDK: feels bad man, sym_numel on as_strided infinite loops otherwise
        if (
            has_symbolic_sizes
            and func not in self.functions_with_cpp_meta_impl_that_support_symint
        ):
            # TODO: Find better approach for this
            # Avoid circular import
            from torch._decomp import decomposition_table
            from torch._meta_registrations import meta_table

            with no_dispatch():
                if func == aten.size.default:
                    sys.stderr.write(
                        "Trying to call aten.size on a tensor with symbolic shapes. "
                        "It's likely that this is from calling tensor.shape in C++"
                    )
                    # We do this to allow for better error localization with `TORCH_SHOW_CPP_STACKTRACES=1`
                    return None

            with self:
                if func in meta_table:
                    r = meta_table[func](*args, **kwargs)
                    return r
                if func in decomposition_table:
                    return decomposition_table[func](*args, **kwargs)

                # Decomposes CompositeImplicitAutograd ops
                r = func.decompose(*args, **kwargs)
                if r is not NotImplemented:
                    return r

        # prims already wrap FakeTensor inputs to FakeTensor outputs
        # and do device logic, we dont need do anything but run them
        # and ensure that Meta kernels are dispatched to (see)
        # Fake Tensor Dispatch Keys
        # TODO - we should be use the prim aten impl
        if (
            "prims::" in func._schema.name
            and len(flat_arg_fake_tensors) != 0
            and hasattr(func, "prim_meta_impl")
        ):
            with self:
                return func.prim_meta_impl(*args, **kwargs)

        if has_symbolic_sizes:
            if func not in self.functions_with_cpp_meta_impl_that_support_symint:
                raise RuntimeError(
                    f"{func} - couldn't find symbolic meta function/decomposition"
                )

        with no_dispatch():
            # special handling for funcs registered through `register_op_impl`,
            # e.g., manipulating args on constructor calls to construct meta tensors
            # and then afterwards wrapping them to a FakeTensor
            for run_impl_check, op_impl in op_implementations:
                if run_impl_check(func):
                    op_impl_out = op_impl(self, func, *args, **kwargs)
                    if op_impl_out != NotImplemented:
                        return op_impl_out

            # run kernel registered to meta for func, which include
            # python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
            try:
                with in_kernel_invocation_manager(self):
                    r = func(*args, **kwargs)
            except NotImplementedError as not_implemented_error:
                # no meta kernel registered, fallback to kernel for the device
                if not self.allow_fallback_kernels:
                    raise not_implemented_error
                return run_fallback_kernel(
                    self, func, args, kwargs, not_implemented_error
                )

            return self.wrap_meta_outputs_with_default_device_logic(
                r, func, args, kwargs
            )

    # [subclass inputs]
    # Suppose we enable fake tensor mode.  This means that fake tensor
    # mode will run first.  But what if we do an operation that
    # involves a tensor subclass that will desugar into normal tensor
    # operations?  Without returning NotImplemented, fake tensor mode will run first,
    # decide that a conversion was made (since there was a non fake
    # tensor argument), and report an error that converting non
    # fake tensor is not supported.  What we actually wanted to happen
    # was to give the subclass a chance to figure out what it wants to
    # before erroring out. Returning NotImplemented here allows this.
    def check_for_subclass(self, flat_arg_tensors):
        return any(
            not isinstance(x, FakeTensor)
            and type(x) is not torch.Tensor
            and type(x) is not torch.nn.Parameter
            for x in flat_arg_tensors
        )

    def check_for_non_fake(self, flat_arg_tensors):
        return any(
            isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor)
            for x in flat_arg_tensors
        )

    def wrap_meta_outputs_with_default_device_logic(self, r, func, args, kwargs):
        wrap = self.gen_wrap_fn(func, args, kwargs)

        # if device is specified, use that
        if kwargs.get("device", None):
            return tree_map(partial(wrap, device=kwargs["device"]), r)

        return tree_map(partial(wrap), r)

    def gen_wrap_fn(self, func, args, kwargs):
        converter = self.fake_tensor_converter

        # Lazily initialized, in case there are no tensor returns
        common_device = None

        def wrap(e, device=None):
            nonlocal common_device
            if isinstance(e, torch.Tensor) and not isinstance(e, FakeTensor):
                if common_device is None:
                    common_device = FakeTensor._find_common_device(func, args, kwargs)
                return converter(self, e, device or common_device)
            else:
                return e

        return wrap

    @property
    def functions_with_cpp_meta_impl_that_support_symint(self):
        return [
            aten.empty_strided.default,
            aten.as_strided.default,
            aten.zeros.default,
            aten.detach.default,
        ]

    @property
    def lift_fns(self):
        return (aten.lift_fresh.default, aten.lift_fresh_copy.default)

    def may_turn_const(self, t):
        return (
            t.numel() <= CONSTANT_NUMEL_LIMIT
            and not t.is_sparse
            and not isinstance(t, FakeTensor)
        )

    def invalidate_written_to_constants(
        self, func, flat_arg_fake_tensors, args, kwargs
    ):
        any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
        if any_constant and get_schema_info(func).is_mutable():
            schema_info = get_schema_info(func)
            _, new_kwargs = normalize_function(
                func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
            )
            for k, v in new_kwargs.items():
                k = k if (k != "input" or schema_info.has_argument(k)) else "self"
                if (
                    isinstance(v, FakeTensor)
                    and schema_info.is_mutable(k)
                    and v.constant is not None
                ):
                    self.fake_tensor_converter.invalidate_constant_aliases(v.constant)

    def from_tensor(self, tensor, shape_env=None):
        return self.fake_tensor_converter(self, tensor, shape_env=shape_env)


# NB: returns fake tensors
def run_fallback_kernel(fake_mode, func, args, kwargs, orig_not_implemented_exception):
    # these should all be supported, just to be safe
    # avoid fallback for operators which inplace modify metadata
    # because the input fake tensors would be umodified
    if torch.Tag.inplace_view in func.tags:  # type: ignore[attr-defined]
        raise orig_not_implemented_exception

    with no_dispatch():
        inp_impls = {}

        def to_real_tensor(e):
            if isinstance(e, FakeTensor):
                out = torch.zeros_like(e, device=e.fake_device)
                if e.is_sparse:
                    out._coalesced_(e.is_coalesced())
                inp_impls[id(out)] = e
                return out
            return e

        args = tree_map(to_real_tensor, args)
        kwargs = tree_map(to_real_tensor, kwargs)

        r = func(*args, **kwargs)

        tensor_impls = set()
        storages = set()

        for e in tree_flatten((args, kwargs))[0]:
            if isinstance(e, torch.Tensor):
                if not e.is_sparse:
                    storages.add(e.storage()._cdata)

        # TODO: also check metadata change on inputs
        # proper aliasing/metadata relationship between outputs and inputs will
        # not be set up, bc of conversion to device, unless we can reuse an
        # input impl
        for e in tree_flatten(r)[0]:
            if id(e) not in inp_impls and (
                isinstance(e, torch.Tensor)
                and not e.is_sparse
                and e.storage()._cdata in storages
            ):
                raise orig_not_implemented_exception

    def map_out(e):
        if isinstance(e, torch.Tensor):
            if id(e) in inp_impls:
                return inp_impls[id(e)]
            else:
                return fake_mode.fake_tensor_converter(fake_mode, e)
        else:
            return e

    return tree_map(map_out, r)


# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
    def __init__(self, fake_mode):
        self.fake_mode = fake_mode

    def __torch_function__(self, func, types, args=(), kwargs=None):
        kwargs = kwargs if kwargs else {}

        # clone will get called in Parameter deepcopy
        if func == torch._C._TensorBase.clone:
            return func(self.fake_mode.from_tensor(args[0]), **kwargs)
        elif func == torch.Tensor.__deepcopy__:
            assert len(args) == 2 and len(kwargs) == 0
            tensor, memo = args

            if id(tensor) in memo:
                return memo[id(tensor)]

            out = self.fake_mode.from_tensor(tensor)
            memo[id(tensor)] = out
            return out
        else:
            with torch._C.DisableTorchFunction():
                return func(*args, **kwargs)