1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878
|
# -*- coding: utf-8 -*-
"""Adds docstrings to functions defined in the torch._C"""
import re
import torch._C
from torch._C import _add_docstr as add_docstr
def parse_kwargs(desc):
"""Maps a description of args to a dictionary of {argname: description}.
Input:
(' weight (Tensor): a weight tensor\n' +
' Some optional description')
Output: {
'weight': \
'weight (Tensor): a weight tensor\n Some optional description'
}
"""
# Split on exactly 4 spaces after a newline
regx = re.compile(r"\n\s{4}(?!\s)")
kwargs = [section.strip() for section in regx.split(desc)]
kwargs = [section for section in kwargs if len(section) > 0]
return {desc.split(" ")[0]: desc for desc in kwargs}
def merge_dicts(*dicts):
return {x: d[x] for d in dicts for x in d}
common_args = parse_kwargs(
"""
input (Tensor): the input tensor.
generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling
out (Tensor, optional): the output tensor.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned tensor. Default: ``torch.preserve_format``.
"""
)
reduceops_common_args = merge_dicts(
common_args,
parse_kwargs(
"""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
keepdim (bool): whether the output tensor has :attr:`dim` retained or not.
"""
),
)
multi_dim_common = merge_dicts(
reduceops_common_args,
parse_kwargs(
"""
dim (int or tuple of ints): the dimension or dimensions to reduce.
"""
),
{
"keepdim_details": """
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 (or ``len(dim)``) fewer dimension(s).
"""
},
{
"opt_dim": """
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
If ``None``, all dimensions are reduced.
"""
},
)
single_dim_common = merge_dicts(
reduceops_common_args,
parse_kwargs(
"""
dim (int): the dimension to reduce.
"""
),
{
"keepdim_details": """If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensor having 1 fewer dimension than :attr:`input`."""
},
)
factory_common_args = merge_dicts(
common_args,
parse_kwargs(
"""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned Tensor. Default: ``torch.contiguous_format``.
"""
),
)
factory_like_common_args = parse_kwargs(
"""
input (Tensor): the size of :attr:`input` will determine size of the output tensor.
layout (:class:`torch.layout`, optional): the desired layout of returned tensor.
Default: if ``None``, defaults to the layout of :attr:`input`.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: if ``None``, defaults to the dtype of :attr:`input`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, defaults to the device of :attr:`input`.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned Tensor. Default: ``torch.preserve_format``.
"""
)
factory_data_common_args = parse_kwargs(
"""
data (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, infers data type from :attr:`data`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
"""
)
tf32_notes = {
"tf32_note": """This operator supports :ref:`TensorFloat32<tf32_on_ampere>`."""
}
rocm_fp16_notes = {
"rocm_fp16_note": """On certain ROCm devices, when using float16 inputs this module will use \
:ref:`different precision<fp16_on_mi200>` for backward."""
}
reproducibility_notes = {
"forward_reproducibility_note": """This operation may behave nondeterministically when given tensors on \
a CUDA device. See :doc:`/notes/randomness` for more information.""",
"backward_reproducibility_note": """This operation may produce nondeterministic gradients when given tensors on \
a CUDA device. See :doc:`/notes/randomness` for more information.""",
"cudnn_reproducibility_note": """In some circumstances when given tensors on a CUDA device \
and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is \
undesirable, you can try to make the operation deterministic (potentially at \
a performance cost) by setting ``torch.backends.cudnn.deterministic = True``. \
See :doc:`/notes/randomness` for more information.""",
}
sparse_support_notes = {
"sparse_beta_warning": """
.. warning::
Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported,
or may not have autograd support. If you notice missing functionality please
open a feature request.""",
}
add_docstr(
torch.abs,
r"""
abs(input, *, out=None) -> Tensor
Computes the absolute value of each element in :attr:`input`.
.. math::
\text{out}_{i} = |\text{input}_{i}|
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.abs(torch.tensor([-1, -2, 3]))
tensor([ 1, 2, 3])
""".format(
**common_args
),
)
add_docstr(
torch.absolute,
r"""
absolute(input, *, out=None) -> Tensor
Alias for :func:`torch.abs`
""",
)
add_docstr(
torch.acos,
r"""
acos(input, *, out=None) -> Tensor
Computes the inverse cosine of each element in :attr:`input`.
.. math::
\text{out}_{i} = \cos^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.3348, -0.5889, 0.2005, -0.1584])
>>> torch.acos(a)
tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
""".format(
**common_args
),
)
add_docstr(
torch.arccos,
r"""
arccos(input, *, out=None) -> Tensor
Alias for :func:`torch.acos`.
""",
)
add_docstr(
torch.acosh,
r"""
acosh(input, *, out=None) -> Tensor
Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cosh^{-1}(\text{input}_{i})
Note:
The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range
will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`.
"""
+ r"""
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4).uniform_(1, 2)
>>> a
tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ])
>>> torch.acosh(a)
tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ])
""".format(
**common_args
),
)
add_docstr(
torch.arccosh,
r"""
arccosh(input, *, out=None) -> Tensor
Alias for :func:`torch.acosh`.
""",
)
add_docstr(
torch.index_add,
r"""
index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor
See :meth:`~Tensor.index_add_` for function description.
""",
)
add_docstr(
torch.index_copy,
r"""
index_copy(input, dim, index, source, *, out=None) -> Tensor
See :meth:`~Tensor.index_add_` for function description.
""",
)
add_docstr(
torch.index_reduce,
r"""
index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor
See :meth:`~Tensor.index_reduce_` for function description.
""",
)
add_docstr(
torch.add,
r"""
add(input, other, *, alpha=1, out=None) -> Tensor
Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`.
.. math::
\text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i
"""
+ r"""
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs.
Args:
{input}
other (Tensor or Number): the tensor or number to add to input.
Keyword arguments:
alpha (Number): the multiplier for :attr:`other`.
{out}
Examples::
>>> a = torch.randn(4)
>>> a
tensor([ 0.0202, 1.0985, 1.3506, -0.6056])
>>> torch.add(a, 20)
tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
>>> b = torch.randn(4)
>>> b
tensor([-0.9732, -0.3497, 0.6245, 0.4022])
>>> c = torch.randn(4, 1)
>>> c
tensor([[ 0.3743],
[-1.7724],
[-0.5811],
[-0.8017]])
>>> torch.add(b, c, alpha=10)
tensor([[ 2.7695, 3.3930, 4.3672, 4.1450],
[-18.6971, -18.0736, -17.0994, -17.3216],
[ -6.7845, -6.1610, -5.1868, -5.4090],
[ -8.9902, -8.3667, -7.3925, -7.6147]])
""".format(
**common_args
),
)
add_docstr(
torch.addbmm,
r"""
addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored
in :attr:`batch1` and :attr:`batch2`,
with a reduced add step (all matrix multiplications get accumulated
along the first dimension).
:attr:`input` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the
same number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
.. math::
out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i)
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha`
must be real numbers, otherwise they should be integers.
{tf32_note}
{rocm_fp16_note}
Args:
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): matrix to be added
alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.addbmm(M, batch1, batch2)
tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653],
[ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes
),
)
add_docstr(
torch.addcdiv,
r"""
addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`,
multiply the result by the scalar :attr:`value` and add it to :attr:`input`.
.. warning::
Integer division with addcdiv is no longer supported, and in a future
release addcdiv will perform a true division of tensor1 and tensor2.
The historic addcdiv behavior can be implemented as
(input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype)
for integer inputs and as (input + value * tensor1 / tensor2) for float inputs.
The future addcdiv behavior is just the latter implementation:
(input + value * tensor1 / tensor2), for all dtypes.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
"""
+ r"""
The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
tensor1 (Tensor): the numerator tensor
tensor2 (Tensor): the denominator tensor
Keyword args:
value (Number, optional): multiplier for :math:`\text{{tensor1}} / \text{{tensor2}}`
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcdiv(t, t1, t2, value=0.1)
tensor([[-0.2312, -3.6496, 0.1312],
[-1.0428, 3.4292, -0.1030],
[-0.5369, -0.9829, 0.0430]])
""".format(
**common_args
),
)
add_docstr(
torch.addcmul,
r"""
addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
Performs the element-wise multiplication of :attr:`tensor1`
by :attr:`tensor2`, multiply the result by the scalar :attr:`value`
and add it to :attr:`input`.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i
"""
+ r"""
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
tensor1 (Tensor): the tensor to be multiplied
tensor2 (Tensor): the tensor to be multiplied
Keyword args:
value (Number, optional): multiplier for :math:`tensor1 .* tensor2`
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcmul(t, t1, t2, value=0.1)
tensor([[-0.8635, -0.6391, 1.6174],
[-0.7617, -0.5879, 1.7388],
[-0.8353, -0.6249, 1.6511]])
""".format(
**common_args
),
)
add_docstr(
torch.addmm,
r"""
addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
The matrix :attr:`input` is added to the final result.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i)
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. If
:attr:`input` is sparse the result will have the same layout and if :attr:`out`
is provided it must have the same layout as :attr:`input`.
{sparse_beta_warning}
{tf32_note}
{rocm_fp16_note}
Args:
input (Tensor): matrix to be added
mat1 (Tensor): the first matrix to be matrix multiplied
mat2 (Tensor): the second matrix to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(2, 3)
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.addmm(M, mat1, mat2)
tensor([[-4.8716, 1.4671, -1.3746],
[ 0.7573, -3.9555, -2.8681]])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes
),
)
add_docstr(
torch.adjoint,
r"""
adjoint(Tensor) -> Tensor
Returns a view of the tensor conjugated and with the last two dimensions transposed.
``x.adjoint()`` is equivalent to ``x.transpose(-2, -1).conj()`` for complex tensors and
to ``x.transpose(-2, -1)`` for real tensors.
Example::
>>> x = torch.arange(4, dtype=torch.float)
>>> A = torch.complex(x, x).reshape(2, 2)
>>> A
tensor([[0.+0.j, 1.+1.j],
[2.+2.j, 3.+3.j]])
>>> A.adjoint()
tensor([[0.-0.j, 2.-2.j],
[1.-1.j, 3.-3.j]])
>>> (A.adjoint() == A.mH).all()
tensor(True)
""",
)
add_docstr(
torch.sspaddmm,
r"""
sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor
Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor
:attr:`mat2`, then adds the sparse tensor :attr:`input` to the result.
Note: This function is equivalent to :func:`torch.addmm`, except
:attr:`input` and :attr:`mat1` are sparse.
Args:
input (Tensor): a sparse matrix to be added
mat1 (Tensor): a sparse matrix to be matrix multiplied
mat2 (Tensor): a dense matrix to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
{out}
""".format(
**common_args
),
)
add_docstr(
torch.smm,
r"""
smm(input, mat) -> Tensor
Performs a matrix multiplication of the sparse matrix :attr:`input`
with the dense matrix :attr:`mat`.
Args:
input (Tensor): a sparse matrix to be matrix multiplied
mat (Tensor): a dense matrix to be matrix multiplied
""",
)
add_docstr(
torch.addmv,
r"""
addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`mat` and
the vector :attr:`vec`.
The vector :attr:`input` is added to the final result.
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and
:attr:`out` will be 1-D tensor of size `n`.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec})
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers
Args:
input (Tensor): vector to be added
mat (Tensor): matrix to be matrix multiplied
vec (Tensor): vector to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(2)
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.addmv(M, mat, vec)
tensor([-0.3768, -5.5565])
""".format(
**common_args
),
)
add_docstr(
torch.addr,
r"""
addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor
Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2`
and adds it to the matrix :attr:`input`.
Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the
outer product between :attr:`vec1` and :attr:`vec2` and the added matrix
:attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2})
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector
of size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a matrix of size
:math:`(n \times m)` and :attr:`out` will be a matrix of size
:math:`(n \times m)`.
Args:
input (Tensor): matrix to be added
vec1 (Tensor): the first vector of the outer product
vec2 (Tensor): the second vector of the outer product
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`\text{{vec1}} \otimes \text{{vec2}}` (:math:`\alpha`)
{out}
Example::
>>> vec1 = torch.arange(1., 4.)
>>> vec2 = torch.arange(1., 3.)
>>> M = torch.zeros(3, 2)
>>> torch.addr(M, vec1, vec2)
tensor([[ 1., 2.],
[ 2., 4.],
[ 3., 6.]])
""".format(
**common_args
),
)
add_docstr(
torch.allclose,
r"""
allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool
This function checks if all :attr:`input` and :attr:`other` satisfy the condition:
.. math::
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
"""
+ r"""
elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to
`numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_
Args:
input (Tensor): first tensor to compare
other (Tensor): second tensor to compare
atol (float, optional): absolute tolerance. Default: 1e-08
rtol (float, optional): relative tolerance. Default: 1e-05
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False``
Example::
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
""",
)
add_docstr(
torch.all,
r"""
all(input) -> Tensor
Tests if all elements in :attr:`input` evaluate to `True`.
.. note:: This function matches the behaviour of NumPy in returning
output of dtype `bool` for all supported dtypes except `uint8`.
For `uint8` the dtype of output is `uint8` itself.
Example::
>>> a = torch.rand(1, 2).bool()
>>> a
tensor([[False, True]], dtype=torch.bool)
>>> torch.all(a)
tensor(False, dtype=torch.bool)
>>> a = torch.arange(0, 3)
>>> a
tensor([0, 1, 2])
>>> torch.all(a)
tensor(False)
.. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor
:noindex:
For each row of :attr:`input` in the given dimension :attr:`dim`,
returns `True` if all elements in the row evaluate to `True` and `False` otherwise.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.rand(4, 2).bool()
>>> a
tensor([[True, True],
[True, False],
[True, True],
[True, True]], dtype=torch.bool)
>>> torch.all(a, dim=1)
tensor([ True, False, True, True], dtype=torch.bool)
>>> torch.all(a, dim=0)
tensor([ True, False], dtype=torch.bool)
""".format(
**single_dim_common
),
)
add_docstr(
torch.any,
r"""
any(input) -> Tensor
Tests if any element in :attr:`input` evaluates to `True`.
.. note:: This function matches the behaviour of NumPy in returning
output of dtype `bool` for all supported dtypes except `uint8`.
For `uint8` the dtype of output is `uint8` itself.
Example::
>>> a = torch.rand(1, 2).bool()
>>> a
tensor([[False, True]], dtype=torch.bool)
>>> torch.any(a)
tensor(True, dtype=torch.bool)
>>> a = torch.arange(0, 3)
>>> a
tensor([0, 1, 2])
>>> torch.any(a)
tensor(True)
.. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor
:noindex:
For each row of :attr:`input` in the given dimension :attr:`dim`,
returns `True` if any element in the row evaluate to `True` and `False` otherwise.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.randn(4, 2) < 0
>>> a
tensor([[ True, True],
[False, True],
[ True, True],
[False, False]])
>>> torch.any(a, 1)
tensor([ True, True, True, False])
>>> torch.any(a, 0)
tensor([True, True])
""".format(
**single_dim_common
),
)
add_docstr(
torch.angle,
r"""
angle(input, *, out=None) -> Tensor
Computes the element-wise angle (in radians) of the given :attr:`input` tensor.
.. math::
\text{out}_{i} = angle(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
.. note:: Starting in PyTorch 1.8, angle returns pi for negative real numbers,
zero for non-negative real numbers, and propagates NaNs. Previously
the function would return zero for all real numbers and not propagate
floating-point NaNs.
Example::
>>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159
tensor([ 135., 135, -45])
""".format(
**common_args
),
)
add_docstr(
torch.as_strided,
r"""
as_strided(input, size, stride, storage_offset=None) -> Tensor
Create a view of an existing `torch.Tensor` :attr:`input` with specified
:attr:`size`, :attr:`stride` and :attr:`storage_offset`.
.. warning::
Prefer using other view functions, like :meth:`torch.Tensor.expand`,
to setting a view's strides manually with `as_strided`, as this
function's behavior depends on the implementation of a tensor's storage.
The constructed view of the storage must only refer to elements within
the storage or a runtime error will be thrown, and if the view is
"overlapped" (with multiple indices referring to the same element in
memory) its behavior is undefined.
Args:
{input}
size (tuple or ints): the shape of the output tensor
stride (tuple or ints): the stride of the output tensor
storage_offset (int, optional): the offset in the underlying storage of the output tensor.
If ``None``, the storage_offset of the output tensor will match the input tensor.
Example::
>>> x = torch.randn(3, 3)
>>> x
tensor([[ 0.9039, 0.6291, 1.0795],
[ 0.1586, 2.1939, -0.4900],
[-0.1909, -0.7503, 1.9355]])
>>> t = torch.as_strided(x, (2, 2), (1, 2))
>>> t
tensor([[0.9039, 1.0795],
[0.6291, 0.1586]])
>>> t = torch.as_strided(x, (2, 2), (1, 2), 1)
tensor([[0.6291, 0.1586],
[1.0795, 2.1939]])
""".format(
**common_args
),
)
add_docstr(
torch.as_tensor,
r"""
as_tensor(data, dtype=None, device=None) -> Tensor
Converts data into a tensor, sharing data and preserving autograd
history if possible.
If data is already a tensor with the requested dtype and device
then data itself is returned, but if data is a
tensor with a different dtype or device then it's copied as if using
`data.to(dtype=dtype, device=device)`.
If data is a NumPy array (an ndarray) with the same dtype and device then a
tensor is constructed using :func:`torch.from_numpy`.
.. seealso::
:func:`torch.tensor` never shares its data and creates a new "leaf tensor" (see :doc:`/notes/autograd`).
Args:
{data}
{dtype}
device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor
then the device of data is used. If None and data is not a tensor then
the result tensor is constructed on the CPU.
Example::
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a, device=torch.device('cuda'))
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([1, 2, 3])
""".format(
**factory_data_common_args
),
)
add_docstr(
torch.asin,
r"""
asin(input, *, out=None) -> Tensor
Returns a new tensor with the arcsine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sin^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.5962, 1.4985, -0.4396, 1.4525])
>>> torch.asin(a)
tensor([-0.6387, nan, -0.4552, nan])
""".format(
**common_args
),
)
add_docstr(
torch.arcsin,
r"""
arcsin(input, *, out=None) -> Tensor
Alias for :func:`torch.asin`.
""",
)
add_docstr(
torch.asinh,
r"""
asinh(input, *, out=None) -> Tensor
Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sinh^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.1606, -1.4267, -1.0899, -1.0250 ])
>>> torch.asinh(a)
tensor([ 0.1599, -1.1534, -0.9435, -0.8990 ])
""".format(
**common_args
),
)
add_docstr(
torch.arcsinh,
r"""
arcsinh(input, *, out=None) -> Tensor
Alias for :func:`torch.asinh`.
""",
)
add_docstr(
torch.atan,
r"""
atan(input, *, out=None) -> Tensor
Returns a new tensor with the arctangent of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \tan^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.2341, 0.2539, -0.6256, -0.6448])
>>> torch.atan(a)
tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
""".format(
**common_args
),
)
add_docstr(
torch.arctan,
r"""
arctan(input, *, out=None) -> Tensor
Alias for :func:`torch.atan`.
""",
)
add_docstr(
torch.atan2,
r"""
atan2(input, other, *, out=None) -> Tensor
Element-wise arctangent of :math:`\text{{input}}_{{i}} / \text{{other}}_{{i}}`
with consideration of the quadrant. Returns a new tensor with the signed angles
in radians between vector :math:`(\text{{other}}_{{i}}, \text{{input}}_{{i}})`
and vector :math:`(1, 0)`. (Note that :math:`\text{{other}}_{{i}}`, the second
parameter, is the x-coordinate, while :math:`\text{{input}}_{{i}}`, the first
parameter, is the y-coordinate.)
The shapes of ``input`` and ``other`` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the first input tensor
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.9041, 0.0196, -0.3108, -2.4423])
>>> torch.atan2(a, torch.randn(4))
tensor([ 0.9833, 0.0811, -1.9743, -1.4151])
""".format(
**common_args
),
)
add_docstr(
torch.arctan2,
r"""
arctan2(input, other, *, out=None) -> Tensor
Alias for :func:`torch.atan2`.
""",
)
add_docstr(
torch.atanh,
r"""
atanh(input, *, out=None) -> Tensor
Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`.
Note:
The domain of the inverse hyperbolic tangent is `(-1, 1)` and values outside this range
will be mapped to ``NaN``, except for the values `1` and `-1` for which the output is
mapped to `+/-INF` respectively.
.. math::
\text{out}_{i} = \tanh^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4).uniform_(-1, 1)
>>> a
tensor([ -0.9385, 0.2968, -0.8591, -0.1871 ])
>>> torch.atanh(a)
tensor([ -1.7253, 0.3060, -1.2899, -0.1893 ])
""".format(
**common_args
),
)
add_docstr(
torch.arctanh,
r"""
arctanh(input, *, out=None) -> Tensor
Alias for :func:`torch.atanh`.
""",
)
add_docstr(
torch.asarray,
r"""
asarray(obj, *, dtype=None, device=None, copy=None, requires_grad=False) -> Tensor
Converts :attr:`obj` to a tensor.
:attr:`obj` can be one of:
1. a tensor
2. a NumPy array
3. a DLPack capsule
4. an object that implements Python's buffer protocol
5. a scalar
6. a sequence of scalars
When :attr:`obj` is a tensor, NumPy array, or DLPack capsule the returned tensor will,
by default, not require a gradient, have the same datatype as :attr:`obj`, be on the
same device, and share memory with it. These properties can be controlled with the
:attr:`dtype`, :attr:`device`, :attr:`copy`, and :attr:`requires_grad` keyword arguments.
If the returned tensor is of a different datatype, on a different device, or a copy is
requested then it will not share its memory with :attr:`obj`. If :attr:`requires_grad`
is ``True`` then the returned tensor will require a gradient, and if :attr:`obj` is
also a tensor with an autograd history then the returned tensor will have the same history.
When :attr:`obj` is not a tensor, NumPy Array, or DLPack capsule but implements Python's
buffer protocol then the buffer is interpreted as an array of bytes grouped according to
the size of the datatype passed to the :attr:`dtype` keyword argument. (If no datatype is
passed then the default floating point datatype is used, instead.) The returned tensor
will have the specified datatype (or default floating point datatype if none is specified)
and, by default, be on the CPU device and share memory with the buffer.
When :attr:`obj` is none of the above but a scalar or sequence of scalars then the
returned tensor will, by default, infer its datatype from the scalar values, be on the
CPU device, and not share its memory.
.. seealso::
:func:`torch.tensor` creates a tensor that always copies the data from the input object.
:func:`torch.from_numpy` creates a tensor that always shares memory from NumPy arrays.
:func:`torch.frombuffer` creates a tensor that always shares memory from objects that
implement the buffer protocol.
:func:`torch.from_dlpack` creates a tensor that always shares memory from
DLPack capsules.
Args:
obj (object): a tensor, NumPy array, DLPack Capsule, object that implements Python's
buffer protocol, scalar, or sequence of scalars.
Keyword args:
dtype (:class:`torch.dtype`, optional): the datatype of the returned tensor.
Default: ``None``, which causes the datatype of the returned tensor to be
inferred from :attr:`obj`.
copy (bool, optional): controls whether the returned tensor shares memory with :attr:`obj`.
Default: ``None``, which causes the returned tensor to share memory with :attr:`obj`
whenever possible. If ``True`` then the returned tensor does not share its memory.
If ``False`` then the returned tensor shares its memory with :attr:`obj` and an
error is thrown if it cannot.
device (:class:`torch.device`, optional): the device of the returned tensor.
Default: ``None``, which causes the device of :attr:`obj` to be used.
requires_grad (bool, optional): whether the returned tensor requires grad.
Default: ``False``, which causes the returned tensor not to require a gradient.
If ``True``, then the returned tensor will require a gradient, and if :attr:`obj`
is also a tensor with an autograd history then the returned tensor will have
the same history.
Example::
>>> a = torch.tensor([1, 2, 3])
>>> # Shares memory with tensor 'a'
>>> b = torch.asarray(a)
>>> a.data_ptr() == b.data_ptr()
True
>>> # Forces memory copy
>>> c = torch.asarray(a, copy=True)
>>> a.data_ptr() == c.data_ptr()
False
>>> a = torch.tensor([1, 2, 3], requires_grad=True).float()
>>> b = a + 2
>>> b
tensor([1., 2., 3.], grad_fn=<AddBackward0>)
>>> # Shares memory with tensor 'b', with no grad
>>> c = torch.asarray(b)
>>> c
tensor([1., 2., 3.])
>>> # Shares memory with tensor 'b', retaining autograd history
>>> d = torch.asarray(b, requires_grad=True)
>>> d
tensor([1., 2., 3.], grad_fn=<AddBackward0>)
>>> array = numpy.array([1, 2, 3])
>>> # Shares memory with array 'array'
>>> t1 = torch.asarray(array)
>>> array.__array_interface__['data'][0] == t1.data_ptr()
True
>>> # Copies memory due to dtype mismatch
>>> t2 = torch.asarray(array, dtype=torch.float32)
>>> array.__array_interface__['data'][0] == t1.data_ptr()
False
""",
)
add_docstr(
torch.baddbmm,
r"""
baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices in :attr:`batch1`
and :attr:`batch2`.
:attr:`input` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same
number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a
:math:`(b \times n \times p)` tensor and :attr:`out` will be a
:math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the
same as the scaling factors used in :meth:`torch.addbmm`.
.. math::
\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i)
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
{tf32_note}
{rocm_fp16_note}
Args:
input (Tensor): the tensor to be added
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`\text{{batch1}} \mathbin{{@}} \text{{batch2}}` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(10, 3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.baddbmm(M, batch1, batch2).size()
torch.Size([10, 3, 5])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes
),
)
add_docstr(
torch.bernoulli,
r"""
bernoulli(input, *, generator=None, out=None) -> Tensor
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The :attr:`input` tensor should be a tensor containing probabilities
to be used for drawing the binary random number.
Hence, all values in :attr:`input` have to be in the range:
:math:`0 \leq \text{input}_i \leq 1`.
The :math:`\text{i}^{th}` element of the output tensor will draw a
value :math:`1` according to the :math:`\text{i}^{th}` probability value given
in :attr:`input`.
.. math::
\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})
"""
+ r"""
The returned :attr:`out` tensor only has values 0 or 1 and is of the same
shape as :attr:`input`.
:attr:`out` can have integral ``dtype``, but :attr:`input` must have floating
point ``dtype``.
Args:
input (Tensor): the input tensor of probability values for the Bernoulli distribution
Keyword args:
{generator}
{out}
Example::
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737, 0.0950, 0.3609],
[ 0.7148, 0.0289, 0.2676],
[ 0.9456, 0.8937, 0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1., 0., 0.],
[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
""".format(
**common_args
),
)
add_docstr(
torch.bincount,
r"""
bincount(input, weights=None, minlength=0) -> Tensor
Count the frequency of each value in an array of non-negative ints.
The number of bins (size 1) is one larger than the largest value in
:attr:`input` unless :attr:`input` is empty, in which case the result is a
tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least
:attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size
:attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``,
``out[n] += weights[i]`` if :attr:`weights` is specified else
``out[n] += 1``.
Note:
{backward_reproducibility_note}
Arguments:
input (Tensor): 1-d int tensor
weights (Tensor): optional, weight for each value in the input tensor.
Should be of same size as input tensor.
minlength (int): optional, minimum number of bins. Should be non-negative.
Returns:
output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if
:attr:`input` is non-empty, else ``Size(0)``
Example::
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64)
>>> weights = torch.linspace(0, 1, steps=5)
>>> input, weights
(tensor([4, 3, 6, 3, 4]),
tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
>>> torch.bincount(input)
tensor([0, 0, 0, 2, 2, 0, 1])
>>> input.bincount(weights)
tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
""".format(
**reproducibility_notes
),
)
add_docstr(
torch.bitwise_not,
r"""
bitwise_not(input, *, out=None) -> Tensor
Computes the bitwise NOT of the given input tensor. The input tensor must be of
integral or Boolean types. For bool tensors, it computes the logical NOT.
Args:
{input}
Keyword args:
{out}
Example:
>>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8))
tensor([ 0, 1, -4], dtype=torch.int8)
""".format(
**common_args
),
)
add_docstr(
torch.bmm,
r"""
bmm(input, mat2, *, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored in :attr:`input`
and :attr:`mat2`.
:attr:`input` and :attr:`mat2` must be 3-D tensors each containing
the same number of matrices.
If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a
:math:`(b \times m \times p)` tensor, :attr:`out` will be a
:math:`(b \times n \times p)` tensor.
.. math::
\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i
"""
+ r"""
{tf32_note}
{rocm_fp16_note}
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
For broadcasting matrix products, see :func:`torch.matmul`.
Args:
input (Tensor): the first batch of matrices to be multiplied
mat2 (Tensor): the second batch of matrices to be multiplied
Keyword Args:
{out}
Example::
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes
),
)
add_docstr(
torch.bitwise_and,
r"""
bitwise_and(input, other, *, out=None) -> Tensor
Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of
integral or Boolean types. For bool tensors, it computes the logical AND.
Args:
input: the first input tensor
other: the second input tensor
Keyword args:
{out}
Example:
>>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
tensor([1, 0, 3], dtype=torch.int8)
>>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
tensor([ False, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.bitwise_or,
r"""
bitwise_or(input, other, *, out=None) -> Tensor
Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of
integral or Boolean types. For bool tensors, it computes the logical OR.
Args:
input: the first input tensor
other: the second input tensor
Keyword args:
{out}
Example:
>>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
tensor([-1, -2, 3], dtype=torch.int8)
>>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
tensor([ True, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.bitwise_xor,
r"""
bitwise_xor(input, other, *, out=None) -> Tensor
Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of
integral or Boolean types. For bool tensors, it computes the logical XOR.
Args:
input: the first input tensor
other: the second input tensor
Keyword args:
{out}
Example:
>>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
tensor([-2, -2, 0], dtype=torch.int8)
>>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
tensor([ True, False, False])
""".format(
**common_args
),
)
add_docstr(
torch.bitwise_left_shift,
r"""
bitwise_left_shift(input, other, *, out=None) -> Tensor
Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits.
The input tensor must be of integral type. This operator supports
:ref:`broadcasting to a common shape <broadcasting-semantics>` and
:ref:`type promotion <type-promotion-doc>`.
The operation applied is:
.. math::
\text{{out}}_i = \text{{input}}_i << \text{{other}}_i
Args:
input (Tensor or Scalar): the first input tensor
other (Tensor or Scalar): the second input tensor
Keyword args:
{out}
Example:
>>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
tensor([-2, -2, 24], dtype=torch.int8)
""".format(
**common_args
),
)
add_docstr(
torch.bitwise_right_shift,
r"""
bitwise_right_shift(input, other, *, out=None) -> Tensor
Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits.
The input tensor must be of integral type. This operator supports
:ref:`broadcasting to a common shape <broadcasting-semantics>` and
:ref:`type promotion <type-promotion-doc>`.
The operation applied is:
.. math::
\text{{out}}_i = \text{{input}}_i >> \text{{other}}_i
Args:
input (Tensor or Scalar): the first input tensor
other (Tensor or Scalar): the second input tensor
Keyword args:
{out}
Example:
>>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
tensor([-1, -7, 3], dtype=torch.int8)
""".format(
**common_args
),
)
add_docstr(
torch.broadcast_to,
r"""
broadcast_to(input, shape) -> Tensor
Broadcasts :attr:`input` to the shape :attr:`\shape`.
Equivalent to calling ``input.expand(shape)``. See :meth:`~Tensor.expand` for details.
Args:
{input}
shape (list, tuple, or :class:`torch.Size`): the new shape.
Example::
>>> x = torch.tensor([1, 2, 3])
>>> torch.broadcast_to(x, (3, 3))
tensor([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
""".format(
**common_args
),
)
add_docstr(
torch.stack,
r"""
stack(tensors, dim=0, *, out=None) -> Tensor
Concatenates a sequence of tensors along a new dimension.
All tensors need to be of the same size.
Arguments:
tensors (sequence of Tensors): sequence of tensors to concatenate
dim (int): dimension to insert. Has to be between 0 and the number
of dimensions of concatenated tensors (inclusive)
Keyword args:
{out}
""".format(
**common_args
),
)
add_docstr(
torch.hstack,
r"""
hstack(tensors, *, out=None) -> Tensor
Stack tensors in sequence horizontally (column wise).
This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors.
Args:
tensors (sequence of Tensors): sequence of tensors to concatenate
Keyword args:
{out}
Example::
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5, 6])
>>> torch.hstack((a,b))
tensor([1, 2, 3, 4, 5, 6])
>>> a = torch.tensor([[1],[2],[3]])
>>> b = torch.tensor([[4],[5],[6]])
>>> torch.hstack((a,b))
tensor([[1, 4],
[2, 5],
[3, 6]])
""".format(
**common_args
),
)
add_docstr(
torch.vstack,
r"""
vstack(tensors, *, out=None) -> Tensor
Stack tensors in sequence vertically (row wise).
This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by :func:`torch.atleast_2d`.
Args:
tensors (sequence of Tensors): sequence of tensors to concatenate
Keyword args:
{out}
Example::
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5, 6])
>>> torch.vstack((a,b))
tensor([[1, 2, 3],
[4, 5, 6]])
>>> a = torch.tensor([[1],[2],[3]])
>>> b = torch.tensor([[4],[5],[6]])
>>> torch.vstack((a,b))
tensor([[1],
[2],
[3],
[4],
[5],
[6]])
""".format(
**common_args
),
)
add_docstr(
torch.dstack,
r"""
dstack(tensors, *, out=None) -> Tensor
Stack tensors in sequence depthwise (along third axis).
This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by :func:`torch.atleast_3d`.
Args:
tensors (sequence of Tensors): sequence of tensors to concatenate
Keyword args:
{out}
Example::
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5, 6])
>>> torch.dstack((a,b))
tensor([[[1, 4],
[2, 5],
[3, 6]]])
>>> a = torch.tensor([[1],[2],[3]])
>>> b = torch.tensor([[4],[5],[6]])
>>> torch.dstack((a,b))
tensor([[[1, 4]],
[[2, 5]],
[[3, 6]]])
""".format(
**common_args
),
)
add_docstr(
torch.tensor_split,
r"""
tensor_split(input, indices_or_sections, dim=0) -> List of Tensors
Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`,
along dimension :attr:`dim` according to the indices or number of sections specified
by :attr:`indices_or_sections`. This function is based on NumPy's
:func:`numpy.array_split`.
Args:
input (Tensor): the tensor to split
indices_or_sections (Tensor, int or list or tuple of ints):
If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor
with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`.
If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each
section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input`
is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)`
sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will
have size :code:`int(input.size(dim) / n)`.
If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long
tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices
in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0`
would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`.
If indices_or_sections is a tensor, it must be a zero-dimensional or one-dimensional
long tensor on the CPU.
dim (int, optional): dimension along which to split the tensor. Default: ``0``
Example::
>>> x = torch.arange(8)
>>> torch.tensor_split(x, 3)
(tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7]))
>>> x = torch.arange(7)
>>> torch.tensor_split(x, 3)
(tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6]))
>>> torch.tensor_split(x, (1, 6))
(tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6]))
>>> x = torch.arange(14).reshape(2, 7)
>>> x
tensor([[ 0, 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12, 13]])
>>> torch.tensor_split(x, 3, dim=1)
(tensor([[0, 1, 2],
[7, 8, 9]]),
tensor([[ 3, 4],
[10, 11]]),
tensor([[ 5, 6],
[12, 13]]))
>>> torch.tensor_split(x, (1, 6), dim=1)
(tensor([[0],
[7]]),
tensor([[ 1, 2, 3, 4, 5],
[ 8, 9, 10, 11, 12]]),
tensor([[ 6],
[13]]))
""",
)
add_docstr(
torch.chunk,
r"""
chunk(input, chunks, dim=0) -> List of Tensors
Attempts to split a tensor into the specified number of chunks. Each chunk is a view of
the input tensor.
.. note::
This function may return less then the specified number of chunks!
.. seealso::
:func:`torch.tensor_split` a function that always returns exactly the specified number of chunks
If the tensor size along the given dimesion :attr:`dim` is divisible by :attr:`chunks`,
all returned chunks will be the same size.
If the tensor size along the given dimension :attr:`dim` is not divisible by :attr:`chunks`,
all returned chunks will be the same size, except the last one.
If such division is not possible, this function may return less
than the specified number of chunks.
Arguments:
input (Tensor): the tensor to split
chunks (int): number of chunks to return
dim (int): dimension along which to split the tensor
Example::
>>> torch.arange(11).chunk(6)
(tensor([0, 1]),
tensor([2, 3]),
tensor([4, 5]),
tensor([6, 7]),
tensor([8, 9]),
tensor([10]))
>>> torch.arange(12).chunk(6)
(tensor([0, 1]),
tensor([2, 3]),
tensor([4, 5]),
tensor([6, 7]),
tensor([8, 9]),
tensor([10, 11]))
>>> torch.arange(13).chunk(6)
(tensor([0, 1, 2]),
tensor([3, 4, 5]),
tensor([6, 7, 8]),
tensor([ 9, 10, 11]),
tensor([12]))
""",
)
add_docstr(
torch.unsafe_chunk,
r"""
unsafe_chunk(input, chunks, dim=0) -> List of Tensors
Works like :func:`torch.chunk` but without enforcing the autograd restrictions
on inplace modification of the outputs.
.. warning::
This function is safe to use as long as only the input, or only the outputs
are modified inplace after calling this function. It is user's
responsibility to ensure that is the case. If both the input and one or more
of the outputs are modified inplace, gradients computed by autograd will be
silently incorrect.
""",
)
add_docstr(
torch.unsafe_split,
r"""
unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors
Works like :func:`torch.split` but without enforcing the autograd restrictions
on inplace modification of the outputs.
.. warning::
This function is safe to use as long as only the input, or only the outputs
are modified inplace after calling this function. It is user's
responsibility to ensure that is the case. If both the input and one or more
of the outputs are modified inplace, gradients computed by autograd will be
silently incorrect.
""",
)
add_docstr(
torch.hsplit,
r"""
hsplit(input, indices_or_sections) -> List of Tensors
Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors
horizontally according to :attr:`indices_or_sections`. Each split is a view of
:attr:`input`.
If :attr:`input` is one dimensional this is equivalent to calling
torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is
zero), and if :attr:`input` has two or more dimensions it's equivalent to calling
torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1),
except that if :attr:`indices_or_sections` is an integer it must evenly divide
the split dimension or a runtime error will be thrown.
This function is based on NumPy's :func:`numpy.hsplit`.
Args:
input (Tensor): tensor to split.
indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`.
Example::
>>> t = torch.arange(16.0).reshape(4,4)
>>> t
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> torch.hsplit(t, 2)
(tensor([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[12., 13.]]),
tensor([[ 2., 3.],
[ 6., 7.],
[10., 11.],
[14., 15.]]))
>>> torch.hsplit(t, [3, 6])
(tensor([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[12., 13., 14.]]),
tensor([[ 3.],
[ 7.],
[11.],
[15.]]),
tensor([], size=(4, 0)))
""",
)
add_docstr(
torch.vsplit,
r"""
vsplit(input, indices_or_sections) -> List of Tensors
Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors
vertically according to :attr:`indices_or_sections`. Each split is a view of
:attr:`input`.
This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0)
(the split dimension is 0), except that if :attr:`indices_or_sections` is an integer
it must evenly divide the split dimension or a runtime error will be thrown.
This function is based on NumPy's :func:`numpy.vsplit`.
Args:
input (Tensor): tensor to split.
indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`.
Example::
>>> t = torch.arange(16.0).reshape(4,4)
>>> t
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> torch.vsplit(t, 2)
(tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]]),
tensor([[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]))
>>> torch.vsplit(t, [3, 6])
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]),
tensor([[12., 13., 14., 15.]]),
tensor([], size=(0, 4)))
""",
)
add_docstr(
torch.dsplit,
r"""
dsplit(input, indices_or_sections) -> List of Tensors
Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors
depthwise according to :attr:`indices_or_sections`. Each split is a view of
:attr:`input`.
This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2)
(the split dimension is 2), except that if :attr:`indices_or_sections` is an integer
it must evenly divide the split dimension or a runtime error will be thrown.
This function is based on NumPy's :func:`numpy.dsplit`.
Args:
input (Tensor): tensor to split.
indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`.
Example::
>>> t = torch.arange(16.0).reshape(2, 2, 4)
>>> t
tensor([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.]],
[[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]])
>>> torch.dsplit(t, 2)
(tensor([[[ 0., 1.],
[ 4., 5.]],
[[ 8., 9.],
[12., 13.]]]),
tensor([[[ 2., 3.],
[ 6., 7.]],
[[10., 11.],
[14., 15.]]]))
>>> torch.dsplit(t, [3, 6])
(tensor([[[ 0., 1., 2.],
[ 4., 5., 6.]],
[[ 8., 9., 10.],
[12., 13., 14.]]]),
tensor([[[ 3.],
[ 7.]],
[[11.],
[15.]]]),
tensor([], size=(2, 2, 0)))
""",
)
add_docstr(
torch.can_cast,
r"""
can_cast(from, to) -> bool
Determines if a type conversion is allowed under PyTorch casting rules
described in the type promotion :ref:`documentation <type-promotion-doc>`.
Args:
from (dtype): The original :class:`torch.dtype`.
to (dtype): The target :class:`torch.dtype`.
Example::
>>> torch.can_cast(torch.double, torch.float)
True
>>> torch.can_cast(torch.float, torch.int)
False
""",
)
add_docstr(
torch.corrcoef,
r"""
corrcoef(input) -> Tensor
Estimates the Pearson product-moment correlation coefficient matrix of the variables given by the :attr:`input` matrix,
where rows are the variables and columns are the observations.
.. note::
The correlation coefficient matrix R is computed using the covariance matrix C as given by
:math:`R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }`
.. note::
Due to floating point rounding, the resulting array may not be Hermitian and its diagonal elements may not be 1.
The real and imaginary values are clipped to the interval [-1, 1] in an attempt to improve this situation.
Args:
input (Tensor): A 2D matrix containing multiple variables and observations, or a
Scalar or 1D vector representing a single variable.
Returns:
(Tensor) The correlation coefficient matrix of the variables.
.. seealso::
:func:`torch.cov` covariance matrix.
Example::
>>> x = torch.tensor([[0, 1, 2], [2, 1, 0]])
>>> torch.corrcoef(x)
tensor([[ 1., -1.],
[-1., 1.]])
>>> x = torch.randn(2, 4)
>>> x
tensor([[-0.2678, -0.0908, -0.3766, 0.2780],
[-0.5812, 0.1535, 0.2387, 0.2350]])
>>> torch.corrcoef(x)
tensor([[1.0000, 0.3582],
[0.3582, 1.0000]])
>>> torch.corrcoef(x[0])
tensor(1.)
""",
)
add_docstr(
torch.cov,
r"""
cov(input, *, correction=1, fweights=None, aweights=None) -> Tensor
Estimates the covariance matrix of the variables given by the :attr:`input` matrix, where rows are
the variables and columns are the observations.
A covariance matrix is a square matrix giving the covariance of each pair of variables. The diagonal contains
the variance of each variable (covariance of a variable with itself). By definition, if :attr:`input` represents
a single variable (Scalar or 1D) then its variance is returned.
The unbiased sample covariance of the variables :math:`x` and :math:`y` is given by:
.. math::
\text{cov}_w(x,y) = \frac{\sum^{N}_{i = 1}(x_{i} - \bar{x})(y_{i} - \bar{y})}{N~-~1}
where :math:`\bar{x}` and :math:`\bar{y}` are the simple means of the :math:`x` and :math:`y` respectively.
If :attr:`fweights` and/or :attr:`aweights` are provided, the unbiased weighted covariance
is calculated, which is given by:
.. math::
\text{cov}_w(x,y) = \frac{\sum^{N}_{i = 1}w_i(x_{i} - \mu_x^*)(y_{i} - \mu_y^*)}{\sum^{N}_{i = 1}w_i~-~1}
where :math:`w` denotes :attr:`fweights` or :attr:`aweights` based on whichever is provided, or
:math:`w = fweights \times aweights` if both are provided, and
:math:`\mu_x^* = \frac{\sum^{N}_{i = 1}w_ix_{i} }{\sum^{N}_{i = 1}w_i}` is the weighted mean of the variable.
Args:
input (Tensor): A 2D matrix containing multiple variables and observations, or a
Scalar or 1D vector representing a single variable.
Keyword Args:
correction (int, optional): difference between the sample size and sample degrees of freedom.
Defaults to Bessel's correction, ``correction = 1`` which returns the unbiased estimate,
even if both :attr:`fweights` and :attr:`aweights` are specified. ``correction = 0``
will return the simple average. Defaults to ``1``.
fweights (tensor, optional): A Scalar or 1D tensor of observation vector frequencies representing the number of
times each observation should be repeated. Its numel must equal the number of columns of :attr:`input`.
Must have integral dtype. Ignored if ``None``. `Defaults to ``None``.
aweights (tensor, optional): A Scalar or 1D array of observation vector weights.
These relative weights are typically large for observations considered “important” and smaller for
observations considered less “important”. Its numel must equal the number of columns of :attr:`input`.
Must have floating point dtype. Ignored if ``None``. `Defaults to ``None``.
Returns:
(Tensor) The covariance matrix of the variables.
.. seealso::
:func:`torch.corrcoef` normalized covariance matrix.
Example::
>>> x = torch.tensor([[0, 2], [1, 1], [2, 0]]).T
>>> x
tensor([[0, 1, 2],
[2, 1, 0]])
>>> torch.cov(x)
tensor([[ 1., -1.],
[-1., 1.]])
>>> torch.cov(x, correction=0)
tensor([[ 0.6667, -0.6667],
[-0.6667, 0.6667]])
>>> fw = torch.randint(1, 10, (3,))
>>> fw
tensor([1, 6, 9])
>>> aw = torch.rand(3)
>>> aw
tensor([0.4282, 0.0255, 0.4144])
>>> torch.cov(x, fweights=fw, aweights=aw)
tensor([[ 0.4169, -0.4169],
[-0.4169, 0.4169]])
""",
)
add_docstr(
torch.cat,
r"""
cat(tensors, dim=0, *, out=None) -> Tensor
Concatenates the given sequence of :attr:`seq` tensors in the given dimension.
All tensors must either have the same shape (except in the concatenating
dimension) or be empty.
:func:`torch.cat` can be seen as an inverse operation for :func:`torch.split`
and :func:`torch.chunk`.
:func:`torch.cat` can be best understood via examples.
Args:
tensors (sequence of Tensors): any python sequence of tensors of the same type.
Non-empty tensors provided must have the same shape, except in the
cat dimension.
dim (int, optional): the dimension over which the tensors are concatenated
Keyword args:
{out}
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 0)
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 1)
tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580,
-1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034,
-0.5790, 0.1497]])
""".format(
**common_args
),
)
add_docstr(
torch.concat,
r"""
concat(tensors, dim=0, *, out=None) -> Tensor
Alias of :func:`torch.cat`.
""",
)
add_docstr(
torch.concatenate,
r"""
concatenate(tensors, axis=0, out=None) -> Tensor
Alias of :func:`torch.cat`.
""",
)
add_docstr(
torch.ceil,
r"""
ceil(input, *, out=None) -> Tensor
Returns a new tensor with the ceil of the elements of :attr:`input`,
the smallest integer greater than or equal to each element.
For integer inputs, follows the array-api convention of returning a
copy of the input tensor.
.. math::
\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.6341, -1.4208, -1.0900, 0.5826])
>>> torch.ceil(a)
tensor([-0., -1., -1., 1.])
""".format(
**common_args
),
)
add_docstr(
torch.real,
r"""
real(input) -> Tensor
Returns a new tensor containing real values of the :attr:`self` tensor.
The returned tensor and :attr:`self` share the same underlying storage.
Args:
{input}
Example::
>>> x=torch.randn(4, dtype=torch.cfloat)
>>> x
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
>>> x.real
tensor([ 0.3100, -0.5445, -1.6492, -0.0638])
""".format(
**common_args
),
)
add_docstr(
torch.imag,
r"""
imag(input) -> Tensor
Returns a new tensor containing imaginary values of the :attr:`self` tensor.
The returned tensor and :attr:`self` share the same underlying storage.
.. warning::
:func:`imag` is only supported for tensors with complex dtypes.
Args:
{input}
Example::
>>> x=torch.randn(4, dtype=torch.cfloat)
>>> x
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
>>> x.imag
tensor([ 0.3553, -0.7896, -0.0633, -0.8119])
""".format(
**common_args
),
)
add_docstr(
torch.view_as_real,
r"""
view_as_real(input) -> Tensor
Returns a view of :attr:`input` as a real tensor. For an input complex tensor of
:attr:`size` :math:`m1, m2, \dots, mi`, this function returns a new
real tensor of size :math:`m1, m2, \dots, mi, 2`, where the last dimension of size 2
represents the real and imaginary components of complex numbers.
.. warning::
:func:`view_as_real` is only supported for tensors with ``complex dtypes``.
Args:
{input}
Example::
>>> x=torch.randn(4, dtype=torch.cfloat)
>>> x
tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)])
>>> torch.view_as_real(x)
tensor([[ 0.4737, -0.3839],
[-0.2098, -0.6699],
[ 0.3470, -0.9451],
[-0.5174, -1.3136]])
""".format(
**common_args
),
)
add_docstr(
torch.view_as_complex,
r"""
view_as_complex(input) -> Tensor
Returns a view of :attr:`input` as a complex tensor. For an input complex
tensor of :attr:`size` :math:`m1, m2, \dots, mi, 2`, this function returns a
new complex tensor of :attr:`size` :math:`m1, m2, \dots, mi` where the last
dimension of the input tensor is expected to represent the real and imaginary
components of complex numbers.
.. warning::
:func:`view_as_complex` is only supported for tensors with
:class:`torch.dtype` ``torch.float64`` and ``torch.float32``. The input is
expected to have the last dimension of :attr:`size` 2. In addition, the
tensor must have a `stride` of 1 for its last dimension. The strides of all
other dimensions must be even numbers.
Args:
{input}
Example::
>>> x=torch.randn(4, 2)
>>> x
tensor([[ 1.6116, -0.5772],
[-1.4606, -0.9120],
[ 0.0786, -1.7497],
[-0.6561, -1.6623]])
>>> torch.view_as_complex(x)
tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)])
""".format(
**common_args
),
)
add_docstr(
torch.reciprocal,
r"""
reciprocal(input, *, out=None) -> Tensor
Returns a new tensor with the reciprocal of the elements of :attr:`input`
.. math::
\text{out}_{i} = \frac{1}{\text{input}_{i}}
.. note::
Unlike NumPy's reciprocal, torch.reciprocal supports integral inputs. Integral
inputs to reciprocal are automatically :ref:`promoted <type-promotion-doc>` to
the default scalar type.
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.4595, -2.1219, -1.4314, 0.7298])
>>> torch.reciprocal(a)
tensor([-2.1763, -0.4713, -0.6986, 1.3702])
""".format(
**common_args
),
)
add_docstr(
torch.cholesky,
r"""
cholesky(input, upper=False, *, out=None) -> Tensor
Computes the Cholesky decomposition of a symmetric positive-definite
matrix :math:`A` or for batches of symmetric positive-definite matrices.
If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and
the decomposition has the form:
.. math::
A = U^TU
If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and
the decomposition has the form:
.. math::
A = LL^T
If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite
matrices, then the returned tensor will be composed of upper-triangular Cholesky factors
of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned
tensor will be composed of lower-triangular Cholesky factors of each of the individual
matrices.
.. warning::
:func:`torch.cholesky` is deprecated in favor of :func:`torch.linalg.cholesky`
and will be removed in a future PyTorch release.
``L = torch.cholesky(A)`` should be replaced with
.. code:: python
L = torch.linalg.cholesky(A)
``U = torch.cholesky(A, upper=True)`` should be replaced with
.. code:: python
U = torch.linalg.cholesky(A).mH
This transform will produce equivalent results for all valid (symmetric positive definite) inputs.
Args:
input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more
batch dimensions consisting of symmetric positive-definite matrices.
upper (bool, optional): flag that indicates whether to return a
upper or lower triangular matrix. Default: ``False``
Keyword args:
out (Tensor, optional): the output matrix
Example::
>>> a = torch.randn(3, 3)
>>> a = a @ a.mT + 1e-3 # make symmetric positive-definite
>>> l = torch.cholesky(a)
>>> a
tensor([[ 2.4112, -0.7486, 1.4551],
[-0.7486, 1.3544, 0.1294],
[ 1.4551, 0.1294, 1.6724]])
>>> l
tensor([[ 1.5528, 0.0000, 0.0000],
[-0.4821, 1.0592, 0.0000],
[ 0.9371, 0.5487, 0.7023]])
>>> l @ l.mT
tensor([[ 2.4112, -0.7486, 1.4551],
[-0.7486, 1.3544, 0.1294],
[ 1.4551, 0.1294, 1.6724]])
>>> a = torch.randn(3, 2, 2) # Example for batched input
>>> a = a @ a.mT + 1e-03 # make symmetric positive-definite
>>> l = torch.cholesky(a)
>>> z = l @ l.mT
>>> torch.dist(z, a)
tensor(2.3842e-07)
""",
)
add_docstr(
torch.cholesky_solve,
r"""
cholesky_solve(input, input2, upper=False, *, out=None) -> Tensor
Solves a linear system of equations with a positive semidefinite
matrix to be inverted given its Cholesky factor matrix :math:`u`.
If :attr:`upper` is ``False``, :math:`u` is and lower triangular and `c` is
returned such that:
.. math::
c = (u u^T)^{{-1}} b
If :attr:`upper` is ``True`` or not provided, :math:`u` is upper triangular
and `c` is returned such that:
.. math::
c = (u^T u)^{{-1}} b
`torch.cholesky_solve(b, u)` can take in 2D inputs `b, u` or inputs that are
batches of 2D matrices. If the inputs are batches, then returns
batched outputs `c`
Supports real-valued and complex-valued inputs.
For the complex-valued inputs the transpose operator above is the conjugate transpose.
Args:
input (Tensor): input matrix :math:`b` of size :math:`(*, m, k)`,
where :math:`*` is zero or more batch dimensions
input2 (Tensor): input matrix :math:`u` of size :math:`(*, m, m)`,
where :math:`*` is zero of more batch dimensions composed of
upper or lower triangular Cholesky factor
upper (bool, optional): whether to consider the Cholesky factor as a
lower or upper triangular matrix. Default: ``False``.
Keyword args:
out (Tensor, optional): the output tensor for `c`
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
>>> u = torch.linalg.cholesky(a)
>>> a
tensor([[ 0.7747, -1.9549, 1.3086],
[-1.9549, 6.7546, -5.4114],
[ 1.3086, -5.4114, 4.8733]])
>>> b = torch.randn(3, 2)
>>> b
tensor([[-0.6355, 0.9891],
[ 0.1974, 1.4706],
[-0.4115, -0.6225]])
>>> torch.cholesky_solve(b, u)
tensor([[ -8.1625, 19.6097],
[ -5.8398, 14.2387],
[ -4.3771, 10.4173]])
>>> torch.mm(a.inverse(), b)
tensor([[ -8.1626, 19.6097],
[ -5.8398, 14.2387],
[ -4.3771, 10.4173]])
""",
)
add_docstr(
torch.cholesky_inverse,
r"""
cholesky_inverse(input, upper=False, *, out=None) -> Tensor
Computes the inverse of a symmetric positive-definite matrix :math:`A` using its
Cholesky factor :math:`u`: returns matrix ``inv``. The inverse is computed using
LAPACK routines ``dpotri`` and ``spotri`` (and the corresponding MAGMA routines).
If :attr:`upper` is ``False``, :math:`u` is lower triangular
such that the returned tensor is
.. math::
inv = (uu^{{T}})^{{-1}}
If :attr:`upper` is ``True`` or not provided, :math:`u` is upper
triangular such that the returned tensor is
.. math::
inv = (u^T u)^{{-1}}
Supports input of float, double, cfloat and cdouble dtypes.
Also supports batches of matrices, and if :math:`A` is a batch of matrices then the output has the same batch dimensions.
Args:
input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)`,
consisting of symmetric positive-definite matrices
where :math:`*` is zero or more batch dimensions.
upper (bool, optional): flag that indicates whether to return a
upper or lower triangular matrix. Default: False
Keyword args:
out (Tensor, optional): the output tensor for `inv`
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite
>>> u = torch.linalg.cholesky(a)
>>> a
tensor([[ 0.9935, -0.6353, 1.5806],
[ -0.6353, 0.8769, -1.7183],
[ 1.5806, -1.7183, 10.6618]])
>>> torch.cholesky_inverse(u)
tensor([[ 1.9314, 1.2251, -0.0889],
[ 1.2251, 2.4439, 0.2122],
[-0.0889, 0.2122, 0.1412]])
>>> a.inverse()
tensor([[ 1.9314, 1.2251, -0.0889],
[ 1.2251, 2.4439, 0.2122],
[-0.0889, 0.2122, 0.1412]])
>>> a = torch.randn(3, 2, 2) # Example for batched input
>>> a = a @ a.mT + 1e-03 # make symmetric positive-definite
>>> l = torch.linalg.cholesky(a)
>>> z = l @ l.mT
>>> torch.dist(z, a)
tensor(3.5894e-07)
""",
)
add_docstr(
torch.clone,
r"""
clone(input, *, memory_format=torch.preserve_format) -> Tensor
Returns a copy of :attr:`input`.
.. note::
This function is differentiable, so gradients will flow back from the
result of this operation to :attr:`input`. To create a tensor without an
autograd relationship to :attr:`input` see :meth:`~Tensor.detach`.
Args:
{input}
Keyword args:
{memory_format}
""".format(
**common_args
),
)
add_docstr(
torch.clamp,
r"""
clamp(input, min=None, max=None, *, out=None) -> Tensor
Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`.
Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns:
.. math::
y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i)
If :attr:`min` is ``None``, there is no lower bound.
Or, if :attr:`max` is ``None`` there is no upper bound.
"""
+ r"""
.. note::
If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) <torch.clamp>`
sets all elements in :attr:`input` to the value of :attr:`max`.
Args:
{input}
min (Number or Tensor, optional): lower-bound of the range to be clamped to
max (Number or Tensor, optional): upper-bound of the range to be clamped to
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-1.7120, 0.1734, -0.0478, -0.0922])
>>> torch.clamp(a, min=-0.5, max=0.5)
tensor([-0.5000, 0.1734, -0.0478, -0.0922])
>>> min = torch.linspace(-1, 1, steps=4)
>>> torch.clamp(a, min=min)
tensor([-1.0000, 0.1734, 0.3333, 1.0000])
""".format(
**common_args
),
)
add_docstr(
torch.clip,
r"""
clip(input, min=None, max=None, *, out=None) -> Tensor
Alias for :func:`torch.clamp`.
""",
)
add_docstr(
torch.column_stack,
r"""
column_stack(tensors, *, out=None) -> Tensor
Creates a new tensor by horizontally stacking the tensors in :attr:`tensors`.
Equivalent to ``torch.hstack(tensors)``, except each zero or one dimensional tensor ``t``
in :attr:`tensors` is first reshaped into a ``(t.numel(), 1)`` column before being stacked horizontally.
Args:
tensors (sequence of Tensors): sequence of tensors to concatenate
Keyword args:
{out}
Example::
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5, 6])
>>> torch.column_stack((a, b))
tensor([[1, 4],
[2, 5],
[3, 6]])
>>> a = torch.arange(5)
>>> b = torch.arange(10).reshape(5, 2)
>>> torch.column_stack((a, b, b))
tensor([[0, 0, 1, 0, 1],
[1, 2, 3, 2, 3],
[2, 4, 5, 4, 5],
[3, 6, 7, 6, 7],
[4, 8, 9, 8, 9]])
""".format(
**common_args
),
)
add_docstr(
torch.complex,
r"""
complex(real, imag, *, out=None) -> Tensor
Constructs a complex tensor with its real part equal to :attr:`real` and its
imaginary part equal to :attr:`imag`.
Args:
real (Tensor): The real part of the complex tensor. Must be float or double.
imag (Tensor): The imaginary part of the complex tensor. Must be same dtype
as :attr:`real`.
Keyword args:
out (Tensor): If the inputs are ``torch.float32``, must be
``torch.complex64``. If the inputs are ``torch.float64``, must be
``torch.complex128``.
Example::
>>> real = torch.tensor([1, 2], dtype=torch.float32)
>>> imag = torch.tensor([3, 4], dtype=torch.float32)
>>> z = torch.complex(real, imag)
>>> z
tensor([(1.+3.j), (2.+4.j)])
>>> z.dtype
torch.complex64
""",
)
add_docstr(
torch.polar,
r"""
polar(abs, angle, *, out=None) -> Tensor
Constructs a complex tensor whose elements are Cartesian coordinates
corresponding to the polar coordinates with absolute value :attr:`abs` and angle
:attr:`angle`.
.. math::
\text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j
.. note::
`torch.polar` is similar to
`std::polar <https://en.cppreference.com/w/cpp/numeric/complex/polar>`_
and does not compute the polar decomposition
of a complex tensor like Python's `cmath.polar` and SciPy's `linalg.polar` do.
The behavior of this function is undefined if `abs` is negative or NaN, or if `angle` is
infinite.
"""
+ r"""
Args:
abs (Tensor): The absolute value the complex tensor. Must be float or double.
angle (Tensor): The angle of the complex tensor. Must be same dtype as
:attr:`abs`.
Keyword args:
out (Tensor): If the inputs are ``torch.float32``, must be
``torch.complex64``. If the inputs are ``torch.float64``, must be
``torch.complex128``.
Example::
>>> import numpy as np
>>> abs = torch.tensor([1, 2], dtype=torch.float64)
>>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64)
>>> z = torch.polar(abs, angle)
>>> z
tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128)
""",
)
add_docstr(
torch.conj_physical,
r"""
conj_physical(input, *, out=None) -> Tensor
Computes the element-wise conjugate of the given :attr:`input` tensor.
If :attr:`input` has a non-complex dtype, this function just returns :attr:`input`.
.. note::
This performs the conjugate operation regardless of the fact conjugate bit is set or not.
.. warning:: In the future, :func:`torch.conj_physical` may return a non-writeable view for an :attr:`input` of
non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical`
when :attr:`input` is of non-complex dtype to be compatible with this change.
.. math::
\text{out}_{i} = conj(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.conj_physical(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))
tensor([-1 - 1j, -2 - 2j, 3 + 3j])
""".format(
**common_args
),
)
add_docstr(
torch.conj,
r"""
conj(input) -> Tensor
Returns a view of :attr:`input` with a flipped conjugate bit. If :attr:`input` has a non-complex dtype,
this function just returns :attr:`input`.
.. note::
:func:`torch.conj` performs a lazy conjugation, but the actual conjugated tensor can be materialized
at any time using :func:`torch.resolve_conj`.
.. warning:: In the future, :func:`torch.conj` may return a non-writeable view for an :attr:`input` of
non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical`
when :attr:`input` is of non-complex dtype to be compatible with this change.
Args:
{input}
Example::
>>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])
>>> x.is_conj()
False
>>> y = torch.conj(x)
>>> y.is_conj()
True
""".format(
**common_args
),
)
add_docstr(
torch.resolve_conj,
r"""
resolve_conj(input) -> Tensor
Returns a new tensor with materialized conjugation if :attr:`input`'s conjugate bit is set to `True`,
else returns :attr:`input`. The output tensor will always have its conjugate bit set to `False`.
Args:
{input}
Example::
>>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])
>>> y = x.conj()
>>> y.is_conj()
True
>>> z = y.resolve_conj()
>>> z
tensor([-1 - 1j, -2 - 2j, 3 + 3j])
>>> z.is_conj()
False
""".format(
**common_args
),
)
add_docstr(
torch.resolve_neg,
r"""
resolve_neg(input) -> Tensor
Returns a new tensor with materialized negation if :attr:`input`'s negative bit is set to `True`,
else returns :attr:`input`. The output tensor will always have its negative bit set to `False`.
Args:
{input}
Example::
>>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])
>>> y = x.conj()
>>> z = y.imag
>>> z.is_neg()
True
>>> out = y.resolve_neg()
>>> out
tensor([-1, -2, -3])
>>> out.is_neg()
False
""".format(
**common_args
),
)
add_docstr(
torch.copysign,
r"""
copysign(input, other, *, out=None) -> Tensor
Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise.
.. math::
\text{out}_{i} = \begin{cases}
-|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\
|\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\
\end{cases}
"""
+ r"""
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
and integer and float inputs.
Args:
input (Tensor): magnitudes.
other (Tensor or Number): contains value(s) whose signbit(s) are
applied to the magnitudes in :attr:`input`.
Keyword args:
{out}
Example::
>>> a = torch.randn(5)
>>> a
tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244])
>>> torch.copysign(a, 1)
tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244])
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.7079, 0.2778, -1.0249, 0.5719],
[-0.0059, -0.2600, -0.4475, -1.3948],
[ 0.3667, -0.9567, -2.5757, -0.1751],
[ 0.2046, -0.0742, 0.2998, -0.1054]])
>>> b = torch.randn(4)
tensor([ 0.2373, 0.3120, 0.3190, -1.1128])
>>> torch.copysign(a, b)
tensor([[ 0.7079, 0.2778, 1.0249, -0.5719],
[ 0.0059, 0.2600, 0.4475, -1.3948],
[ 0.3667, 0.9567, 2.5757, -0.1751],
[ 0.2046, 0.0742, 0.2998, -0.1054]])
>>> a = torch.tensor([1.])
>>> b = torch.tensor([-0.])
>>> torch.copysign(a, b)
tensor([-1.])
.. note::
copysign handles signed zeros. If the other argument has a negative zero (-0),
the corresponding output value will be negative.
""".format(
**common_args
),
)
add_docstr(
torch.cos,
r"""
cos(input, *, out=None) -> Tensor
Returns a new tensor with the cosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cos(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 1.4309, 1.2706, -0.8562, 0.9796])
>>> torch.cos(a)
tensor([ 0.1395, 0.2957, 0.6553, 0.5574])
""".format(
**common_args
),
)
add_docstr(
torch.cosh,
r"""
cosh(input, *, out=None) -> Tensor
Returns a new tensor with the hyperbolic cosine of the elements of
:attr:`input`.
.. math::
\text{out}_{i} = \cosh(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.1632, 1.1835, -0.6979, -0.7325])
>>> torch.cosh(a)
tensor([ 1.0133, 1.7860, 1.2536, 1.2805])
.. note::
When :attr:`input` is on the CPU, the implementation of torch.cosh may use
the Sleef library, which rounds very large results to infinity or negative
infinity. See `here <https://sleef.org/purec.xhtml>`_ for details.
""".format(
**common_args
),
)
add_docstr(
torch.cross,
r"""
cross(input, other, dim=None, *, out=None) -> Tensor
Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input`
and :attr:`other`.
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches
of vectors, for which it computes the product along the dimension :attr:`dim`.
In this case, the output has the same batch dimensions as the inputs.
If :attr:`dim` is not given, it defaults to the first dimension found with the
size 3. Note that this might be unexpected.
.. seealso::
:func:`torch.linalg.cross` which requires specifying dim (defaulting to -1).
.. warning:: This function may change in a future PyTorch release to match
the default behaviour in :func:`torch.linalg.cross`. We recommend using
:func:`torch.linalg.cross`.
Args:
{input}
other (Tensor): the second input tensor
dim (int, optional): the dimension to take the cross-product in.
Keyword args:
{out}
Example::
>>> a = torch.randn(4, 3)
>>> a
tensor([[-0.3956, 1.1455, 1.6895],
[-0.5849, 1.3672, 0.3599],
[-1.1626, 0.7180, -0.0521],
[-0.1339, 0.9902, -2.0225]])
>>> b = torch.randn(4, 3)
>>> b
tensor([[-0.0257, -1.4725, -1.2251],
[-1.1479, -0.7005, -1.9757],
[-1.3904, 0.3726, -1.1836],
[-0.9688, -0.7153, 0.2159]])
>>> torch.cross(a, b, dim=1)
tensor([[ 1.0844, -0.5281, 0.6120],
[-2.4490, -1.5687, 1.9792],
[-0.8304, -1.3037, 0.5650],
[-1.2329, 1.9883, 1.0551]])
>>> torch.cross(a, b)
tensor([[ 1.0844, -0.5281, 0.6120],
[-2.4490, -1.5687, 1.9792],
[-0.8304, -1.3037, 0.5650],
[-1.2329, 1.9883, 1.0551]])
""".format(
**common_args
),
)
add_docstr(
torch.logcumsumexp,
r"""
logcumsumexp(input, dim, *, out=None) -> Tensor
Returns the logarithm of the cumulative summation of the exponentiation of
elements of :attr:`input` in the dimension :attr:`dim`.
For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is
.. math::
\text{{logcumsumexp}}(x)_{{ij}} = \log \sum\limits_{{j=0}}^{{i}} \exp(x_{{ij}})
Args:
{input}
dim (int): the dimension to do the operation over
Keyword args:
{out}
Example::
>>> a = torch.randn(10)
>>> torch.logcumsumexp(a, dim=0)
tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811,
1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475]))
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.cummax,
r"""
cummax(input, dim, *, out=None) -> (Tensor, LongTensor)
Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of
elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index
location of each maximum value found in the dimension :attr:`dim`.
.. math::
y_i = max(x_1, x_2, x_3, \dots, x_i)
Args:
{input}
dim (int): the dimension to do the operation over
Keyword args:
out (tuple, optional): the result tuple of two output tensors (values, indices)
Example::
>>> a = torch.randn(10)
>>> a
tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284,
1.9946, -0.8209])
>>> torch.cummax(a, dim=0)
torch.return_types.cummax(
values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696,
1.9946, 1.9946]),
indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8]))
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.cummin,
r"""
cummin(input, dim, *, out=None) -> (Tensor, LongTensor)
Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of
elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index
location of each maximum value found in the dimension :attr:`dim`.
.. math::
y_i = min(x_1, x_2, x_3, \dots, x_i)
Args:
{input}
dim (int): the dimension to do the operation over
Keyword args:
out (tuple, optional): the result tuple of two output tensors (values, indices)
Example::
>>> a = torch.randn(10)
>>> a
tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762,
0.9165, 1.6684])
>>> torch.cummin(a, dim=0)
torch.return_types.cummin(
values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298,
-1.3298, -1.3298]),
indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4]))
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.cumprod,
r"""
cumprod(input, dim, *, dtype=None, out=None) -> Tensor
Returns the cumulative product of elements of :attr:`input` in the dimension
:attr:`dim`.
For example, if :attr:`input` is a vector of size N, the result will also be
a vector of size N, with elements.
.. math::
y_i = x_1 \times x_2\times x_3\times \dots \times x_i
Args:
{input}
dim (int): the dimension to do the operation over
Keyword args:
{dtype}
{out}
Example::
>>> a = torch.randn(10)
>>> a
tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126,
-0.2129, -0.4206, 0.1968])
>>> torch.cumprod(a, dim=0)
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065,
0.0014, -0.0006, -0.0001])
>>> a[5] = 0.0
>>> torch.cumprod(a, dim=0)
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000,
0.0000, -0.0000, -0.0000])
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.cumsum,
r"""
cumsum(input, dim, *, dtype=None, out=None) -> Tensor
Returns the cumulative sum of elements of :attr:`input` in the dimension
:attr:`dim`.
For example, if :attr:`input` is a vector of size N, the result will also be
a vector of size N, with elements.
.. math::
y_i = x_1 + x_2 + x_3 + \dots + x_i
Args:
{input}
dim (int): the dimension to do the operation over
Keyword args:
{dtype}
{out}
Example::
>>> a = torch.randn(10)
>>> a
tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595,
0.1850, -1.1571, -0.4243])
>>> torch.cumsum(a, dim=0)
tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058,
-1.8209, -2.9780, -3.4022])
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.count_nonzero,
r"""
count_nonzero(input, dim=None) -> Tensor
Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`.
If no dim is specified then all non-zeros in the tensor are counted.
Args:
{input}
dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros.
Example::
>>> x = torch.zeros(3,3)
>>> x[torch.randn(3,3) > 0.5] = 1
>>> x
tensor([[0., 1., 1.],
[0., 0., 0.],
[0., 0., 1.]])
>>> torch.count_nonzero(x)
tensor(3)
>>> torch.count_nonzero(x, dim=0)
tensor([0, 1, 2])
""".format(
**reduceops_common_args
),
)
add_docstr(
torch.dequantize,
r"""
dequantize(tensor) -> Tensor
Returns an fp32 Tensor by dequantizing a quantized Tensor
Args:
tensor (Tensor): A quantized Tensor
.. function:: dequantize(tensors) -> sequence of Tensors
:noindex:
Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors
Args:
tensors (sequence of Tensors): A list of quantized Tensors
""",
)
add_docstr(
torch.diag,
r"""
diag(input, diagonal=0, *, out=None) -> Tensor
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
with the elements of :attr:`input` as the diagonal.
- If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with
the diagonal elements of :attr:`input`.
The argument :attr:`diagonal` controls which diagonal to consider:
- If :attr:`diagonal` = 0, it is the main diagonal.
- If :attr:`diagonal` > 0, it is above the main diagonal.
- If :attr:`diagonal` < 0, it is below the main diagonal.
Args:
{input}
diagonal (int, optional): the diagonal to consider
Keyword args:
{out}
.. seealso::
:func:`torch.diagonal` always returns the diagonal of its input.
:func:`torch.diagflat` always constructs a tensor with diagonal elements
specified by the input.
Examples:
Get the square matrix where the input vector is the diagonal::
>>> a = torch.randn(3)
>>> a
tensor([ 0.5950,-0.0872, 2.3298])
>>> torch.diag(a)
tensor([[ 0.5950, 0.0000, 0.0000],
[ 0.0000,-0.0872, 0.0000],
[ 0.0000, 0.0000, 2.3298]])
>>> torch.diag(a, 1)
tensor([[ 0.0000, 0.5950, 0.0000, 0.0000],
[ 0.0000, 0.0000,-0.0872, 0.0000],
[ 0.0000, 0.0000, 0.0000, 2.3298],
[ 0.0000, 0.0000, 0.0000, 0.0000]])
Get the k-th diagonal of a given matrix::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-0.4264, 0.0255,-0.1064],
[ 0.8795,-0.2429, 0.1374],
[ 0.1029,-0.6482,-1.6300]])
>>> torch.diag(a, 0)
tensor([-0.4264,-0.2429,-1.6300])
>>> torch.diag(a, 1)
tensor([ 0.0255, 0.1374])
""".format(
**common_args
),
)
add_docstr(
torch.diag_embed,
r"""
diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor
Creates a tensor whose diagonals of certain 2D planes (specified by
:attr:`dim1` and :attr:`dim2`) are filled by :attr:`input`.
To facilitate creating batched diagonal matrices, the 2D planes formed by
the last two dimensions of the returned tensor are chosen by default.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
The size of the new matrix will be calculated to make the specified diagonal
of the size of the last input dimension.
Note that for :attr:`offset` other than :math:`0`, the order of :attr:`dim1`
and :attr:`dim2` matters. Exchanging them is equivalent to changing the
sign of :attr:`offset`.
Applying :meth:`torch.diagonal` to the output of this function with
the same arguments yields a matrix identical to input. However,
:meth:`torch.diagonal` has different default dimensions, so those
need to be explicitly specified.
Args:
{input} Must be at least 1-dimensional.
offset (int, optional): which diagonal to consider. Default: 0
(main diagonal).
dim1 (int, optional): first dimension with respect to which to
take diagonal. Default: -2.
dim2 (int, optional): second dimension with respect to which to
take diagonal. Default: -1.
Example::
>>> a = torch.randn(2, 3)
>>> torch.diag_embed(a)
tensor([[[ 1.5410, 0.0000, 0.0000],
[ 0.0000, -0.2934, 0.0000],
[ 0.0000, 0.0000, -2.1788]],
[[ 0.5684, 0.0000, 0.0000],
[ 0.0000, -1.0845, 0.0000],
[ 0.0000, 0.0000, -1.3986]]])
>>> torch.diag_embed(a, offset=1, dim1=0, dim2=2)
tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000],
[ 0.0000, 0.5684, 0.0000, 0.0000]],
[[ 0.0000, 0.0000, -0.2934, 0.0000],
[ 0.0000, 0.0000, -1.0845, 0.0000]],
[[ 0.0000, 0.0000, 0.0000, -2.1788],
[ 0.0000, 0.0000, 0.0000, -1.3986]],
[[ 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000]]])
""".format(
**common_args
),
)
add_docstr(
torch.diagflat,
r"""
diagflat(input, offset=0) -> Tensor
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
with the elements of :attr:`input` as the diagonal.
- If :attr:`input` is a tensor with more than one dimension, then returns a
2-D tensor with diagonal elements equal to a flattened :attr:`input`.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
Args:
{input}
offset (int, optional): the diagonal to consider. Default: 0 (main
diagonal).
Examples::
>>> a = torch.randn(3)
>>> a
tensor([-0.2956, -0.9068, 0.1695])
>>> torch.diagflat(a)
tensor([[-0.2956, 0.0000, 0.0000],
[ 0.0000, -0.9068, 0.0000],
[ 0.0000, 0.0000, 0.1695]])
>>> torch.diagflat(a, 1)
tensor([[ 0.0000, -0.2956, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.9068, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.1695],
[ 0.0000, 0.0000, 0.0000, 0.0000]])
>>> a = torch.randn(2, 2)
>>> a
tensor([[ 0.2094, -0.3018],
[-0.1516, 1.9342]])
>>> torch.diagflat(a)
tensor([[ 0.2094, 0.0000, 0.0000, 0.0000],
[ 0.0000, -0.3018, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.1516, 0.0000],
[ 0.0000, 0.0000, 0.0000, 1.9342]])
""".format(
**common_args
),
)
add_docstr(
torch.diagonal,
r"""
diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor
Returns a partial view of :attr:`input` with the its diagonal elements
with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension
at the end of the shape.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
Applying :meth:`torch.diag_embed` to the output of this function with
the same arguments yields a diagonal matrix with the diagonal entries
of the input. However, :meth:`torch.diag_embed` has different default
dimensions, so those need to be explicitly specified.
Args:
{input} Must be at least 2-dimensional.
offset (int, optional): which diagonal to consider. Default: 0
(main diagonal).
dim1 (int, optional): first dimension with respect to which to
take diagonal. Default: 0.
dim2 (int, optional): second dimension with respect to which to
take diagonal. Default: 1.
.. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1.
Examples::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-1.0854, 1.1431, -0.1752],
[ 0.8536, -0.0905, 0.0360],
[ 0.6927, -0.3735, -0.4945]])
>>> torch.diagonal(a, 0)
tensor([-1.0854, -0.0905, -0.4945])
>>> torch.diagonal(a, 1)
tensor([ 1.1431, 0.0360])
>>> x = torch.randn(2, 5, 4, 2)
>>> torch.diagonal(x, offset=-1, dim1=1, dim2=2)
tensor([[[-1.2631, 0.3755, -1.5977, -1.8172],
[-1.1065, 1.0401, -0.2235, -0.7938]],
[[-1.7325, -0.3081, 0.6166, 0.2335],
[ 1.0500, 0.7336, -0.3836, -1.1015]]])
""".format(
**common_args
),
)
add_docstr(
torch.diagonal_scatter,
r"""
diagonal_scatter(input, src, offset=0, dim1=0, dim2=1) -> Tensor
Embeds the values of the :attr:`src` tensor into :attr:`input` along
the diagonal elements of :attr:`input`, with respect to :attr:`dim1`
and :attr:`dim2`.
This function returns a tensor with fresh storage; it does not
return a view.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
Args:
{input} Must be at least 2-dimensional.
src (Tensor): the tensor to embed into :attr:`input`.
offset (int, optional): which diagonal to consider. Default: 0
(main diagonal).
dim1 (int, optional): first dimension with respect to which to
take diagonal. Default: 0.
dim2 (int, optional): second dimension with respect to which to
take diagonal. Default: 1.
.. note::
:attr:`src` must be of the proper size in order to be embedded
into :attr:`input`. Specifically, it should have the same shape as
``torch.diagonal(input, offset, dim1, dim2)``
Examples::
>>> a = torch.zeros(3, 3)
>>> a
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>> torch.diagonal_scatter(a, torch.ones(3), 0)
tensor([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
>>> torch.diagonal_scatter(a, torch.ones(2), 1)
tensor([[0., 1., 0.],
[0., 0., 1.],
[0., 0., 0.]])
""".format(
**common_args
),
)
add_docstr(
torch.as_strided_scatter,
r"""
as_strided_scatter(input, src, size, stride, storage_offset=0) -> Tensor
Embeds the values of the :attr:`src` tensor into :attr:`input` along
the elements corresponding to the result of calling
input.as_strided(size, stride, storage_offset).
This function returns a tensor with fresh storage; it does not
return a view.
Args:
{input}
size (tuple or ints): the shape of the output tensor
stride (tuple or ints): the stride of the output tensor
storage_offset (int, optional): the offset in the underlying storage of the output tensor
.. note::
:attr:`src` must be of the proper size in order to be embedded
into :attr:`input`. Specifically, it should have the same shape as
`torch.as_strided(input, size, stride, storage_offset)`
Example::
>>> a = torch.arange(4).reshape(2, 2) + 1
>>> a
tensor([[1, 2],
[3, 4]])
>>> b = torch.zeros(3, 3)
>>> b
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>> torch.as_strided_scatter(b, a, (2, 2), (1, 2))
tensor([[1., 3., 2.],
[4., 0., 0.],
[0., 0., 0.]])
""".format(
**common_args
),
)
add_docstr(
torch.diff,
r"""
diff(input, n=1, dim=-1, prepend=None, append=None) -> Tensor
Computes the n-th forward difference along the given dimension.
The first-order differences are given by `out[i] = input[i + 1] - input[i]`. Higher-order
differences are calculated by using :func:`torch.diff` recursively.
Args:
input (Tensor): the tensor to compute the differences on
n (int, optional): the number of times to recursively compute the difference
dim (int, optional): the dimension to compute the difference along.
Default is the last dimension.
prepend, append (Tensor, optional): values to prepend or append to
:attr:`input` along :attr:`dim` before computing the difference.
Their dimensions must be equivalent to that of input, and their shapes
must match input's shape except on :attr:`dim`.
Keyword args:
{out}
Example::
>>> a = torch.tensor([1, 3, 2])
>>> torch.diff(a)
tensor([ 2, -1])
>>> b = torch.tensor([4, 5])
>>> torch.diff(a, append=b)
tensor([ 2, -1, 2, 1])
>>> c = torch.tensor([[1, 2, 3], [3, 4, 5]])
>>> torch.diff(c, dim=0)
tensor([[2, 2, 2]])
>>> torch.diff(c, dim=1)
tensor([[1, 1],
[1, 1]])
""".format(
**common_args
),
)
add_docstr(
torch.digamma,
r"""
digamma(input, *, out=None) -> Tensor
Alias for :func:`torch.special.digamma`.
""",
)
add_docstr(
torch.dist,
r"""
dist(input, other, p=2) -> Tensor
Returns the p-norm of (:attr:`input` - :attr:`other`)
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
{input}
other (Tensor): the Right-hand-side input tensor
p (float, optional): the norm to be computed
Example::
>>> x = torch.randn(4)
>>> x
tensor([-1.5393, -0.8675, 0.5916, 1.6321])
>>> y = torch.randn(4)
>>> y
tensor([ 0.0967, -1.0511, 0.6295, 0.8360])
>>> torch.dist(x, y, 3.5)
tensor(1.6727)
>>> torch.dist(x, y, 3)
tensor(1.6973)
>>> torch.dist(x, y, 0)
tensor(4.)
>>> torch.dist(x, y, 1)
tensor(2.6537)
""".format(
**common_args
),
)
add_docstr(
torch.div,
r"""
div(input, other, *, rounding_mode=None, out=None) -> Tensor
Divides each element of the input ``input`` by the corresponding element of
:attr:`other`.
.. math::
\text{{out}}_i = \frac{{\text{{input}}_i}}{{\text{{other}}_i}}
.. note::
By default, this performs a "true" division like Python 3.
See the :attr:`rounding_mode` argument for floor division.
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs.
Always promotes integer types to the default scalar type.
Args:
input (Tensor): the dividend
other (Tensor or Number): the divisor
Keyword args:
rounding_mode (str, optional): Type of rounding applied to the result:
* None - default behavior. Performs no rounding and, if both :attr:`input` and
:attr:`other` are integer types, promotes the inputs to the default scalar type.
Equivalent to true division in Python (the ``/`` operator) and NumPy's ``np.true_divide``.
* ``"trunc"`` - rounds the results of the division towards zero.
Equivalent to C-style integer division.
* ``"floor"`` - rounds the results of the division down.
Equivalent to floor division in Python (the ``//`` operator) and NumPy's ``np.floor_divide``.
{out}
Examples::
>>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637])
>>> torch.div(x, 0.5)
tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274])
>>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
... [ 0.1815, -1.0111, 0.9805, -1.5923],
... [ 0.1062, 1.4581, 0.7759, -1.2344],
... [-0.1830, -0.0313, 1.1908, -1.4757]])
>>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308])
>>> torch.div(a, b)
tensor([[-0.4620, -6.6051, 0.5676, 1.2639],
[ 0.2260, -3.4509, -1.2086, 6.8990],
[ 0.1322, 4.9764, -0.9564, 5.3484],
[-0.2278, -0.1068, -1.4678, 6.3938]])
>>> torch.div(a, b, rounding_mode='trunc')
tensor([[-0., -6., 0., 1.],
[ 0., -3., -1., 6.],
[ 0., 4., -0., 5.],
[-0., -0., -1., 6.]])
>>> torch.div(a, b, rounding_mode='floor')
tensor([[-1., -7., 0., 1.],
[ 0., -4., -2., 6.],
[ 0., 4., -1., 5.],
[-1., -1., -2., 6.]])
""".format(
**common_args
),
)
add_docstr(
torch.divide,
r"""
divide(input, other, *, rounding_mode=None, out=None) -> Tensor
Alias for :func:`torch.div`.
""",
)
add_docstr(
torch.dot,
r"""
dot(input, other, *, out=None) -> Tensor
Computes the dot product of two 1D tensors.
.. note::
Unlike NumPy's dot, torch.dot intentionally only supports computing the dot product
of two 1D tensors with the same number of elements.
Args:
input (Tensor): first tensor in the dot product, must be 1D.
other (Tensor): second tensor in the dot product, must be 1D.
Keyword args:
{out}
Example::
>>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1]))
tensor(7)
""".format(
**common_args
),
)
add_docstr(
torch.vdot,
r"""
vdot(input, other, *, out=None) -> Tensor
Computes the dot product of two 1D vectors along a dimension.
In symbols, this function computes
.. math::
\sum_{i=1}^n \overline{x_i}y_i.
where :math:`\overline{x_i}` denotes the conjugate for complex
vectors, and it is the identity for real vectors.
.. note::
Unlike NumPy's vdot, torch.vdot intentionally only supports computing the dot product
of two 1D tensors with the same number of elements.
.. seealso::
:func:`torch.linalg.vecdot` computes the dot product of two batches of vectors along a dimension.
Args:
input (Tensor): first tensor in the dot product, must be 1D. Its conjugate is used if it's complex.
other (Tensor): second tensor in the dot product, must be 1D.
Keyword args:
"""
+ rf"""
.. note:: {common_args["out"]}
"""
+ r"""
Example::
>>> torch.vdot(torch.tensor([2, 3]), torch.tensor([2, 1]))
tensor(7)
>>> a = torch.tensor((1 +2j, 3 - 1j))
>>> b = torch.tensor((2 +1j, 4 - 0j))
>>> torch.vdot(a, b)
tensor([16.+1.j])
>>> torch.vdot(b, a)
tensor([16.-1.j])
""",
)
add_docstr(
torch.eq,
r"""
eq(input, other, *, out=None) -> Tensor
Computes element-wise equality
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere
Example::
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ True, False],
[False, True]])
""".format(
**common_args
),
)
add_docstr(
torch.equal,
r"""
equal(input, other) -> bool
``True`` if two tensors have the same size and elements, ``False`` otherwise.
Example::
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
True
""",
)
add_docstr(
torch.erf,
r"""
erf(input, *, out=None) -> Tensor
Alias for :func:`torch.special.erf`.
""",
)
add_docstr(
torch.erfc,
r"""
erfc(input, *, out=None) -> Tensor
Alias for :func:`torch.special.erfc`.
""",
)
add_docstr(
torch.erfinv,
r"""
erfinv(input, *, out=None) -> Tensor
Alias for :func:`torch.special.erfinv`.
""",
)
add_docstr(
torch.exp,
r"""
exp(input, *, out=None) -> Tensor
Returns a new tensor with the exponential of the elements
of the input tensor :attr:`input`.
.. math::
y_{i} = e^{x_{i}}
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.exp(torch.tensor([0, math.log(2.)]))
tensor([ 1., 2.])
""".format(
**common_args
),
)
add_docstr(
torch.exp2,
r"""
exp2(input, *, out=None) -> Tensor
Alias for :func:`torch.special.exp2`.
""",
)
add_docstr(
torch.expm1,
r"""
expm1(input, *, out=None) -> Tensor
Alias for :func:`torch.special.expm1`.
""",
)
add_docstr(
torch.eye,
r"""
eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.
Args:
n (int): the number of rows
m (int, optional): the number of columns with default being :attr:`n`
Keyword arguments:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Returns:
Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere
Example::
>>> torch.eye(3)
tensor([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.floor,
r"""
floor(input, *, out=None) -> Tensor
Returns a new tensor with the floor of the elements of :attr:`input`,
the largest integer less than or equal to each element.
For integer inputs, follows the array-api convention of returning a
copy of the input tensor.
.. math::
\text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.8166, 1.5308, -0.2530, -0.2091])
>>> torch.floor(a)
tensor([-1., 1., -1., -1.])
""".format(
**common_args
),
)
add_docstr(
torch.floor_divide,
r"""
floor_divide(input, other, *, out=None) -> Tensor
.. note::
Before PyTorch 1.13 :func:`torch.floor_divide` incorrectly performed
truncation division. To restore the previous behavior use
:func:`torch.div` with ``rounding_mode='trunc'``.
Computes :attr:`input` divided by :attr:`other`, elementwise, and floors
the result.
.. math::
\text{{out}}_i = \text{floor} \left( \frac{{\text{{input}}_i}}{{\text{{other}}_i}} \right)
"""
+ r"""
Supports broadcasting to a common shape, type promotion, and integer and float inputs.
Args:
input (Tensor or Number): the dividend
other (Tensor or Number): the divisor
Keyword args:
{out}
Example::
>>> a = torch.tensor([4.0, 3.0])
>>> b = torch.tensor([2.0, 2.0])
>>> torch.floor_divide(a, b)
tensor([2.0, 1.0])
>>> torch.floor_divide(a, 1.4)
tensor([2.0, 2.0])
""".format(
**common_args
),
)
add_docstr(
torch.fmod,
r"""
fmod(input, other, *, out=None) -> Tensor
Applies C++'s `std::fmod <https://en.cppreference.com/w/cpp/numeric/math/fmod>`_ entrywise.
The result has the same sign as the dividend :attr:`input` and its absolute value
is less than that of :attr:`other`.
This function may be defined in terms of :func:`torch.div` as
.. code:: python
torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer and float inputs.
.. note::
When the divisor is zero, returns ``NaN`` for floating point dtypes
on both CPU and GPU; raises ``RuntimeError`` for integer division by
zero on CPU; Integer division by zero on GPU may return any value.
.. note::
Complex inputs are not supported. In some cases, it is not mathematically
possible to satisfy the definition of a modulo operation with complex numbers.
.. seealso::
:func:`torch.remainder` which implements Python's modulus operator.
This one is defined using division rounding down the result.
Args:
input (Tensor): the dividend
other (Tensor or Scalar): the divisor
Keyword args:
{out}
Example::
>>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
tensor([-1., -0., -1., 1., 0., 1.])
>>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5)
tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
""".format(
**common_args
),
)
add_docstr(
torch.frac,
r"""
frac(input, *, out=None) -> Tensor
Computes the fractional portion of each element in :attr:`input`.
.. math::
\text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i})
Example::
>>> torch.frac(torch.tensor([1, 2.5, -3.2]))
tensor([ 0.0000, 0.5000, -0.2000])
""",
)
add_docstr(
torch.frexp,
r"""
frexp(input, *, out=None) -> (Tensor mantissa, Tensor exponent)
Decomposes :attr:`input` into mantissa and exponent tensors
such that :math:`\text{input} = \text{mantissa} \times 2^{\text{exponent}}`.
The range of mantissa is the open interval (-1, 1).
Supports float inputs.
Args:
input (Tensor): the input tensor
Keyword args:
out (tuple, optional): the output tensors
Example::
>>> x = torch.arange(9.)
>>> mantissa, exponent = torch.frexp(x)
>>> mantissa
tensor([0.0000, 0.5000, 0.5000, 0.7500, 0.5000, 0.6250, 0.7500, 0.8750, 0.5000])
>>> exponent
tensor([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=torch.int32)
>>> torch.ldexp(mantissa, exponent)
tensor([0., 1., 2., 3., 4., 5., 6., 7., 8.])
""",
)
add_docstr(
torch.from_numpy,
r"""
from_numpy(ndarray) -> Tensor
Creates a :class:`Tensor` from a :class:`numpy.ndarray`.
The returned tensor and :attr:`ndarray` share the same memory. Modifications to
the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned
tensor is not resizable.
It currently accepts :attr:`ndarray` with dtypes of ``numpy.float64``,
``numpy.float32``, ``numpy.float16``, ``numpy.complex64``, ``numpy.complex128``,
``numpy.int64``, ``numpy.int32``, ``numpy.int16``, ``numpy.int8``, ``numpy.uint8``,
and ``numpy.bool``.
.. warning::
Writing to a tensor created from a read-only NumPy array is not supported and will result in undefined behavior.
Example::
>>> a = numpy.array([1, 2, 3])
>>> t = torch.from_numpy(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
""",
)
add_docstr(
torch.frombuffer,
r"""
frombuffer(buffer, *, dtype, count=-1, offset=0, requires_grad=False) -> Tensor
Creates a 1-dimensional :class:`Tensor` from an object that implements
the Python buffer protocol.
Skips the first :attr:`offset` bytes in the buffer, and interprets the rest of
the raw bytes as a 1-dimensional tensor of type :attr:`dtype` with :attr:`count`
elements.
Note that either of the following must be true:
1. :attr:`count` is a positive non-zero number, and the total number of bytes
in the buffer is less than :attr:`offset` plus :attr:`count` times the size
(in bytes) of :attr:`dtype`.
2. :attr:`count` is negative, and the length (number of bytes) of the buffer
subtracted by the :attr:`offset` is a multiple of the size (in bytes) of
:attr:`dtype`.
The returned tensor and buffer share the same memory. Modifications to
the tensor will be reflected in the buffer and vice versa. The returned
tensor is not resizable.
.. note::
This function increments the reference count for the object that
owns the shared memory. Therefore, such memory will not be deallocated
before the returned tensor goes out of scope.
.. warning::
This function's behavior is undefined when passed an object implementing
the buffer protocol whose data is not on the CPU. Doing so is likely to
cause a segmentation fault.
.. warning::
This function does not try to infer the :attr:`dtype` (hence, it is not
optional). Passing a different :attr:`dtype` than its source may result
in unexpected behavior.
Args:
buffer (object): a Python object that exposes the buffer interface.
Keyword args:
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
count (int, optional): the number of desired elements to be read.
If negative, all the elements (until the end of the buffer) will be
read. Default: -1.
offset (int, optional): the number of bytes to skip at the start of
the buffer. Default: 0.
{requires_grad}
Example::
>>> import array
>>> a = array.array('i', [1, 2, 3])
>>> t = torch.frombuffer(a, dtype=torch.int32)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
>>> # Interprets the signed char bytes as 32-bit integers.
>>> # Each 4 signed char elements will be interpreted as
>>> # 1 signed 32-bit integer.
>>> import array
>>> a = array.array('b', [-1, 0, 0, 0])
>>> torch.frombuffer(a, dtype=torch.int32)
tensor([255], dtype=torch.int32)
""".format(
**factory_common_args
),
)
add_docstr(
torch.flatten,
r"""
flatten(input, start_dim=0, end_dim=-1) -> Tensor
Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim`
are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened.
The order of elements in :attr:`input` is unchanged.
Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view,
or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can
be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the
flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned.
.. note::
Flattening a zero-dimensional tensor will return a one-dimensional view.
Args:
{input}
start_dim (int): the first dim to flatten
end_dim (int): the last dim to flatten
Example::
>>> t = torch.tensor([[[1, 2],
... [3, 4]],
... [[5, 6],
... [7, 8]]])
>>> torch.flatten(t)
tensor([1, 2, 3, 4, 5, 6, 7, 8])
>>> torch.flatten(t, start_dim=1)
tensor([[1, 2, 3, 4],
[5, 6, 7, 8]])
""".format(
**common_args
),
)
add_docstr(
torch.unflatten,
r"""
unflatten(input, dim, sizes) -> Tensor
Expands a dimension of the input tensor over multiple dimensions.
.. seealso::
:func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one.
Args:
{input}
dim (int): Dimension to be unflattened, specified as an index into
``input.shape``.
sizes (Tuple[int]): New shape of the unflattened dimension.
One of its elements can be `-1` in which case the corresponding output
dimension is inferred. Otherwise, the product of ``sizes`` *must*
equal ``input.shape[dim]``.
Returns:
A View of input with the specified dimension unflattened.
Examples::
>>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape
torch.Size([3, 2, 2, 1])
>>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape
torch.Size([3, 2, 2, 1])
>>> torch.unflatten(torch.randn(5, 12, 3), -1, (2, 2, 3, 1, 1)).shape
torch.Size([5, 2, 2, 3, 1, 1, 3])
""".format(
**common_args
),
)
add_docstr(
torch.gather,
r"""
gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor
Gathers values along an axis specified by `dim`.
For a 3-D tensor the output is specified by::
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
:attr:`input` and :attr:`index` must have the same number of dimensions.
It is also required that ``index.size(d) <= input.size(d)`` for all
dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`.
Note that ``input`` and ``index`` do not broadcast against each other.
Args:
input (Tensor): the source tensor
dim (int): the axis along which to index
index (LongTensor): the indices of elements to gather
Keyword arguments:
sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor.
out (Tensor, optional): the destination tensor
Example::
>>> t = torch.tensor([[1, 2], [3, 4]])
>>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]]))
tensor([[ 1, 1],
[ 4, 3]])
""",
)
add_docstr(
torch.gcd,
r"""
gcd(input, other, *, out=None) -> Tensor
Computes the element-wise greatest common divisor (GCD) of :attr:`input` and :attr:`other`.
Both :attr:`input` and :attr:`other` must have integer types.
.. note::
This defines :math:`gcd(0, 0) = 0`.
Args:
{input}
other (Tensor): the second input tensor
Keyword arguments:
{out}
Example::
>>> a = torch.tensor([5, 10, 15])
>>> b = torch.tensor([3, 4, 5])
>>> torch.gcd(a, b)
tensor([1, 2, 5])
>>> c = torch.tensor([3])
>>> torch.gcd(a, c)
tensor([1, 1, 3])
""".format(
**common_args
),
)
add_docstr(
torch.ge,
r"""
ge(input, other, *, out=None) -> Tensor
Computes :math:`\text{input} \geq \text{other}` element-wise.
"""
+ r"""
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere
Example::
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, True], [False, True]])
""".format(
**common_args
),
)
add_docstr(
torch.greater_equal,
r"""
greater_equal(input, other, *, out=None) -> Tensor
Alias for :func:`torch.ge`.
""",
)
add_docstr(
torch.gradient,
r"""
gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors
Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in
one or more dimensions using the `second-order accurate central differences method
<https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_.
The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not
specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates
to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional
:attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and
:math:`g(1, 2, 3)\ == input[1, 2, 3]`.
When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates.
This is detailed in the "Keyword Arguments" section below.
The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is
accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be
improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative
is estimated using `Taylor’s theorem with remainder <https://en.wikipedia.org/wiki/Taylor%27s_theorem>`_.
Letting :math:`x` be an interior point and :math:`x+h_r` be point neighboring it, the partial gradient at
:math:`f(x+h_r)` is estimated using:
.. math::
\begin{aligned}
f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(x_r)}{6} \\
\end{aligned}
where :math:`x_r` is a number in the interval :math:`[x, x+ h_r]` and using the fact that :math:`f \in C^3`
we derive :
.. math::
f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l)
+ ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} }
.. note::
We estimate the gradient of functions in complex domain
:math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way.
The value of each partial derivative at the boundary points is computed differently. See edge_order below.
Args:
input (``Tensor``): the tensor that represents the values of the function
Keyword args:
spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify
how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then
the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the
indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding
indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9).
Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for
the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then
the coordinates are (t0[1], t1[2], t2[3])
dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default
the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of
the :attr:`spacing` argument must correspond with the specified dims."
edge_order (``int``, optional): 1 or 2, for `first-order
<https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_ or
`second-order <https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_
estimation of the boundary ("edge") values, respectively.
Examples::
>>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4]
>>> coordinates = (torch.tensor([-2., -1., 1., 4.]),)
>>> values = torch.tensor([4., 1., 1., 16.], )
>>> torch.gradient(values, spacing = coordinates)
(tensor([-3., -2., 2., 5.]),)
>>> # Estimates the gradient of the R^2 -> R function whose samples are
>>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost
>>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates
>>> # partial derivative for both dimensions.
>>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]])
>>> torch.gradient(t)
(tensor([[ 9., 18., 36., 72.],
[ 9., 18., 36., 72.]]),
tensor([[ 1.0000, 1.5000, 3.0000, 4.0000],
[10.0000, 15.0000, 30.0000, 40.0000]]))
>>> # A scalar value for spacing modifies the relationship between tensor indices
>>> # and input coordinates by multiplying the indices to find the
>>> # coordinates. For example, below the indices of the innermost
>>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of
>>> # the outermost dimension 0, 1 translate to coordinates of [0, 2].
>>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1])
(tensor([[ 4.5000, 9.0000, 18.0000, 36.0000],
[ 4.5000, 9.0000, 18.0000, 36.0000]]),
tensor([[ 0.5000, 0.7500, 1.5000, 2.0000],
[ 5.0000, 7.5000, 15.0000, 20.0000]]))
>>> # doubling the spacing between samples halves the estimated partial gradients.
>>>
>>> # Estimates only the partial derivative for dimension 1
>>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.)
(tensor([[ 1.0000, 1.5000, 3.0000, 4.0000],
[10.0000, 15.0000, 30.0000, 40.0000]]),)
>>> # When spacing is a list of scalars, the relationship between the tensor
>>> # indices and input coordinates changes based on dimension.
>>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate
>>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension
>>> # 0, 1 translate to coordinates of [0, 2].
>>> torch.gradient(t, spacing = [3., 2.])
(tensor([[ 4.5000, 9.0000, 18.0000, 36.0000],
[ 4.5000, 9.0000, 18.0000, 36.0000]]),
tensor([[ 0.3333, 0.5000, 1.0000, 1.3333],
[ 3.3333, 5.0000, 10.0000, 13.3333]]))
>>> # The following example is a replication of the previous one with explicit
>>> # coordinates.
>>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9]))
>>> torch.gradient(t, spacing = coords)
(tensor([[ 4.5000, 9.0000, 18.0000, 36.0000],
[ 4.5000, 9.0000, 18.0000, 36.0000]]),
tensor([[ 0.3333, 0.5000, 1.0000, 1.3333],
[ 3.3333, 5.0000, 10.0000, 13.3333]]))
""",
)
add_docstr(
torch.geqrf,
r"""
geqrf(input, *, out=None) -> (Tensor, Tensor)
This is a low-level function for calling LAPACK's geqrf directly. This function
returns a namedtuple (a, tau) as defined in `LAPACK documentation for geqrf`_ .
Computes a QR decomposition of :attr:`input`.
Both `Q` and `R` matrices are stored in the same output tensor `a`.
The elements of `R` are stored on and above the diagonal.
Elementary reflectors (or Householder vectors) implicitly defining matrix `Q`
are stored below the diagonal.
The results of this function can be used together with :func:`torch.linalg.householder_product`
to obtain the `Q` matrix or
with :func:`torch.ormqr`, which uses an implicit representation of the `Q` matrix,
for an efficient matrix-matrix multiplication.
See `LAPACK documentation for geqrf`_ for further details.
.. note::
See also :func:`torch.linalg.qr`, which computes Q and R matrices, and :func:`torch.linalg.lstsq`
with the ``driver="gels"`` option for a function that can solve matrix equations using a QR decomposition.
Args:
input (Tensor): the input matrix
Keyword args:
out (tuple, optional): the output tuple of (Tensor, Tensor). Ignored if `None`. Default: `None`.
.. _LAPACK documentation for geqrf:
http://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html
""",
)
add_docstr(
torch.inner,
r"""
inner(input, other, *, out=None) -> Tensor
Computes the dot product for 1D tensors. For higher dimensions, sums the product
of elements from :attr:`input` and :attr:`other` along their last dimension.
.. note::
If either :attr:`input` or :attr:`other` is a scalar, the result is equivalent
to `torch.mul(input, other)`.
If both :attr:`input` and :attr:`other` are non-scalars, the size of their last
dimension must match and the result is equivalent to `torch.tensordot(input,
other, dims=([-1], [-1]))`
Args:
input (Tensor): First input tensor
other (Tensor): Second input tensor
Keyword args:
out (Tensor, optional): Optional output tensor to write result into. The output
shape is `input.shape[:-1] + other.shape[:-1]`.
Example::
# Dot product
>>> torch.inner(torch.tensor([1, 2, 3]), torch.tensor([0, 2, 1]))
tensor(7)
# Multidimensional input tensors
>>> a = torch.randn(2, 3)
>>> a
tensor([[0.8173, 1.0874, 1.1784],
[0.3279, 0.1234, 2.7894]])
>>> b = torch.randn(2, 4, 3)
>>> b
tensor([[[-0.4682, -0.7159, 0.1506],
[ 0.4034, -0.3657, 1.0387],
[ 0.9892, -0.6684, 0.1774],
[ 0.9482, 1.3261, 0.3917]],
[[ 0.4537, 0.7493, 1.1724],
[ 0.2291, 0.5749, -0.2267],
[-0.7920, 0.3607, -0.3701],
[ 1.3666, -0.5850, -1.7242]]])
>>> torch.inner(a, b)
tensor([[[-0.9837, 1.1560, 0.2907, 2.6785],
[ 2.5671, 0.5452, -0.6912, -1.5509]],
[[ 0.1782, 2.9843, 0.7366, 1.5672],
[ 3.5115, -0.4864, -1.2476, -4.4337]]])
# Scalar input
>>> torch.inner(a, torch.tensor(2))
tensor([[1.6347, 2.1748, 2.3567],
[0.6558, 0.2469, 5.5787]])
""",
)
add_docstr(
torch.outer,
r"""
outer(input, vec2, *, out=None) -> Tensor
Outer product of :attr:`input` and :attr:`vec2`.
If :attr:`input` is a vector of size :math:`n` and :attr:`vec2` is a vector of
size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
Args:
input (Tensor): 1-D input vector
vec2 (Tensor): 1-D input vector
Keyword args:
out (Tensor, optional): optional output matrix
Example::
>>> v1 = torch.arange(1., 5.)
>>> v2 = torch.arange(1., 4.)
>>> torch.outer(v1, v2)
tensor([[ 1., 2., 3.],
[ 2., 4., 6.],
[ 3., 6., 9.],
[ 4., 8., 12.]])
""",
)
add_docstr(
torch.ger,
r"""
ger(input, vec2, *, out=None) -> Tensor
Alias of :func:`torch.outer`.
.. warning::
This function is deprecated and will be removed in a future PyTorch release.
Use :func:`torch.outer` instead.
""",
)
add_docstr(
torch.get_default_dtype,
r"""
get_default_dtype() -> torch.dtype
Get the current default floating point :class:`torch.dtype`.
Example::
>>> torch.get_default_dtype() # initial default for floating point is torch.float32
torch.float32
>>> torch.set_default_dtype(torch.float64)
>>> torch.get_default_dtype() # default is now changed to torch.float64
torch.float64
>>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this
>>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor
torch.float32
""",
)
add_docstr(
torch.get_num_threads,
r"""
get_num_threads() -> int
Returns the number of threads used for parallelizing CPU operations
""",
)
add_docstr(
torch.get_num_interop_threads,
r"""
get_num_interop_threads() -> int
Returns the number of threads used for inter-op parallelism on CPU
(e.g. in JIT interpreter)
""",
)
add_docstr(
torch.gt,
r"""
gt(input, other, *, out=None) -> Tensor
Computes :math:`\text{input} > \text{other}` element-wise.
"""
+ r"""
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere
Example::
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [False, False]])
""".format(
**common_args
),
)
add_docstr(
torch.greater,
r"""
greater(input, other, *, out=None) -> Tensor
Alias for :func:`torch.gt`.
""",
)
add_docstr(
torch.histc,
r"""
histc(input, bins=100, min=0, max=0, *, out=None) -> Tensor
Computes the histogram of a tensor.
The elements are sorted into equal width bins between :attr:`min` and
:attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and
maximum values of the data are used.
Elements lower than min and higher than max are ignored.
Args:
{input}
bins (int): number of histogram bins
min (Scalar): lower end of the range (inclusive)
max (Scalar): upper end of the range (inclusive)
Keyword args:
{out}
Returns:
Tensor: Histogram represented as a tensor
Example::
>>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3)
tensor([ 0., 2., 1., 0.])
""".format(
**common_args
),
)
add_docstr(
torch.histogram,
r"""
histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor)
Computes a histogram of the values in a tensor.
:attr:`bins` can be an integer or a 1D tensor.
If :attr:`bins` is an int, it specifies the number of equal-width bins.
By default, the lower and upper range of the bins is determined by the
minimum and maximum elements of the input tensor. The :attr:`range`
argument can be provided to specify a range for the bins.
If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges
including the rightmost edge. It should contain at least 2 elements
and its elements should be increasing.
Args:
{input}
bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor,
defines the sequence of bin edges including the rightmost edge.
Keyword args:
range (tuple of float): Defines the range of the bins.
weight (Tensor): If provided, weight should have the same shape as input. Each value in
input contributes its associated weight towards its bin's result.
density (bool): If False, the result will contain the count (or total weight) in each bin.
If True, the result is the value of the probability density function over the bins,
normalized such that the integral over the range of the bins is 1.
{out} (tuple, optional): The result tuple of two output tensors (hist, bin_edges).
Returns:
hist (Tensor): 1D Tensor containing the values of the histogram.
bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins.
Example::
>>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]))
(tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.]))
>>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True)
(tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.]))
""".format(
**common_args
),
)
add_docstr(
torch.histogramdd,
r"""
histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[])
Computes a multi-dimensional histogram of the values in a tensor.
Interprets the elements of an input tensor whose innermost dimension has size N
as a collection of N-dimensional points. Maps each of the points into a set of
N-dimensional bins and returns the number of points (or total weight) in each bin.
:attr:`input` must be a tensor with at least 2 dimensions.
If input has shape (M, N), each of its M rows defines a point in N-dimensional space.
If input has three or more dimensions, all but the last dimension are flattened.
Each dimension is independently associated with its own strictly increasing sequence
of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D
tensors. Alternatively, bin edges may be constructed automatically by passing a
sequence of integers specifying the number of equal-width bins in each dimension.
For each N-dimensional point in input:
- Each of its coordinates is binned independently among the bin edges
corresponding to its dimension
- Binning results are combined to identify the N-dimensional bin (if any)
into which the point falls
- If the point falls into a bin, the bin's count (or total weight) is incremented
- Points which do not fall into any bin do not contribute to the output
:attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int.
If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences
of bin edges. Each 1D tensor should contain a strictly increasing sequence with at
least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying
the left and right edges of all bins. Every bin is exclusive of its left edge. Only
the rightmost bin is inclusive of its right edge.
If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins
in each dimension. By default, the leftmost and rightmost bin edges in each dimension
are determined by the minimum and maximum elements of the input tensor in the
corresponding dimension. The :attr:`range` argument can be provided to manually
specify the leftmost and rightmost bin edges in each dimension.
If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions.
.. note::
See also :func:`torch.histogram`, which specifically computes 1D histograms.
While :func:`torch.histogramdd` infers the dimensionality of its bins and
binned values from the shape of :attr:`input`, :func:`torch.histogram`
accepts and flattens :attr:`input` of any shape.
Args:
{input}
bins: Tensor[], int[], or int.
If Tensor[], defines the sequences of bin edges.
If int[], defines the number of equal-width bins in each dimension.
If int, defines the number of equal-width bins for all dimensions.
Keyword args:
range (sequence of float): Defines the leftmost and rightmost bin edges
in each dimension.
weight (Tensor): By default, each value in the input has weight 1. If a weight
tensor is passed, each N-dimensional coordinate in input
contributes its associated weight towards its bin's result.
The weight tensor should have the same shape as the :attr:`input`
tensor excluding its innermost dimension N.
density (bool): If False (default), the result will contain the count (or total weight)
in each bin. If True, each count (weight) is divided by the total count
(total weight), then divided by the volume of its associated bin.
Returns:
hist (Tensor): N-dimensional Tensor containing the values of the histogram.
bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges.
Example::
>>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3],
... weight=torch.tensor([1., 2., 4., 8.]))
torch.return_types.histogramdd(
hist=tensor([[0., 1., 0.],
[2., 0., 0.],
[4., 0., 8.]]),
bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]),
tensor([0.0000, 0.6667, 1.3333, 2.0000])))
>>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2],
... range=[0., 1., 0., 1.], density=True)
torch.return_types.histogramdd(
hist=tensor([[2., 0.],
[0., 2.]]),
bin_edges=(tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000])))
""",
)
# TODO: Fix via https://github.com/pytorch/pytorch/issues/75798
torch.histogramdd.__module__ = "torch"
add_docstr(
torch.hypot,
r"""
hypot(input, other, *, out=None) -> Tensor
Given the legs of a right triangle, return its hypotenuse.
.. math::
\text{out}_{i} = \sqrt{\text{input}_{i}^{2} + \text{other}_{i}^{2}}
The shapes of ``input`` and ``other`` must be
:ref:`broadcastable <broadcasting-semantics>`.
"""
+ r"""
Args:
input (Tensor): the first input tensor
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0]))
tensor([5.0000, 5.6569, 6.4031])
""".format(
**common_args
),
)
add_docstr(
torch.i0,
r"""
i0(input, *, out=None) -> Tensor
Alias for :func:`torch.special.i0`.
""",
)
add_docstr(
torch.igamma,
r"""
igamma(input, other, *, out=None) -> Tensor
Alias for :func:`torch.special.gammainc`.
""",
)
add_docstr(
torch.igammac,
r"""
igammac(input, other, *, out=None) -> Tensor
Alias for :func:`torch.special.gammaincc`.
""",
)
add_docstr(
torch.index_select,
r"""
index_select(input, dim, index, *, out=None) -> Tensor
Returns a new tensor which indexes the :attr:`input` tensor along dimension
:attr:`dim` using the entries in :attr:`index` which is a `LongTensor`.
The returned tensor has the same number of dimensions as the original tensor
(:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length
of :attr:`index`; other dimensions have the same size as in the original tensor.
.. note:: The returned tensor does **not** use the same storage as the original
tensor. If :attr:`out` has a different shape than expected, we
silently change it to the correct shape, reallocating the underlying
storage if necessary.
Args:
{input}
dim (int): the dimension in which we index
index (IntTensor or LongTensor): the 1-D tensor containing the indices to index
Keyword args:
{out}
Example::
>>> x = torch.randn(3, 4)
>>> x
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-0.4664, 0.2647, -0.1228, -1.1068],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> indices = torch.tensor([0, 2])
>>> torch.index_select(x, 0, indices)
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> torch.index_select(x, 1, indices)
tensor([[ 0.1427, -0.5414],
[-0.4664, -0.1228],
[-1.1734, 0.7230]])
""".format(
**common_args
),
)
add_docstr(
torch.inverse,
r"""
inverse(input, *, out=None) -> Tensor
Alias for :func:`torch.linalg.inv`
""",
)
add_docstr(
torch.isin,
r"""
isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor
Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns
a boolean tensor of the same shape as :attr:`elements` that is True for elements
in :attr:`test_elements` and False otherwise.
.. note::
One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both.
Args:
elements (Tensor or Scalar): Input elements
test_elements (Tensor or Scalar): Values against which to test for each input element
assume_unique (bool, optional): If True, assumes both :attr:`elements` and
:attr:`test_elements` contain unique elements, which can speed up the
calculation. Default: False
invert (bool, optional): If True, inverts the boolean return tensor, resulting in True
values for elements *not* in :attr:`test_elements`. Default: False
Returns:
A boolean tensor of the same shape as :attr:`elements` that is True for elements in
:attr:`test_elements` and False otherwise
Example:
>>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3]))
tensor([[False, True],
[ True, False]])
""",
)
add_docstr(
torch.isinf,
r"""
isinf(input) -> Tensor
Tests if each element of :attr:`input` is infinite
(positive or negative infinity) or not.
.. note::
Complex values are infinite when their real or imaginary part is
infinite.
Args:
{input}
Returns:
A boolean tensor that is True where :attr:`input` is infinite and False elsewhere
Example::
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([False, True, False, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.isposinf,
r"""
isposinf(input, *, out=None) -> Tensor
Tests if each element of :attr:`input` is positive infinity or not.
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isposinf(a)
tensor([False, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.isneginf,
r"""
isneginf(input, *, out=None) -> Tensor
Tests if each element of :attr:`input` is negative infinity or not.
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isneginf(a)
tensor([ True, False, False])
""".format(
**common_args
),
)
add_docstr(
torch.isclose,
r"""
isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor
Returns a new tensor with boolean elements representing if each element of
:attr:`input` is "close" to the corresponding element of :attr:`other`.
Closeness is defined as:
.. math::
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
"""
+ r"""
where :attr:`input` and :attr:`other` are finite. Where :attr:`input`
and/or :attr:`other` are nonfinite they are close if and only if
they are equal, with NaNs being considered equal to each other when
:attr:`equal_nan` is True.
Args:
input (Tensor): first tensor to compare
other (Tensor): second tensor to compare
atol (float, optional): absolute tolerance. Default: 1e-08
rtol (float, optional): relative tolerance. Default: 1e-05
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False``
Examples::
>>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4)))
tensor([ True, False, False])
>>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5)
tensor([True, True])
""",
)
add_docstr(
torch.isfinite,
r"""
isfinite(input) -> Tensor
Returns a new tensor with boolean elements representing if each element is `finite` or not.
Real values are finite when they are not NaN, negative infinity, or infinity.
Complex values are finite when both their real and imaginary parts are finite.
Args:
{input}
Returns:
A boolean tensor that is True where :attr:`input` is finite and False elsewhere
Example::
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([True, False, True, False, False])
""".format(
**common_args
),
)
add_docstr(
torch.isnan,
r"""
isnan(input) -> Tensor
Returns a new tensor with boolean elements representing if each element of :attr:`input`
is NaN or not. Complex values are considered NaN when either their real
and/or imaginary part is NaN.
Arguments:
{input}
Returns:
A boolean tensor that is True where :attr:`input` is NaN and False elsewhere
Example::
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([False, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.isreal,
r"""
isreal(input) -> Tensor
Returns a new tensor with boolean elements representing if each element of :attr:`input` is real-valued or not.
All real-valued types are considered real. Complex values are considered real when their imaginary part is 0.
Arguments:
{input}
Returns:
A boolean tensor that is True where :attr:`input` is real and False elsewhere
Example::
>>> torch.isreal(torch.tensor([1, 1+1j, 2+0j]))
tensor([True, False, True])
""".format(
**common_args
),
)
add_docstr(
torch.is_floating_point,
r"""
is_floating_point(input) -> (bool)
Returns True if the data type of :attr:`input` is a floating point data type i.e.,
one of ``torch.float64``, ``torch.float32``, ``torch.float16``, and ``torch.bfloat16``.
Args:
{input}
""".format(
**common_args
),
)
add_docstr(
torch.is_complex,
r"""
is_complex(input) -> (bool)
Returns True if the data type of :attr:`input` is a complex data type i.e.,
one of ``torch.complex64``, and ``torch.complex128``.
Args:
{input}
""".format(
**common_args
),
)
add_docstr(
torch.is_grad_enabled,
r"""
is_grad_enabled() -> (bool)
Returns True if grad mode is currently enabled.
""".format(
**common_args
),
)
add_docstr(
torch.is_inference_mode_enabled,
r"""
is_inference_mode_enabled() -> (bool)
Returns True if inference mode is currently enabled.
""".format(
**common_args
),
)
add_docstr(
torch.is_inference,
r"""
is_inference(input) -> (bool)
Returns True if :attr:`input` is an inference tensor.
A non-view tensor is an inference tensor if and only if it was
allocated during inference mode. A view tensor is an inference
tensor if and only if the tensor it is a view of is an inference tensor.
For details on inference mode please see
`Inference Mode <https://pytorch.org/cppdocs/notes/inference_mode.html>`_.
Args:
{input}
""".format(
**common_args
),
)
add_docstr(
torch.is_conj,
r"""
is_conj(input) -> (bool)
Returns True if the :attr:`input` is a conjugated tensor, i.e. its conjugate bit is set to `True`.
Args:
{input}
""".format(
**common_args
),
)
add_docstr(
torch.is_nonzero,
r"""
is_nonzero(input) -> (bool)
Returns True if the :attr:`input` is a single element tensor which is not equal to zero
after type conversions.
i.e. not equal to ``torch.tensor([0.])`` or ``torch.tensor([0])`` or
``torch.tensor([False])``.
Throws a ``RuntimeError`` if ``torch.numel() != 1`` (even in case
of sparse tensors).
Args:
{input}
Examples::
>>> torch.is_nonzero(torch.tensor([0.]))
False
>>> torch.is_nonzero(torch.tensor([1.5]))
True
>>> torch.is_nonzero(torch.tensor([False]))
False
>>> torch.is_nonzero(torch.tensor([3]))
True
>>> torch.is_nonzero(torch.tensor([1, 3, 5]))
Traceback (most recent call last):
...
RuntimeError: bool value of Tensor with more than one value is ambiguous
>>> torch.is_nonzero(torch.tensor([]))
Traceback (most recent call last):
...
RuntimeError: bool value of Tensor with no values is ambiguous
""".format(
**common_args
),
)
add_docstr(
torch.kron,
r"""
kron(input, other, *, out=None) -> Tensor
Computes the Kronecker product, denoted by :math:`\otimes`, of :attr:`input` and :attr:`other`.
If :attr:`input` is a :math:`(a_0 \times a_1 \times \dots \times a_n)` tensor and :attr:`other` is a
:math:`(b_0 \times b_1 \times \dots \times b_n)` tensor, the result will be a
:math:`(a_0*b_0 \times a_1*b_1 \times \dots \times a_n*b_n)` tensor with the following entries:
.. math::
(\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} =
\text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n},
where :math:`k_t = i_t * b_t + j_t` for :math:`0 \leq t \leq n`.
If one tensor has fewer dimensions than the other it is unsqueezed until it has the same number of dimensions.
Supports real-valued and complex-valued inputs.
.. note::
This function generalizes the typical definition of the Kronecker product for two matrices to two tensors,
as described above. When :attr:`input` is a :math:`(m \times n)` matrix and :attr:`other` is a
:math:`(p \times q)` matrix, the result will be a :math:`(p*m \times q*n)` block matrix:
.. math::
\mathbf{A} \otimes \mathbf{B}=\begin{bmatrix}
a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix}
where :attr:`input` is :math:`\mathbf{A}` and :attr:`other` is :math:`\mathbf{B}`.
Arguments:
input (Tensor)
other (Tensor)
Keyword args:
out (Tensor, optional): The output tensor. Ignored if ``None``. Default: ``None``
Examples::
>>> mat1 = torch.eye(2)
>>> mat2 = torch.ones(2, 2)
>>> torch.kron(mat1, mat2)
tensor([[1., 1., 0., 0.],
[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])
>>> mat1 = torch.eye(2)
>>> mat2 = torch.arange(1, 5).reshape(2, 2)
>>> torch.kron(mat1, mat2)
tensor([[1., 2., 0., 0.],
[3., 4., 0., 0.],
[0., 0., 1., 2.],
[0., 0., 3., 4.]])
""",
)
add_docstr(
torch.kthvalue,
r"""
kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor)
Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th
smallest element of each row of the :attr:`input` tensor in the given dimension
:attr:`dim`. And ``indices`` is the index location of each element found.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors
are the same size as :attr:`input`, except in the dimension :attr:`dim` where
they are of size 1. Otherwise, :attr:`dim` is squeezed
(see :func:`torch.squeeze`), resulting in both the :attr:`values` and
:attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor.
.. note::
When :attr:`input` is a CUDA tensor and there are multiple valid
:attr:`k` th values, this function may nondeterministically return
:attr:`indices` for any of them.
Args:
{input}
k (int): k for the k-th smallest element
dim (int, optional): the dimension to find the kth value along
{keepdim}
Keyword args:
out (tuple, optional): the output tuple of (Tensor, LongTensor)
can be optionally given to be used as output buffers
Example::
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3))
>>> x=torch.arange(1.,7.).resize_(2,3)
>>> x
tensor([[ 1., 2., 3.],
[ 4., 5., 6.]])
>>> torch.kthvalue(x, 2, 0, True)
torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
""".format(
**single_dim_common
),
)
add_docstr(
torch.lcm,
r"""
lcm(input, other, *, out=None) -> Tensor
Computes the element-wise least common multiple (LCM) of :attr:`input` and :attr:`other`.
Both :attr:`input` and :attr:`other` must have integer types.
.. note::
This defines :math:`lcm(0, 0) = 0` and :math:`lcm(0, a) = 0`.
Args:
{input}
other (Tensor): the second input tensor
Keyword arguments:
{out}
Example::
>>> a = torch.tensor([5, 10, 15])
>>> b = torch.tensor([3, 4, 5])
>>> torch.lcm(a, b)
tensor([15, 20, 15])
>>> c = torch.tensor([3])
>>> torch.lcm(a, c)
tensor([15, 30, 15])
""".format(
**common_args
),
)
add_docstr(
torch.ldexp,
r"""
ldexp(input, other, *, out=None) -> Tensor
Multiplies :attr:`input` by 2**:attr:`other`.
.. math::
\text{{out}}_i = \text{{input}}_i * 2^\text{{other}}_i
"""
+ r"""
Typically this function is used to construct floating point numbers by multiplying
mantissas in :attr:`input` with integral powers of two created from the exponents
in :attr:`other`.
Args:
{input}
other (Tensor): a tensor of exponents, typically integers.
Keyword args:
{out}
Example::
>>> torch.ldexp(torch.tensor([1.]), torch.tensor([1]))
tensor([2.])
>>> torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4]))
tensor([ 2., 4., 8., 16.])
""".format(
**common_args
),
)
add_docstr(
torch.le,
r"""
le(input, other, *, out=None) -> Tensor
Computes :math:`\text{input} \leq \text{other}` element-wise.
"""
+ r"""
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or Scalar): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is less than or equal to
:attr:`other` and False elsewhere
Example::
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, False], [True, True]])
""".format(
**common_args
),
)
add_docstr(
torch.less_equal,
r"""
less_equal(input, other, *, out=None) -> Tensor
Alias for :func:`torch.le`.
""",
)
add_docstr(
torch.lerp,
r"""
lerp(input, end, weight, *, out=None)
Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based
on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor.
.. math::
\text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i)
"""
+ r"""
The shapes of :attr:`start` and :attr:`end` must be
:ref:`broadcastable <broadcasting-semantics>`. If :attr:`weight` is a tensor, then
the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the tensor with the starting points
end (Tensor): the tensor with the ending points
weight (float or tensor): the weight for the interpolation formula
Keyword args:
{out}
Example::
>>> start = torch.arange(1., 5.)
>>> end = torch.empty(4).fill_(10)
>>> start
tensor([ 1., 2., 3., 4.])
>>> end
tensor([ 10., 10., 10., 10.])
>>> torch.lerp(start, end, 0.5)
tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
>>> torch.lerp(start, end, torch.full_like(start, 0.5))
tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
""".format(
**common_args
),
)
add_docstr(
torch.lgamma,
r"""
lgamma(input, *, out=None) -> Tensor
Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`.
.. math::
\text{out}_{i} = \ln \Gamma(|\text{input}_{i}|)
"""
+ """
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.arange(0.5, 2, 0.5)
>>> torch.lgamma(a)
tensor([ 0.5724, 0.0000, -0.1208])
""".format(
**common_args
),
)
add_docstr(
torch.linspace,
r"""
linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly
spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are:
.. math::
(\text{start},
\text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1},
\ldots,
\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1},
\text{end})
"""
+ """
From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior.
Args:
start (float): the starting value for the set of points
end (float): the ending value for the set of points
steps (int): size of the constructed tensor
Keyword arguments:
{out}
dtype (torch.dtype, optional): the data type to perform the computation in.
Default: if None, uses the global default dtype (see torch.get_default_dtype())
when both :attr:`start` and :attr:`end` are real,
and corresponding complex dtype when either is complex.
{layout}
{device}
{requires_grad}
Example::
>>> torch.linspace(3, 10, steps=5)
tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000])
>>> torch.linspace(-10, 10, steps=5)
tensor([-10., -5., 0., 5., 10.])
>>> torch.linspace(start=-10, end=10, steps=5)
tensor([-10., -5., 0., 5., 10.])
>>> torch.linspace(start=-10, end=10, steps=1)
tensor([-10.])
""".format(
**factory_common_args
),
)
add_docstr(
torch.log,
r"""
log(input, *, out=None) -> Tensor
Returns a new tensor with the natural logarithm of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{e} (x_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.rand(5) * 5
>>> a
tensor([4.7767, 4.3234, 1.2156, 0.2411, 4.5739])
>>> torch.log(a)
tensor([ 1.5637, 1.4640, 0.1952, -1.4226, 1.5204])
""".format(
**common_args
),
)
add_docstr(
torch.log10,
r"""
log10(input, *, out=None) -> Tensor
Returns a new tensor with the logarithm to the base 10 of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{10} (x_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.rand(5)
>>> a
tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251])
>>> torch.log10(a)
tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476])
""".format(
**common_args
),
)
add_docstr(
torch.log1p,
r"""
log1p(input, *, out=None) -> Tensor
Returns a new tensor with the natural logarithm of (1 + :attr:`input`).
.. math::
y_i = \log_{e} (x_i + 1)
"""
+ r"""
.. note:: This function is more accurate than :func:`torch.log` for small
values of :attr:`input`
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(5)
>>> a
tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492])
>>> torch.log1p(a)
tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225])
""".format(
**common_args
),
)
add_docstr(
torch.log2,
r"""
log2(input, *, out=None) -> Tensor
Returns a new tensor with the logarithm to the base 2 of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{2} (x_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.rand(5)
>>> a
tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490])
>>> torch.log2(a)
tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504])
""".format(
**common_args
),
)
add_docstr(
torch.logaddexp,
r"""
logaddexp(input, other, *, out=None) -> Tensor
Logarithm of the sum of exponentiations of the inputs.
Calculates pointwise :math:`\log\left(e^x + e^y\right)`. This function is useful
in statistics where the calculated probabilities of events may be so small as to
exceed the range of normal floating point numbers. In such cases the logarithm
of the calculated probability is stored. This function allows adding
probabilities stored in such a fashion.
This op should be disambiguated with :func:`torch.logsumexp` which performs a
reduction on a single tensor.
Args:
{input}
other (Tensor): the second input tensor
Keyword arguments:
{out}
Example::
>>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3]))
tensor([-0.3069, -0.6867, -0.8731])
>>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3]))
tensor([-1., -2., -3.])
>>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3]))
tensor([1.1269e+00, 2.0000e+03, 3.0000e+04])
""".format(
**common_args
),
)
add_docstr(
torch.logaddexp2,
r"""
logaddexp2(input, other, *, out=None) -> Tensor
Logarithm of the sum of exponentiations of the inputs in base-2.
Calculates pointwise :math:`\log_2\left(2^x + 2^y\right)`. See
:func:`torch.logaddexp` for more details.
Args:
{input}
other (Tensor): the second input tensor
Keyword arguments:
{out}
""".format(
**common_args
),
)
add_docstr(
torch.xlogy,
r"""
xlogy(input, other, *, out=None) -> Tensor
Alias for :func:`torch.special.xlogy`.
""",
)
add_docstr(
torch.logical_and,
r"""
logical_and(input, other, *, out=None) -> Tensor
Computes the element-wise logical AND of the given input tensors. Zeros are treated as ``False`` and nonzeros are
treated as ``True``.
Args:
{input}
other (Tensor): the tensor to compute AND with
Keyword args:
{out}
Example::
>>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
tensor([ True, False, False])
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
>>> torch.logical_and(a, b)
tensor([False, False, True, False])
>>> torch.logical_and(a.double(), b.double())
tensor([False, False, True, False])
>>> torch.logical_and(a.double(), b)
tensor([False, False, True, False])
>>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool))
tensor([False, False, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.logical_not,
r"""
logical_not(input, *, out=None) -> Tensor
Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool
dtype. If the input tensor is not a bool tensor, zeros are treated as ``False`` and non-zeros are treated as ``True``.
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.logical_not(torch.tensor([True, False]))
tensor([False, True])
>>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8))
tensor([ True, False, False])
>>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double))
tensor([ True, False, False])
>>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16))
tensor([1, 0, 0], dtype=torch.int16)
""".format(
**common_args
),
)
add_docstr(
torch.logical_or,
r"""
logical_or(input, other, *, out=None) -> Tensor
Computes the element-wise logical OR of the given input tensors. Zeros are treated as ``False`` and nonzeros are
treated as ``True``.
Args:
{input}
other (Tensor): the tensor to compute OR with
Keyword args:
{out}
Example::
>>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
tensor([ True, False, True])
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
>>> torch.logical_or(a, b)
tensor([ True, True, True, False])
>>> torch.logical_or(a.double(), b.double())
tensor([ True, True, True, False])
>>> torch.logical_or(a.double(), b)
tensor([ True, True, True, False])
>>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool))
tensor([ True, True, True, False])
""".format(
**common_args
),
)
add_docstr(
torch.logical_xor,
r"""
logical_xor(input, other, *, out=None) -> Tensor
Computes the element-wise logical XOR of the given input tensors. Zeros are treated as ``False`` and nonzeros are
treated as ``True``.
Args:
{input}
other (Tensor): the tensor to compute XOR with
Keyword args:
{out}
Example::
>>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
tensor([False, False, True])
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
>>> torch.logical_xor(a, b)
tensor([ True, True, False, False])
>>> torch.logical_xor(a.double(), b.double())
tensor([ True, True, False, False])
>>> torch.logical_xor(a.double(), b)
tensor([ True, True, False, False])
>>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool))
tensor([ True, True, False, False])
""".format(
**common_args
),
)
add_docstr(
torch.logspace,
"""
logspace(start, end, steps, base=10.0, *, \
out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly
spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to
:math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale
with base :attr:`base`. That is, the values are:
.. math::
(\text{base}^{\text{start}},
\text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})},
\ldots,
\text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})},
\text{base}^{\text{end}})
"""
+ """
From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior.
Args:
start (float): the starting value for the set of points
end (float): the ending value for the set of points
steps (int): size of the constructed tensor
base (float, optional): base of the logarithm function. Default: ``10.0``.
Keyword arguments:
{out}
dtype (torch.dtype, optional): the data type to perform the computation in.
Default: if None, uses the global default dtype (see torch.get_default_dtype())
when both :attr:`start` and :attr:`end` are real,
and corresponding complex dtype when either is complex.
{layout}
{device}
{requires_grad}
Example::
>>> torch.logspace(start=-10, end=10, steps=5)
tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])
>>> torch.logspace(start=0.1, end=1.0, steps=5)
tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000])
>>> torch.logspace(start=0.1, end=1.0, steps=1)
tensor([1.2589])
>>> torch.logspace(start=2, end=2, steps=1, base=2)
tensor([4.0])
""".format(
**factory_common_args
),
)
add_docstr(
torch.logsumexp,
r"""
logsumexp(input, dim, keepdim=False, *, out=None)
Returns the log of summed exponentials of each row of the :attr:`input`
tensor in the given dimension :attr:`dim`. The computation is numerically
stabilized.
For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is
.. math::
\text{{logsumexp}}(x)_{{i}} = \log \sum_j \exp(x_{{ij}})
{keepdim_details}
Args:
{input}
{opt_dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.randn(3, 3)
>>> torch.logsumexp(a, 1)
tensor([1.4907, 1.0593, 1.5696])
>>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1)))
tensor(1.6859e-07)
""".format(
**multi_dim_common
),
)
add_docstr(
torch.lt,
r"""
lt(input, other, *, out=None) -> Tensor
Computes :math:`\text{input} < \text{other}` element-wise.
"""
+ r"""
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere
Example::
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, False], [True, False]])
""".format(
**common_args
),
)
add_docstr(
torch.lu_unpack,
r"""
lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True, *, out=None) -> (Tensor, Tensor, Tensor)
Unpacks the LU decomposition returned by :func:`~linalg.lu_factor` into the `P, L, U` matrices.
.. seealso::
:func:`~linalg.lu` returns the matrices from the LU decomposition. Its gradient formula is more efficient
than that of doing :func:`~linalg.lu_factor` followed by :func:`~linalg.lu_unpack`.
Args:
LU_data (Tensor): the packed LU factorization data
LU_pivots (Tensor): the packed LU factorization pivots
unpack_data (bool): flag indicating if the data should be unpacked.
If ``False``, then the returned ``L`` and ``U`` are empty tensors.
Default: ``True``
unpack_pivots (bool): flag indicating if the pivots should be unpacked into a permutation matrix ``P``.
If ``False``, then the returned ``P`` is an empty tensor.
Default: ``True``
Keyword args:
out (tuple, optional): output tuple of three tensors. Ignored if `None`.
Returns:
A namedtuple ``(P, L, U)``
Examples::
>>> A = torch.randn(2, 3, 3)
>>> LU, pivots = torch.linalg.lu_factor(A)
>>> P, L, U = torch.lu_unpack(LU, pivots)
>>> # We can recover A from the factorization
>>> A_ = P @ L @ U
>>> torch.allclose(A, A_)
True
>>> # LU factorization of a rectangular matrix:
>>> A = torch.randn(2, 3, 2)
>>> LU, pivots = torch.linalg.lu_factor(A)
>>> P, L, U = torch.lu_unpack(LU, pivots)
>>> # P, L, U are the same as returned by linalg.lu
>>> P_, L_, U_ = torch.linalg.lu(A)
>>> torch.allclose(P, P_) and torch.allclose(L, L_) and torch.allclose(U, U_)
True
""".format(
**common_args
),
)
add_docstr(
torch.less,
r"""
less(input, other, *, out=None) -> Tensor
Alias for :func:`torch.lt`.
""",
)
add_docstr(
torch.lu_solve,
r"""
lu_solve(b, LU_data, LU_pivots, *, out=None) -> Tensor
Returns the LU solve of the linear system :math:`Ax = b` using the partially pivoted
LU factorization of A from :func:`~linalg.lu_factor`.
This function supports ``float``, ``double``, ``cfloat`` and ``cdouble`` dtypes for :attr:`input`.
.. warning::
:func:`torch.lu_solve` is deprecated in favor of :func:`torch.linalg.lu_solve`.
:func:`torch.lu_solve` will be removed in a future PyTorch release.
``X = torch.lu_solve(B, LU, pivots)`` should be replaced with
.. code:: python
X = linalg.lu_solve(LU, pivots, B)
Arguments:
b (Tensor): the RHS tensor of size :math:`(*, m, k)`, where :math:`*`
is zero or more batch dimensions.
LU_data (Tensor): the pivoted LU factorization of A from :meth:`~linalg.lu_factor` of size :math:`(*, m, m)`,
where :math:`*` is zero or more batch dimensions.
LU_pivots (IntTensor): the pivots of the LU factorization from :meth:`~linalg.lu_factor` of size :math:`(*, m)`,
where :math:`*` is zero or more batch dimensions.
The batch dimensions of :attr:`LU_pivots` must be equal to the batch dimensions of
:attr:`LU_data`.
Keyword args:
{out}
Example::
>>> A = torch.randn(2, 3, 3)
>>> b = torch.randn(2, 3, 1)
>>> LU, pivots = torch.linalg.lu_factor(A)
>>> x = torch.lu_solve(b, LU, pivots)
>>> torch.dist(A @ x, b)
tensor(1.00000e-07 *
2.8312)
""".format(
**common_args
),
)
add_docstr(
torch.masked_select,
r"""
masked_select(input, mask, *, out=None) -> Tensor
Returns a new 1-D tensor which indexes the :attr:`input` tensor according to
the boolean mask :attr:`mask` which is a `BoolTensor`.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need
to match, but they must be :ref:`broadcastable <broadcasting-semantics>`.
.. note:: The returned tensor does **not** use the same storage
as the original tensor
Args:
{input}
mask (BoolTensor): the tensor containing the binary mask to index with
Keyword args:
{out}
Example::
>>> x = torch.randn(3, 4)
>>> x
tensor([[ 0.3552, -2.3825, -0.8297, 0.3477],
[-1.2035, 1.2252, 0.5002, 0.6248],
[ 0.1307, -2.0608, 0.1244, 2.0139]])
>>> mask = x.ge(0.5)
>>> mask
tensor([[False, False, False, False],
[False, True, True, True],
[False, False, False, True]])
>>> torch.masked_select(x, mask)
tensor([ 1.2252, 0.5002, 0.6248, 2.0139])
""".format(
**common_args
),
)
add_docstr(
torch.matrix_power,
r"""
matrix_power(input, n, *, out=None) -> Tensor
Alias for :func:`torch.linalg.matrix_power`
""",
)
add_docstr(
torch.matrix_exp,
r"""
matrix_exp(A) -> Tensor
Alias for :func:`torch.linalg.matrix_exp`.
""",
)
add_docstr(
torch.max,
r"""
max(input) -> Tensor
Returns the maximum value of all elements in the ``input`` tensor.
.. warning::
This function produces deterministic (sub)gradients unlike ``max(dim=0)``
Args:
{input}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763, 0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)
.. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor)
:noindex:
Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum
value of each row of the :attr:`input` tensor in the given dimension
:attr:`dim`. And ``indices`` is the index location of each maximum value found
(argmax).
If ``keepdim`` is ``True``, the output tensors are of the same size
as ``input`` except in the dimension ``dim`` where they are of size 1.
Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensors having 1 fewer dimension than ``input``.
.. note:: If there are multiple maximal values in a reduced row then
the indices of the first maximal value are returned.
Args:
{input}
{dim}
{keepdim} Default: ``False``.
Keyword args:
out (tuple, optional): the result tuple of two output tensors (max, max_indices)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-1.2360, -0.2942, -0.1222, 0.8475],
[ 1.1949, -1.1127, -2.2379, -0.6702],
[ 1.5717, -0.9207, 0.1297, -1.8768],
[-0.6172, 1.0036, -0.6060, -0.2432]])
>>> torch.max(a, 1)
torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1]))
.. function:: max(input, other, *, out=None) -> Tensor
:noindex:
See :func:`torch.maximum`.
""".format(
**single_dim_common
),
)
add_docstr(
torch.maximum,
r"""
maximum(input, other, *, out=None) -> Tensor
Computes the element-wise maximum of :attr:`input` and :attr:`other`.
.. note::
If one of the elements being compared is a NaN, then that element is returned.
:func:`maximum` is not supported for tensors with complex dtypes.
Args:
{input}
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.maximum(a, b)
tensor([3, 2, 4])
""".format(
**common_args
),
)
add_docstr(
torch.fmax,
r"""
fmax(input, other, *, out=None) -> Tensor
Computes the element-wise maximum of :attr:`input` and :attr:`other`.
This is like :func:`torch.maximum` except it handles NaNs differently:
if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the maximum.
Only if both elements are NaN is NaN propagated.
This function is a wrapper around C++'s ``std::fmax`` and is similar to NumPy's ``fmax`` function.
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer and floating-point inputs.
Args:
{input}
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')])
>>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')])
>>> torch.fmax(a, b)
tensor([9.7000, 0.5000, 3.1000, nan])
""".format(
**common_args
),
)
add_docstr(
torch.amax,
r"""
amax(input, dim, keepdim=False, *, out=None) -> Tensor
Returns the maximum value of each slice of the :attr:`input` tensor in the given
dimension(s) :attr:`dim`.
.. note::
The difference between ``max``/``min`` and ``amax``/``amin`` is:
- ``amax``/``amin`` supports reducing on multiple dimensions,
- ``amax``/``amin`` does not return indices,
- ``amax``/``amin`` evenly distributes gradient between equal values,
while ``max(dim)``/``min(dim)`` propagates gradient only to a single
index in the source tensor.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.8177, 1.4878, -0.2491, 0.9130],
[-0.7158, 1.1775, 2.0992, 0.4817],
[-0.0053, 0.0164, -1.3738, -0.0507],
[ 1.9700, 1.1106, -1.0318, -1.0816]])
>>> torch.amax(a, 1)
tensor([1.4878, 2.0992, 0.0164, 1.9700])
""".format(
**multi_dim_common
),
)
add_docstr(
torch.argmax,
r"""
argmax(input) -> LongTensor
Returns the indices of the maximum value of all elements in the :attr:`input` tensor.
This is the second value returned by :meth:`torch.max`. See its
documentation for the exact semantics of this method.
.. note:: If there are multiple maximal values then the indices of the first maximal value are returned.
Args:
{input}
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
[-0.7401, -0.8805, -0.3402, -1.1936],
[ 0.4907, -1.3948, -1.0691, -0.3132],
[-1.6092, 0.5419, -0.2993, 0.3195]])
>>> torch.argmax(a)
tensor(0)
.. function:: argmax(input, dim, keepdim=False) -> LongTensor
:noindex:
Returns the indices of the maximum values of a tensor across a dimension.
This is the second value returned by :meth:`torch.max`. See its
documentation for the exact semantics of this method.
Args:
{input}
{dim} If ``None``, the argmax of the flattened input is returned.
{keepdim} Ignored if ``dim=None``.
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
[-0.7401, -0.8805, -0.3402, -1.1936],
[ 0.4907, -1.3948, -1.0691, -0.3132],
[-1.6092, 0.5419, -0.2993, 0.3195]])
>>> torch.argmax(a, dim=1)
tensor([ 0, 2, 0, 1])
""".format(
**single_dim_common
),
)
add_docstr(
torch.argwhere,
r"""
argwhere(input) -> Tensor
Returns a tensor containing the indices of all non-zero elements of
:attr:`input`. Each row in the result contains the indices of a non-zero
element in :attr:`input`. The result is sorted lexicographically, with
the last index changing the fastest (C-style).
If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor
:attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of
non-zero elements in the :attr:`input` tensor.
.. note::
This function is similar to NumPy's `argwhere`.
When :attr:`input` is on CUDA, this function causes host-device synchronization.
Args:
{input}
Example::
>>> t = torch.tensor([1, 0, 1])
>>> torch.argwhere(t)
tensor([[0],
[2]])
>>> t = torch.tensor([[1, 0, 1], [0, 1, 1]])
>>> torch.argwhere(t)
tensor([[0, 0],
[0, 2],
[1, 1],
[1, 2]])
""",
)
add_docstr(
torch.mean,
r"""
mean(input, *, dtype=None) -> Tensor
Returns the mean value of all elements in the :attr:`input` tensor.
Args:
{input}
Keyword args:
{dtype}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.2294, -0.5481, 1.3288]])
>>> torch.mean(a)
tensor(0.3367)
.. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor
:noindex:
Returns the mean value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
reduce over all of them.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{dtype}
{out}
.. seealso::
:func:`torch.nanmean` computes the mean value of `non-NaN` elements.
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.3841, 0.6320, 0.4254, -0.7384],
[-0.9644, 1.0131, -0.6549, -1.4279],
[-0.2951, -1.3350, -0.7694, 0.5600],
[ 1.0842, -0.9580, 0.3623, 0.2343]])
>>> torch.mean(a, 1)
tensor([-0.0163, -0.5085, -0.4599, 0.1807])
>>> torch.mean(a, 1, True)
tensor([[-0.0163],
[-0.5085],
[-0.4599],
[ 0.1807]])
""".format(
**multi_dim_common
),
)
add_docstr(
torch.nanmean,
r"""
nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor
Computes the mean of all `non-NaN` elements along the specified dimensions.
This function is identical to :func:`torch.mean` when there are no `NaN` values
in the :attr:`input` tensor. In the presence of `NaN`, :func:`torch.mean` will
propagate the `NaN` to the output whereas :func:`torch.nanmean` will ignore the
`NaN` values (`torch.nanmean(a)` is equivalent to `torch.mean(a[~a.isnan()])`).
{keepdim_details}
Args:
{input}
{opt_dim}
{keepdim}
Keyword args:
{dtype}
{out}
.. seealso::
:func:`torch.mean` computes the mean value, propagating `NaN`.
Example::
>>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]])
>>> x.mean()
tensor(nan)
>>> x.nanmean()
tensor(1.8000)
>>> x.mean(dim=0)
tensor([ nan, 1.5000, 2.5000])
>>> x.nanmean(dim=0)
tensor([1.0000, 1.5000, 2.5000])
# If all elements in the reduced dimensions are NaN then the result is NaN
>>> torch.tensor([torch.nan]).nanmean()
tensor(nan)
""".format(
**multi_dim_common
),
)
add_docstr(
torch.median,
r"""
median(input) -> Tensor
Returns the median of the values in :attr:`input`.
.. note::
The median is not unique for :attr:`input` tensors with an even number
of elements. In this case the lower of the two medians is returned. To
compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead.
.. warning::
This function produces deterministic (sub)gradients unlike ``median(dim=0)``
Args:
{input}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 1.5219, -1.5212, 0.2202]])
>>> torch.median(a)
tensor(0.2202)
.. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor)
:noindex:
Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input`
in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`.
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
If :attr:`keepdim` is ``True``, the output tensors are of the same size
as :attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the outputs tensor having 1 fewer dimension than :attr:`input`.
.. note::
The median is not unique for :attr:`input` tensors with an even number
of elements in the dimension :attr:`dim`. In this case the lower of the
two medians is returned. To compute the mean of both medians in
:attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead.
.. warning::
``indices`` does not necessarily contain the first occurrence of each
median value found, unless it is unique.
The exact implementation details are device-specific.
Do not expect the same result when run on CPU and GPU in general.
For the same reason do not expect the gradients to be deterministic.
Args:
{input}
{dim}
{keepdim}
Keyword args:
out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second
tensor, which must have dtype long, with their indices in the dimension
:attr:`dim` of :attr:`input`.
Example::
>>> a = torch.randn(4, 5)
>>> a
tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131],
[ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270],
[-0.2751, 0.7303, 0.2192, 0.3321, 0.2488],
[ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]])
>>> torch.median(a, 1)
torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3]))
""".format(
**single_dim_common
),
)
add_docstr(
torch.nanmedian,
r"""
nanmedian(input) -> Tensor
Returns the median of the values in :attr:`input`, ignoring ``NaN`` values.
This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`.
When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``,
while this function will return the median of the non-``NaN`` elements in :attr:`input`.
If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``.
Args:
{input}
Example::
>>> a = torch.tensor([1, float('nan'), 3, 2])
>>> a.median()
tensor(nan)
>>> a.nanmedian()
tensor(2.)
.. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor)
:noindex:
Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input`
in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values
found in the dimension :attr:`dim`.
This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has
one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the
median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too.
Args:
{input}
{dim}
{keepdim}
Keyword args:
out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second
tensor, which must have dtype long, with their indices in the dimension
:attr:`dim` of :attr:`input`.
Example::
>>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]])
>>> a
tensor([[2., 3., 1.],
[nan, 1., nan]])
>>> a.median(0)
torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1]))
>>> a.nanmedian(0)
torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0]))
""".format(
**single_dim_common
),
)
add_docstr(
torch.quantile,
r"""
quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor
Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`.
To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location
of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with
indices ``i`` and ``j`` in the sorted order, result is computed according to the given
:attr:`interpolation` method as follows:
- ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index.
- ``lower``: ``a``.
- ``higher``: ``b``.
- ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions).
- ``midpoint``: ``(a + b) / 2``.
If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size
equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction.
.. note::
By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation.
Args:
{input}
q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1].
{dim}
{keepdim}
Keyword arguments:
interpolation (str): interpolation method to use when the desired quantile lies between two data points.
Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``.
Default is ``linear``.
{out}
Example::
>>> a = torch.randn(2, 3)
>>> a
tensor([[ 0.0795, -1.2117, 0.9765],
[ 1.1707, 0.6706, 0.4884]])
>>> q = torch.tensor([0.25, 0.5, 0.75])
>>> torch.quantile(a, q, dim=1, keepdim=True)
tensor([[[-0.5661],
[ 0.5795]],
[[ 0.0795],
[ 0.6706]],
[[ 0.5280],
[ 0.9206]]])
>>> torch.quantile(a, q, dim=1, keepdim=True).shape
torch.Size([3, 2, 1])
>>> a = torch.arange(4.)
>>> a
tensor([0., 1., 2., 3.])
>>> torch.quantile(a, 0.6, interpolation='linear')
tensor(1.8000)
>>> torch.quantile(a, 0.6, interpolation='lower')
tensor(1.)
>>> torch.quantile(a, 0.6, interpolation='higher')
tensor(2.)
>>> torch.quantile(a, 0.6, interpolation='midpoint')
tensor(1.5000)
>>> torch.quantile(a, 0.6, interpolation='nearest')
tensor(2.)
>>> torch.quantile(a, 0.4, interpolation='nearest')
tensor(1.)
""".format(
**single_dim_common
),
)
add_docstr(
torch.nanquantile,
r"""
nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor
This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values,
computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did
not exist. If all values in a reduced row are ``NaN`` then the quantiles for
that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`.
Args:
{input}
q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1]
{dim}
{keepdim}
Keyword arguments:
interpolation (str): interpolation method to use when the desired quantile lies between two data points.
Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``.
Default is ``linear``.
{out}
Example::
>>> t = torch.tensor([float('nan'), 1, 2])
>>> t.quantile(0.5)
tensor(nan)
>>> t.nanquantile(0.5)
tensor(1.5000)
>>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]])
>>> t
tensor([[nan, nan],
[1., 2.]])
>>> t.nanquantile(0.5, dim=0)
tensor([1., 2.])
>>> t.nanquantile(0.5, dim=1)
tensor([ nan, 1.5000])
""".format(
**single_dim_common
),
)
add_docstr(
torch.min,
r"""
min(input) -> Tensor
Returns the minimum value of all elements in the :attr:`input` tensor.
.. warning::
This function produces deterministic (sub)gradients unlike ``min(dim=0)``
Args:
{input}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6750, 1.0857, 1.7197]])
>>> torch.min(a)
tensor(0.6750)
.. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor)
:noindex:
Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum
value of each row of the :attr:`input` tensor in the given dimension
:attr:`dim`. And ``indices`` is the index location of each minimum value found
(argmin).
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensors having 1 fewer dimension than :attr:`input`.
.. note:: If there are multiple minimal values in a reduced row then
the indices of the first minimal value are returned.
Args:
{input}
{dim}
{keepdim}
Keyword args:
out (tuple, optional): the tuple of two output tensors (min, min_indices)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.6248, 1.1334, -1.1899, -0.2803],
[-1.4644, -0.2635, -0.3651, 0.6134],
[ 0.2457, 0.0384, 1.0128, 0.7015],
[-0.1153, 2.9849, 2.1458, 0.5788]])
>>> torch.min(a, 1)
torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))
.. function:: min(input, other, *, out=None) -> Tensor
:noindex:
See :func:`torch.minimum`.
""".format(
**single_dim_common
),
)
add_docstr(
torch.minimum,
r"""
minimum(input, other, *, out=None) -> Tensor
Computes the element-wise minimum of :attr:`input` and :attr:`other`.
.. note::
If one of the elements being compared is a NaN, then that element is returned.
:func:`minimum` is not supported for tensors with complex dtypes.
Args:
{input}
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.minimum(a, b)
tensor([1, 0, -1])
""".format(
**common_args
),
)
add_docstr(
torch.fmin,
r"""
fmin(input, other, *, out=None) -> Tensor
Computes the element-wise minimum of :attr:`input` and :attr:`other`.
This is like :func:`torch.minimum` except it handles NaNs differently:
if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the minimum.
Only if both elements are NaN is NaN propagated.
This function is a wrapper around C++'s ``std::fmin`` and is similar to NumPy's ``fmin`` function.
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer and floating-point inputs.
Args:
{input}
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')])
>>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')])
>>> torch.fmin(a, b)
tensor([-9.3000, 0.1000, 2.1000, nan])
""".format(
**common_args
),
)
add_docstr(
torch.amin,
r"""
amin(input, dim, keepdim=False, *, out=None) -> Tensor
Returns the minimum value of each slice of the :attr:`input` tensor in the given
dimension(s) :attr:`dim`.
.. note::
The difference between ``max``/``min`` and ``amax``/``amin`` is:
- ``amax``/``amin`` supports reducing on multiple dimensions,
- ``amax``/``amin`` does not return indices,
- ``amax``/``amin`` evenly distributes gradient between equal values,
while ``max(dim)``/``min(dim)`` propagates gradient only to a single
index in the source tensor.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.6451, -0.4866, 0.2987, -1.3312],
[-0.5744, 1.2980, 1.8397, -0.2713],
[ 0.9128, 0.9214, -1.7268, -0.2995],
[ 0.9023, 0.4853, 0.9075, -1.6165]])
>>> torch.amin(a, 1)
tensor([-1.3312, -0.5744, -1.7268, -1.6165])
""".format(
**multi_dim_common
),
)
add_docstr(
torch.aminmax,
r"""
aminmax(input, *, dim=None, keepdim=False, out=None) -> (Tensor min, Tensor max)
Computes the minimum and maximum values of the :attr:`input` tensor.
Args:
input (Tensor):
The input tensor
Keyword Args:
dim (Optional[int]):
The dimension along which to compute the values. If `None`,
computes the values over the entire :attr:`input` tensor.
Default is `None`.
keepdim (bool):
If `True`, the reduced dimensions will be kept in the output
tensor as dimensions with size 1 for broadcasting, otherwise
they will be removed, as if calling (:func:`torch.squeeze`).
Default is `False`.
out (Optional[Tuple[Tensor, Tensor]]):
Optional tensors on which to write the result. Must have the same
shape and dtype as the expected output.
Default is `None`.
Returns:
A named tuple `(min, max)` containing the minimum and maximum values.
Raises:
RuntimeError
If any of the dimensions to compute the values over has size 0.
.. note::
NaN values are propagated to the output if at least one value is NaN.
.. seealso::
:func:`torch.amin` computes just the minimum value
:func:`torch.amax` computes just the maximum value
Example::
>>> torch.aminmax(torch.tensor([1, -3, 5]))
torch.return_types.aminmax(
min=tensor(-3),
max=tensor(5))
>>> # aminmax propagates NaNs
>>> torch.aminmax(torch.tensor([1, -3, 5, torch.nan]))
torch.return_types.aminmax(
min=tensor(nan),
max=tensor(nan))
>>> t = torch.arange(10).view(2, 5)
>>> t
tensor([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> t.aminmax(dim=0, keepdim=True)
torch.return_types.aminmax(
min=tensor([[0, 1, 2, 3, 4]]),
max=tensor([[5, 6, 7, 8, 9]]))
""",
)
add_docstr(
torch.argmin,
r"""
argmin(input, dim=None, keepdim=False) -> LongTensor
Returns the indices of the minimum value(s) of the flattened tensor or along a dimension
This is the second value returned by :meth:`torch.min`. See its
documentation for the exact semantics of this method.
.. note:: If there are multiple minimal values then the indices of the first minimal value are returned.
Args:
{input}
{dim} If ``None``, the argmin of the flattened input is returned.
{keepdim}.
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.1139, 0.2254, -0.1381, 0.3687],
[ 1.0100, -1.1975, -0.0102, -0.4732],
[-0.9240, 0.1207, -0.7506, -1.0213],
[ 1.7809, -1.2960, 0.9384, 0.1438]])
>>> torch.argmin(a)
tensor(13)
>>> torch.argmin(a, dim=1)
tensor([ 2, 1, 3, 1])
>>> torch.argmin(a, dim=1, keepdim=True)
tensor([[2],
[1],
[3],
[1]])
""".format(
**single_dim_common
),
)
add_docstr(
torch.mm,
r"""
mm(input, mat2, *, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`input` and :attr:`mat2`.
If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
For broadcasting matrix products, see :func:`torch.matmul`.
Supports strided and sparse 2-D tensors as inputs, autograd with
respect to strided inputs.
This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`.
If :attr:`out` is provided it's layout will be used. Otherwise, the result
layout will be deduced from that of :attr:`input`.
{sparse_beta_warning}
{tf32_note}
{rocm_fp16_note}
Args:
input (Tensor): the first matrix to be matrix multiplied
mat2 (Tensor): the second matrix to be matrix multiplied
Keyword args:
{out}
Example::
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.mm(mat1, mat2)
tensor([[ 0.4851, 0.5037, -0.3633],
[-0.0760, -3.6705, 2.4784]])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes
),
)
add_docstr(
torch.hspmm,
r"""
hspmm(mat1, mat2, *, out=None) -> Tensor
Performs a matrix multiplication of a :ref:`sparse COO matrix
<sparse-coo-docs>` :attr:`mat1` and a strided matrix :attr:`mat2`. The
result is a (1 + 1)-dimensional :ref:`hybrid COO matrix
<sparse-hybrid-coo-docs>`.
Args:
mat1 (Tensor): the first sparse matrix to be matrix multiplied
mat2 (Tensor): the second strided matrix to be matrix multiplied
Keyword args:
{out}
""".format(
**common_args
),
)
add_docstr(
torch.matmul,
r"""
matmul(input, other, *, out=None) -> Tensor
Matrix product of two tensors.
The behavior depends on the dimensionality of the tensors as follows:
- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
- If the first argument is 1-dimensional and the second argument is 2-dimensional,
a 1 is prepended to its dimension for the purpose of the matrix multiply.
After the matrix multiply, the prepended dimension is removed.
- If the first argument is 2-dimensional and the second argument is 1-dimensional,
the matrix-vector product is returned.
- If both arguments are at least 1-dimensional and at least one argument is
N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first
argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus
must be broadcastable). For example, if :attr:`input` is a
:math:`(j \times 1 \times n \times n)` tensor and :attr:`other` is a :math:`(k \times n \times n)`
tensor, :attr:`out` will be a :math:`(j \times k \times n \times n)` tensor.
Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs
are broadcastable, and not the matrix dimensions. For example, if :attr:`input` is a
:math:`(j \times 1 \times n \times m)` tensor and :attr:`other` is a :math:`(k \times m \times p)`
tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the
matrix dimensions) are different. :attr:`out` will be a :math:`(j \times k \times n \times p)` tensor.
This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. In particular the
matrix-matrix (both arguments 2-dimensional) supports sparse arguments with the same restrictions
as :func:`torch.mm`
{sparse_beta_warning}
{tf32_note}
{rocm_fp16_note}
.. note::
The 1-dimensional dot product version of this function does not support an :attr:`out` parameter.
Arguments:
input (Tensor): the first tensor to be multiplied
other (Tensor): the second tensor to be multiplied
Keyword args:
{out}
Example::
>>> # vector x vector
>>> tensor1 = torch.randn(3)
>>> tensor2 = torch.randn(3)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([])
>>> # matrix x vector
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([3])
>>> # batched matrix x broadcasted vector
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3])
>>> # batched matrix x batched matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(10, 4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
>>> # batched matrix x broadcasted matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes
),
)
add_docstr(
torch.mode,
r"""
mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor)
Returns a namedtuple ``(values, indices)`` where ``values`` is the mode
value of each row of the :attr:`input` tensor in the given dimension
:attr:`dim`, i.e. a value which appears most often
in that row, and ``indices`` is the index location of each mode value found.
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensors having 1 fewer dimension than :attr:`input`.
.. note:: This function is not defined for ``torch.cuda.Tensor`` yet.
Args:
{input}
{dim}
{keepdim}
Keyword args:
out (tuple, optional): the result tuple of two output tensors (values, indices)
Example::
>>> a = torch.randint(10, (5,))
>>> a
tensor([6, 5, 1, 0, 2])
>>> b = a + (torch.randn(50, 1) * 5).long()
>>> torch.mode(b, 0)
torch.return_types.mode(values=tensor([6, 5, 1, 0, 2]), indices=tensor([2, 2, 2, 2, 2]))
""".format(
**single_dim_common
),
)
add_docstr(
torch.mul,
r"""
mul(input, other, *, out=None) -> Tensor
Multiplies :attr:`input` by :attr:`other`.
.. math::
\text{out}_i = \text{input}_i \times \text{other}_i
"""
+ r"""
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs.
Args:
{input}
other (Tensor or Number) - the tensor or number to multiply input by.
Keyword args:
{out}
Examples::
>>> a = torch.randn(3)
>>> a
tensor([ 0.2015, -0.4255, 2.6087])
>>> torch.mul(a, 100)
tensor([ 20.1494, -42.5491, 260.8663])
>>> b = torch.randn(4, 1)
>>> b
tensor([[ 1.1207],
[-0.3137],
[ 0.0700],
[ 0.8378]])
>>> c = torch.randn(1, 4)
>>> c
tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]])
>>> torch.mul(b, c)
tensor([[ 0.5767, 0.1363, -0.5877, 2.5083],
[-0.1614, -0.0382, 0.1645, -0.7021],
[ 0.0360, 0.0085, -0.0367, 0.1567],
[ 0.4312, 0.1019, -0.4394, 1.8753]])
""".format(
**common_args
),
)
add_docstr(
torch.multiply,
r"""
multiply(input, other, *, out=None)
Alias for :func:`torch.mul`.
""",
)
add_docstr(
torch.multinomial,
r"""
multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor
Returns a tensor where each row contains :attr:`num_samples` indices sampled
from the multinomial probability distribution located in the corresponding row
of tensor :attr:`input`.
.. note::
The rows of :attr:`input` do not need to sum to one (in which case we use
the values as weights), but must be non-negative, finite and have
a non-zero sum.
Indices are ordered from left to right according to when each was sampled
(first samples are placed in first column).
If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`.
If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape
:math:`(m \times \text{{num\_samples}})`.
If replacement is ``True``, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.
.. note::
When drawn without replacement, :attr:`num_samples` must be lower than
number of non-zero elements in :attr:`input` (or the min number of non-zero
elements in each row of :attr:`input` if it is a matrix).
Args:
input (Tensor): the input tensor containing probabilities
num_samples (int): number of samples to draw
replacement (bool, optional): whether to draw with replacement or not
Keyword args:
{generator}
{out}
Example::
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights
>>> torch.multinomial(weights, 2)
tensor([1, 2])
>>> torch.multinomial(weights, 4) # ERROR!
RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False,
not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320
>>> torch.multinomial(weights, 4, replacement=True)
tensor([ 2, 1, 1, 1])
""".format(
**common_args
),
)
add_docstr(
torch.mv,
r"""
mv(input, vec, *, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`input` and the vector
:attr:`vec`.
If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size :math:`m`, :attr:`out` will be 1-D of size :math:`n`.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
Args:
input (Tensor): matrix to be multiplied
vec (Tensor): vector to be multiplied
Keyword args:
{out}
Example::
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.mv(mat, vec)
tensor([ 1.0404, -0.6361])
""".format(
**common_args
),
)
add_docstr(
torch.mvlgamma,
r"""
mvlgamma(input, p, *, out=None) -> Tensor
Alias for :func:`torch.special.multigammaln`.
""",
)
add_docstr(
torch.movedim,
r"""
movedim(input, source, destination) -> Tensor
Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source`
to the position(s) in :attr:`destination`.
Other dimensions of :attr:`input` that are not explicitly moved remain in
their original order and appear at the positions not specified in :attr:`destination`.
Args:
{input}
source (int or tuple of ints): Original positions of the dims to move. These must be unique.
destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique.
Examples::
>>> t = torch.randn(3,2,1)
>>> t
tensor([[[-0.3362],
[-0.8437]],
[[-0.9627],
[ 0.1727]],
[[ 0.5173],
[-0.1398]]])
>>> torch.movedim(t, 1, 0).shape
torch.Size([2, 3, 1])
>>> torch.movedim(t, 1, 0)
tensor([[[-0.3362],
[-0.9627],
[ 0.5173]],
[[-0.8437],
[ 0.1727],
[-0.1398]]])
>>> torch.movedim(t, (1, 2), (0, 1)).shape
torch.Size([2, 1, 3])
>>> torch.movedim(t, (1, 2), (0, 1))
tensor([[[-0.3362, -0.9627, 0.5173]],
[[-0.8437, 0.1727, -0.1398]]])
""".format(
**common_args
),
)
add_docstr(
torch.moveaxis,
r"""
moveaxis(input, source, destination) -> Tensor
Alias for :func:`torch.movedim`.
This function is equivalent to NumPy's moveaxis function.
Examples::
>>> t = torch.randn(3,2,1)
>>> t
tensor([[[-0.3362],
[-0.8437]],
[[-0.9627],
[ 0.1727]],
[[ 0.5173],
[-0.1398]]])
>>> torch.moveaxis(t, 1, 0).shape
torch.Size([2, 3, 1])
>>> torch.moveaxis(t, 1, 0)
tensor([[[-0.3362],
[-0.9627],
[ 0.5173]],
[[-0.8437],
[ 0.1727],
[-0.1398]]])
>>> torch.moveaxis(t, (1, 2), (0, 1)).shape
torch.Size([2, 1, 3])
>>> torch.moveaxis(t, (1, 2), (0, 1))
tensor([[[-0.3362, -0.9627, 0.5173]],
[[-0.8437, 0.1727, -0.1398]]])
""".format(
**common_args
),
)
add_docstr(
torch.swapdims,
r"""
swapdims(input, dim0, dim1) -> Tensor
Alias for :func:`torch.transpose`.
This function is equivalent to NumPy's swapaxes function.
Examples::
>>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
tensor([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> torch.swapdims(x, 0, 1)
tensor([[[0, 1],
[4, 5]],
[[2, 3],
[6, 7]]])
>>> torch.swapdims(x, 0, 2)
tensor([[[0, 4],
[2, 6]],
[[1, 5],
[3, 7]]])
""".format(
**common_args
),
)
add_docstr(
torch.swapaxes,
r"""
swapaxes(input, axis0, axis1) -> Tensor
Alias for :func:`torch.transpose`.
This function is equivalent to NumPy's swapaxes function.
Examples::
>>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
tensor([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> torch.swapaxes(x, 0, 1)
tensor([[[0, 1],
[4, 5]],
[[2, 3],
[6, 7]]])
>>> torch.swapaxes(x, 0, 2)
tensor([[[0, 4],
[2, 6]],
[[1, 5],
[3, 7]]])
""".format(
**common_args
),
)
add_docstr(
torch.narrow,
r"""
narrow(input, dim, start, length) -> Tensor
Returns a new tensor that is a narrowed version of :attr:`input` tensor. The
dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The
returned tensor and :attr:`input` tensor share the same underlying storage.
Args:
input (Tensor): the tensor to narrow
dim (int): the dimension along which to narrow
start (Tensor or int): the starting dimension
length (int): the distance to the ending dimension
Example::
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> torch.narrow(x, 0, 0, 2)
tensor([[ 1, 2, 3],
[ 4, 5, 6]])
>>> torch.narrow(x, 1, 1, 2)
tensor([[ 2, 3],
[ 5, 6],
[ 8, 9]])
""",
)
add_docstr(
torch.narrow_copy,
r"""
narrow_copy(input, dim, start, length, *, out=None) -> Tensor
Same as :meth:`Tensor.narrow` except this returns a copy rather
than shared storage. This is primarily for sparse tensors, which
do not have a shared-storage narrow method.
Args:
input (Tensor): the tensor to narrow
dim (int): the dimension along which to narrow
start (int): the starting offset
length (int): the distance to the ending dimension
Keyword args:
{out}
Example::
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> torch.narrow_copy(x, 0, 0, 2)
tensor([[ 1, 2, 3],
[ 4, 5, 6]])
>>> torch.narrow_copy(x, 1, 1, 2)
tensor([[ 2, 3],
[ 5, 6],
[ 8, 9]])
>>> s = torch.arange(16).reshape(2, 2, 2, 2).to_sparse(2)
>>> torch.narrow_copy(s, 0, 0, 1)
tensor(indices=tensor([[0, 0],
[0, 1]]),
values=tensor([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]]),
size=(1, 2, 2, 2), nnz=2, layout=torch.sparse_coo)
.. seealso::
:func:`torch.narrow` for a non copy variant
""",
)
add_docstr(
torch.nan_to_num,
r"""
nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None) -> Tensor
Replaces :literal:`NaN`, positive infinity, and negative infinity values in :attr:`input`
with the values specified by :attr:`nan`, :attr:`posinf`, and :attr:`neginf`, respectively.
By default, :literal:`NaN`\ s are replaced with zero, positive infinity is replaced with the
greatest finite value representable by :attr:`input`'s dtype, and negative infinity
is replaced with the least finite value representable by :attr:`input`'s dtype.
Args:
{input}
nan (Number, optional): the value to replace :literal:`NaN`\s with. Default is zero.
posinf (Number, optional): if a Number, the value to replace positive infinity values with.
If None, positive infinity values are replaced with the greatest finite value representable by :attr:`input`'s dtype.
Default is None.
neginf (Number, optional): if a Number, the value to replace negative infinity values with.
If None, negative infinity values are replaced with the lowest finite value representable by :attr:`input`'s dtype.
Default is None.
Keyword args:
{out}
Example::
>>> x = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14])
>>> torch.nan_to_num(x)
tensor([ 0.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00])
>>> torch.nan_to_num(x, nan=2.0)
tensor([ 2.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00])
>>> torch.nan_to_num(x, nan=2.0, posinf=1.0)
tensor([ 2.0000e+00, 1.0000e+00, -3.4028e+38, 3.1400e+00])
""".format(
**common_args
),
)
add_docstr(
torch.ne,
r"""
ne(input, other, *, out=None) -> Tensor
Computes :math:`\text{input} \neq \text{other}` element-wise.
"""
+ r"""
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
Keyword args:
{out}
Returns:
A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere
Example::
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [True, False]])
""".format(
**common_args
),
)
add_docstr(
torch.not_equal,
r"""
not_equal(input, other, *, out=None) -> Tensor
Alias for :func:`torch.ne`.
""",
)
add_docstr(
torch.neg,
r"""
neg(input, *, out=None) -> Tensor
Returns a new tensor with the negative of the elements of :attr:`input`.
.. math::
\text{out} = -1 \times \text{input}
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(5)
>>> a
tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
>>> torch.neg(a)
tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940])
""".format(
**common_args
),
)
add_docstr(
torch.negative,
r"""
negative(input, *, out=None) -> Tensor
Alias for :func:`torch.neg`
""",
)
add_docstr(
torch.nextafter,
r"""
nextafter(input, other, *, out=None) -> Tensor
Return the next floating-point value after :attr:`input` towards :attr:`other`, elementwise.
The shapes of ``input`` and ``other`` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the first input tensor
other (Tensor): the second input tensor
Keyword args:
{out}
Example::
>>> eps = torch.finfo(torch.float32).eps
>>> torch.nextafter(torch.tensor([1.0, 2.0]), torch.tensor([2.0, 1.0])) == torch.tensor([eps + 1, 2 - eps])
tensor([True, True])
""".format(
**common_args
),
)
add_docstr(
torch.nonzero,
r"""
nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors
.. note::
:func:`torch.nonzero(..., as_tuple=False) <torch.nonzero>` (default) returns a
2-D tensor where each row is the index for a nonzero value.
:func:`torch.nonzero(..., as_tuple=True) <torch.nonzero>` returns a tuple of 1-D
index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]``
gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor
contains nonzero indices for a certain dimension.
See below for more details on the two behaviors.
When :attr:`input` is on CUDA, :func:`torch.nonzero() <torch.nonzero>` causes
host-device synchronization.
**When** :attr:`as_tuple` **is** ``False`` **(default)**:
Returns a tensor containing the indices of all non-zero elements of
:attr:`input`. Each row in the result contains the indices of a non-zero
element in :attr:`input`. The result is sorted lexicographically, with
the last index changing the fastest (C-style).
If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor
:attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of
non-zero elements in the :attr:`input` tensor.
**When** :attr:`as_tuple` **is** ``True``:
Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`,
each containing the indices (in that dimension) of all non-zero elements of
:attr:`input` .
If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n`
tensors of size :math:`z`, where :math:`z` is the total number of
non-zero elements in the :attr:`input` tensor.
As a special case, when :attr:`input` has zero dimensions and a nonzero scalar
value, it is treated as a one-dimensional tensor with one element.
Args:
{input}
Keyword args:
out (LongTensor, optional): the output tensor containing indices
Returns:
LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output
tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for
each dimension, containing the indices of each nonzero element along that
dimension.
Example::
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]))
tensor([[ 0],
[ 1],
[ 2],
[ 4]])
>>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.0, 0.0, 1.2, 0.0],
... [0.0, 0.0, 0.0,-0.4]]))
tensor([[ 0, 0],
[ 1, 1],
[ 2, 2],
[ 3, 3]])
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True)
(tensor([0, 1, 2, 4]),)
>>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.0, 0.0, 1.2, 0.0],
... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True)
(tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3]))
>>> torch.nonzero(torch.tensor(5), as_tuple=True)
(tensor([0]),)
""".format(
**common_args
),
)
add_docstr(
torch.normal,
r"""
normal(mean, std, *, generator=None, out=None) -> Tensor
Returns a tensor of random numbers drawn from separate normal distributions
whose mean and standard deviation are given.
The :attr:`mean` is a tensor with the mean of
each output element's normal distribution
The :attr:`std` is a tensor with the standard deviation of
each output element's normal distribution
The shapes of :attr:`mean` and :attr:`std` don't need to match, but the
total number of elements in each tensor need to be the same.
.. note:: When the shapes do not match, the shape of :attr:`mean`
is used as the shape for the returned output tensor
.. note:: When :attr:`std` is a CUDA tensor, this function synchronizes
its device with the CPU.
Args:
mean (Tensor): the tensor of per-element means
std (Tensor): the tensor of per-element standard deviations
Keyword args:
{generator}
{out}
Example::
>>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))
tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134,
8.0505, 8.1408, 9.0563, 10.0566])
.. function:: normal(mean=0.0, std, *, out=None) -> Tensor
:noindex:
Similar to the function above, but the means are shared among all drawn
elements.
Args:
mean (float, optional): the mean for all distributions
std (Tensor): the tensor of per-element standard deviations
Keyword args:
{out}
Example::
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.))
tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
.. function:: normal(mean, std=1.0, *, out=None) -> Tensor
:noindex:
Similar to the function above, but the standard deviations are shared among
all drawn elements.
Args:
mean (Tensor): the tensor of per-element means
std (float, optional): the standard deviation for all distributions
Keyword args:
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=torch.arange(1., 6.))
tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])
.. function:: normal(mean, std, size, *, out=None) -> Tensor
:noindex:
Similar to the function above, but the means and standard deviations are shared
among all drawn elements. The resulting tensor has size given by :attr:`size`.
Args:
mean (float): the mean for all distributions
std (float): the standard deviation for all distributions
size (int...): a sequence of integers defining the shape of the output tensor.
Keyword args:
{out}
Example::
>>> torch.normal(2, 3, size=(1, 4))
tensor([[-1.3987, -1.9544, 3.6048, 0.7909]])
""".format(
**common_args
),
)
add_docstr(
torch.numel,
r"""
numel(input) -> int
Returns the total number of elements in the :attr:`input` tensor.
Args:
{input}
Example::
>>> a = torch.randn(1, 2, 3, 4, 5)
>>> torch.numel(a)
120
>>> a = torch.zeros(4,4)
>>> torch.numel(a)
16
""".format(
**common_args
),
)
add_docstr(
torch.ones,
r"""
ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `1`, with the shape defined
by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword arguments:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.ones(2, 3)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> torch.ones(5)
tensor([ 1., 1., 1., 1., 1.])
""".format(
**factory_common_args
),
)
add_docstr(
torch.ones_like,
r"""
ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns a tensor filled with the scalar value `1`, with the same size as
:attr:`input`. ``torch.ones_like(input)`` is equivalent to
``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
.. warning::
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
the old ``torch.ones_like(input, out=output)`` is equivalent to
``torch.ones(input.size(), out=output)``.
Args:
{input}
Keyword arguments:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
Example::
>>> input = torch.empty(2, 3)
>>> torch.ones_like(input)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.orgqr,
r"""
orgqr(input, tau) -> Tensor
Alias for :func:`torch.linalg.householder_product`.
""",
)
add_docstr(
torch.ormqr,
r"""
ormqr(input, tau, other, left=True, transpose=False, *, out=None) -> Tensor
Computes the matrix-matrix multiplication of a product of Householder matrices with a general matrix.
Multiplies a :math:`m \times n` matrix `C` (given by :attr:`other`) with a matrix `Q`,
where `Q` is represented using Householder reflectors `(input, tau)`.
See `Representation of Orthogonal or Unitary Matrices`_ for further details.
If :attr:`left` is `True` then `op(Q)` times `C` is computed, otherwise the result is `C` times `op(Q)`.
When :attr:`left` is `True`, the implicit matrix `Q` has size :math:`m \times m`.
It has size :math:`n \times n` otherwise.
If :attr:`transpose` is `True` then `op` is the conjugate transpose operation, otherwise it's a no-op.
Supports inputs of float, double, cfloat and cdouble dtypes.
Also supports batched inputs, and, if the input is batched, the output is batched with the same dimensions.
.. seealso::
:func:`torch.geqrf` can be used to form the Householder representation `(input, tau)` of matrix `Q`
from the QR decomposition.
Args:
input (Tensor): tensor of shape `(*, mn, k)` where `*` is zero or more batch dimensions
and `mn` equals to `m` or `n` depending on the :attr:`left`.
tau (Tensor): tensor of shape `(*, min(mn, k))` where `*` is zero or more batch dimensions.
other (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
left (bool): controls the order of multiplication.
transpose (bool): controls whether the matrix `Q` is conjugate transposed or not.
Keyword args:
out (Tensor, optional): the output Tensor. Ignored if `None`. Default: `None`.
.. _Representation of Orthogonal or Unitary Matrices:
https://www.netlib.org/lapack/lug/node128.html
""",
)
add_docstr(
torch.permute,
r"""
permute(input, dims) -> Tensor
Returns a view of the original tensor :attr:`input` with its dimensions permuted.
Args:
{input}
dims (tuple of int): The desired ordering of dimensions
Example:
>>> x = torch.randn(2, 3, 5)
>>> x.size()
torch.Size([2, 3, 5])
>>> torch.permute(x, (2, 0, 1)).size()
torch.Size([5, 2, 3])
""".format(
**common_args
),
)
add_docstr(
torch.poisson,
r"""
poisson(input, generator=None) -> Tensor
Returns a tensor of the same size as :attr:`input` with each element
sampled from a Poisson distribution with rate parameter given by the corresponding
element in :attr:`input` i.e.,
.. math::
\text{{out}}_i \sim \text{{Poisson}}(\text{{input}}_i)
:attr:`input` must be non-negative.
Args:
input (Tensor): the input tensor containing the rates of the Poisson distribution
Keyword args:
{generator}
Example::
>>> rates = torch.rand(4, 4) * 5 # rate parameter between 0 and 5
>>> torch.poisson(rates)
tensor([[9., 1., 3., 5.],
[8., 6., 6., 0.],
[0., 4., 5., 3.],
[2., 1., 4., 2.]])
""".format(
**common_args
),
)
add_docstr(
torch.polygamma,
r"""
polygamma(n, input, *, out=None) -> Tensor
Alias for :func:`torch.special.polygamma`.
""",
)
add_docstr(
torch.positive,
r"""
positive(input) -> Tensor
Returns :attr:`input`.
Throws a runtime error if :attr:`input` is a bool tensor.
"""
+ r"""
Args:
{input}
Example::
>>> t = torch.randn(5)
>>> t
tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
>>> torch.positive(t)
tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
""".format(
**common_args
),
)
add_docstr(
torch.pow,
r"""
pow(input, exponent, *, out=None) -> Tensor
Takes the power of each element in :attr:`input` with :attr:`exponent` and
returns a tensor with the result.
:attr:`exponent` can be either a single ``float`` number or a `Tensor`
with the same number of elements as :attr:`input`.
When :attr:`exponent` is a scalar value, the operation applied is:
.. math::
\text{out}_i = x_i ^ \text{exponent}
When :attr:`exponent` is a tensor, the operation applied is:
.. math::
\text{out}_i = x_i ^ {\text{exponent}_i}
"""
+ r"""
When :attr:`exponent` is a tensor, the shapes of :attr:`input`
and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`.
Args:
{input}
exponent (float or tensor): the exponent value
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.4331, 1.2475, 0.6834, -0.2791])
>>> torch.pow(a, 2)
tensor([ 0.1875, 1.5561, 0.4670, 0.0779])
>>> exp = torch.arange(1., 5.)
>>> a = torch.arange(1., 5.)
>>> a
tensor([ 1., 2., 3., 4.])
>>> exp
tensor([ 1., 2., 3., 4.])
>>> torch.pow(a, exp)
tensor([ 1., 4., 27., 256.])
.. function:: pow(self, exponent, *, out=None) -> Tensor
:noindex:
:attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor.
The returned tensor :attr:`out` is of the same shape as :attr:`exponent`
The operation applied is:
.. math::
\text{{out}}_i = \text{{self}} ^ {{\text{{exponent}}_i}}
Args:
self (float): the scalar base value for the power operation
exponent (Tensor): the exponent tensor
Keyword args:
{out}
Example::
>>> exp = torch.arange(1., 5.)
>>> base = 2
>>> torch.pow(base, exp)
tensor([ 2., 4., 8., 16.])
""".format(
**common_args
),
)
add_docstr(
torch.float_power,
r"""
float_power(input, exponent, *, out=None) -> Tensor
Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision.
If neither input is complex returns a ``torch.float64`` tensor,
and if one or more inputs is complex returns a ``torch.complex128`` tensor.
.. note::
This function always computes in double precision, unlike :func:`torch.pow`,
which implements more typical :ref:`type promotion <type-promotion-doc>`.
This is useful when the computation needs to be performed in a wider or more precise dtype,
or the results of the computation may contain fractional values not representable in the input dtypes,
like when an integer base is raised to a negative integer exponent.
Args:
input (Tensor or Number): the base value(s)
exponent (Tensor or Number): the exponent value(s)
Keyword args:
{out}
Example::
>>> a = torch.randint(10, (4,))
>>> a
tensor([6, 4, 7, 1])
>>> torch.float_power(a, 2)
tensor([36., 16., 49., 1.], dtype=torch.float64)
>>> a = torch.arange(1, 5)
>>> a
tensor([ 1, 2, 3, 4])
>>> exp = torch.tensor([2, -3, 4, -5])
>>> exp
tensor([ 2, -3, 4, -5])
>>> torch.float_power(a, exp)
tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64)
""".format(
**common_args
),
)
add_docstr(
torch.prod,
r"""
prod(input, *, dtype=None) -> Tensor
Returns the product of all elements in the :attr:`input` tensor.
Args:
{input}
Keyword args:
{dtype}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.8020, 0.5428, -1.5854]])
>>> torch.prod(a)
tensor(0.6902)
.. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor
:noindex:
Returns the product of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{dtype}
Example::
>>> a = torch.randn(4, 2)
>>> a
tensor([[ 0.5261, -0.3837],
[ 1.1857, -0.2498],
[-1.1646, 0.0705],
[ 1.1131, -1.0629]])
>>> torch.prod(a, 1)
tensor([-0.2018, -0.2962, -0.0821, -1.1831])
""".format(
**single_dim_common
),
)
add_docstr(
torch.promote_types,
r"""
promote_types(type1, type2) -> dtype
Returns the :class:`torch.dtype` with the smallest size and scalar kind that is
not smaller nor of lower kind than either `type1` or `type2`. See type promotion
:ref:`documentation <type-promotion-doc>` for more information on the type
promotion logic.
Args:
type1 (:class:`torch.dtype`)
type2 (:class:`torch.dtype`)
Example::
>>> torch.promote_types(torch.int32, torch.float32)
torch.float32
>>> torch.promote_types(torch.uint8, torch.long)
torch.long
""",
)
add_docstr(
torch.qr,
r"""
qr(input, some=True, *, out=None) -> (Tensor, Tensor)
Computes the QR decomposition of a matrix or a batch of matrices :attr:`input`,
and returns a namedtuple (Q, R) of tensors such that :math:`\text{input} = Q R`
with :math:`Q` being an orthogonal matrix or batch of orthogonal matrices and
:math:`R` being an upper triangular matrix or batch of upper triangular matrices.
If :attr:`some` is ``True``, then this function returns the thin (reduced) QR factorization.
Otherwise, if :attr:`some` is ``False``, this function returns the complete QR factorization.
.. warning::
:func:`torch.qr` is deprecated in favor of :func:`torch.linalg.qr`
and will be removed in a future PyTorch release. The boolean parameter :attr:`some` has been
replaced with a string parameter :attr:`mode`.
``Q, R = torch.qr(A)`` should be replaced with
.. code:: python
Q, R = torch.linalg.qr(A)
``Q, R = torch.qr(A, some=False)`` should be replaced with
.. code:: python
Q, R = torch.linalg.qr(A, mode="complete")
.. warning::
If you plan to backpropagate through QR, note that the current backward implementation
is only well-defined when the first :math:`\min(input.size(-1), input.size(-2))`
columns of :attr:`input` are linearly independent.
This behavior will propably change once QR supports pivoting.
.. note:: This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs,
and may produce different (valid) decompositions on different device types
or different platforms.
Args:
input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more
batch dimensions consisting of matrices of dimension :math:`m \times n`.
some (bool, optional): Set to ``True`` for reduced QR decomposition and ``False`` for
complete QR decomposition. If `k = min(m, n)` then:
* ``some=True`` : returns `(Q, R)` with dimensions (m, k), (k, n) (default)
* ``'some=False'``: returns `(Q, R)` with dimensions (m, m), (m, n)
Keyword args:
out (tuple, optional): tuple of `Q` and `R` tensors.
The dimensions of `Q` and `R` are detailed in the description of :attr:`some` above.
Example::
>>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> q, r = torch.qr(a)
>>> q
tensor([[-0.8571, 0.3943, 0.3314],
[-0.4286, -0.9029, -0.0343],
[ 0.2857, -0.1714, 0.9429]])
>>> r
tensor([[ -14.0000, -21.0000, 14.0000],
[ 0.0000, -175.0000, 70.0000],
[ 0.0000, 0.0000, -35.0000]])
>>> torch.mm(q, r).round()
tensor([[ 12., -51., 4.],
[ 6., 167., -68.],
[ -4., 24., -41.]])
>>> torch.mm(q.t(), q).round()
tensor([[ 1., 0., 0.],
[ 0., 1., -0.],
[ 0., -0., 1.]])
>>> a = torch.randn(3, 4, 5)
>>> q, r = torch.qr(a, some=False)
>>> torch.allclose(torch.matmul(q, r), a)
True
>>> torch.allclose(torch.matmul(q.mT, q), torch.eye(5))
True
""",
)
add_docstr(
torch.rad2deg,
r"""
rad2deg(input, *, out=None) -> Tensor
Returns a new tensor with each of the elements of :attr:`input`
converted from angles in radians to degrees.
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]])
>>> torch.rad2deg(a)
tensor([[ 180.0233, -180.0233],
[ 359.9894, -359.9894],
[ 89.9544, -89.9544]])
""".format(
**common_args
),
)
add_docstr(
torch.deg2rad,
r"""
deg2rad(input, *, out=None) -> Tensor
Returns a new tensor with each of the elements of :attr:`input`
converted from angles in degrees to radians.
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]])
>>> torch.deg2rad(a)
tensor([[ 3.1416, -3.1416],
[ 6.2832, -6.2832],
[ 1.5708, -1.5708]])
""".format(
**common_args
),
)
add_docstr(
torch.heaviside,
r"""
heaviside(input, values, *, out=None) -> Tensor
Computes the Heaviside step function for each element in :attr:`input`.
The Heaviside step function is defined as:
.. math::
\text{{heaviside}}(input, values) = \begin{cases}
0, & \text{if input < 0}\\
values, & \text{if input == 0}\\
1, & \text{if input > 0}
\end{cases}
"""
+ r"""
Args:
{input}
values (Tensor): The values to use where :attr:`input` is zero.
Keyword arguments:
{out}
Example::
>>> input = torch.tensor([-1.5, 0, 2.0])
>>> values = torch.tensor([0.5])
>>> torch.heaviside(input, values)
tensor([0.0000, 0.5000, 1.0000])
>>> values = torch.tensor([1.2, -2.0, 3.5])
>>> torch.heaviside(input, values)
tensor([0., -2., 1.])
""".format(
**common_args
),
)
add_docstr(
torch.rand,
"""
rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
pin_memory=False) -> Tensor
"""
+ r"""
Returns a tensor filled with random numbers from a uniform distribution
on the interval :math:`[0, 1)`
The shape of the tensor is defined by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword args:
{generator}
{out}
{dtype}
{layout}
{device}
{requires_grad}
{pin_memory}
Example::
>>> torch.rand(4)
tensor([ 0.5204, 0.2503, 0.3525, 0.5673])
>>> torch.rand(2, 3)
tensor([[ 0.8237, 0.5781, 0.6879],
[ 0.3816, 0.7249, 0.0998]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.rand_like,
r"""
rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns a tensor with the same size as :attr:`input` that is filled with
random numbers from a uniform distribution on the interval :math:`[0, 1)`.
``torch.rand_like(input)`` is equivalent to
``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.randint,
"""
randint(low=0, high, size, \\*, generator=None, out=None, \
dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with random integers generated uniformly
between :attr:`low` (inclusive) and :attr:`high` (exclusive).
The shape of the tensor is defined by the variable argument :attr:`size`.
.. note::
With the global dtype default (``torch.float32``), this function returns
a tensor with dtype ``torch.int64``.
Args:
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
high (int): One above the highest integer to be drawn from the distribution.
size (tuple): a tuple defining the shape of the output tensor.
Keyword args:
{generator}
{out}
dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``,
this function returns a tensor with dtype ``torch.int64``.
{layout}
{device}
{requires_grad}
Example::
>>> torch.randint(3, 5, (3,))
tensor([4, 3, 4])
>>> torch.randint(10, (2, 2))
tensor([[0, 2],
[5, 5]])
>>> torch.randint(3, 10, (2, 2))
tensor([[4, 5],
[6, 7]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.randint_like,
"""
randint_like(input, low=0, high, \\*, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
memory_format=torch.preserve_format) -> Tensor
Returns a tensor with the same shape as Tensor :attr:`input` filled with
random integers generated uniformly between :attr:`low` (inclusive) and
:attr:`high` (exclusive).
.. note:
With the global dtype default (``torch.float32``), this function returns
a tensor with dtype ``torch.int64``.
Args:
{input}
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
high (int): One above the highest integer to be drawn from the distribution.
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.randn,
"""
randn(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
pin_memory=False) -> Tensor
"""
+ r"""
Returns a tensor filled with random numbers from a normal distribution
with mean `0` and variance `1` (also called the standard normal
distribution).
.. math::
\text{{out}}_{{i}} \sim \mathcal{{N}}(0, 1)
The shape of the tensor is defined by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword args:
{generator}
{out}
{dtype}
{layout}
{device}
{requires_grad}
{pin_memory}
Example::
>>> torch.randn(4)
tensor([-2.1436, 0.9966, 2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954, 2.8929, -1.0923],
[ 1.1719, -0.4709, -0.1996]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.randn_like,
r"""
randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns a tensor with the same size as :attr:`input` that is filled with
random numbers from a normal distribution with mean 0 and variance 1.
``torch.randn_like(input)`` is equivalent to
``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.randperm,
"""
randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, \
device=None, requires_grad=False, pin_memory=False) -> Tensor
"""
+ r"""
Returns a random permutation of integers from ``0`` to ``n - 1``.
Args:
n (int): the upper bound (exclusive)
Keyword args:
{generator}
{out}
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: ``torch.int64``.
{layout}
{device}
{requires_grad}
{pin_memory}
Example::
>>> torch.randperm(4)
tensor([2, 1, 0, 3])
""".format(
**factory_common_args
),
)
add_docstr(
torch.tensor,
r"""
tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor
Constructs a tensor with no autograd history (also known as a "leaf tensor", see :doc:`/notes/autograd`) by copying :attr:`data`.
.. warning::
When working with tensors prefer using :func:`torch.Tensor.clone`,
:func:`torch.Tensor.detach`, and :func:`torch.Tensor.requires_grad_` for
readability. Letting `t` be a tensor, ``torch.tensor(t)`` is equivalent to
``t.clone().detach()``, and ``torch.tensor(t, requires_grad=True)``
is equivalent to ``t.clone().detach().requires_grad_(True)``.
.. seealso::
:func:`torch.as_tensor` preserves autograd history and avoids copies where possible.
:func:`torch.from_numpy` creates a tensor that shares storage with a NumPy array.
Args:
{data}
Keyword args:
{dtype}
device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor
then the device of data is used. If None and data is not a tensor then
the result tensor is constructed on the CPU.
{requires_grad}
{pin_memory}
Example::
>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[ 0.1000, 1.2000],
[ 2.2000, 3.1000],
[ 4.9000, 5.2000]])
>>> torch.tensor([0, 1]) # Type inference on data
tensor([ 0, 1])
>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
... dtype=torch.float64,
... device=torch.device('cuda:0')) # creates a double tensor on a CUDA device
tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0')
>>> torch.tensor(3.14159) # Create a zero-dimensional (scalar) tensor
tensor(3.1416)
>>> torch.tensor([]) # Create an empty tensor (of size (0,))
tensor([])
""".format(
**factory_data_common_args
),
)
add_docstr(
torch.range,
r"""
range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1`
with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is
the gap between two values in the tensor.
.. math::
\text{out}_{i+1} = \text{out}_i + \text{step}.
"""
+ r"""
.. warning::
This function is deprecated and will be removed in a future release because its behavior is inconsistent with
Python's range builtin. Instead, use :func:`torch.arange`, which produces values in [start, end).
Args:
start (float): the starting value for the set of points. Default: ``0``.
end (float): the ending value for the set of points
step (float): the gap between each pair of adjacent points. Default: ``1``.
Keyword args:
{out}
{dtype} If `dtype` is not given, infer the data type from the other input
arguments. If any of `start`, `end`, or `stop` are floating-point, the
`dtype` is inferred to be the default dtype, see
:meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to
be `torch.int64`.
{layout}
{device}
{requires_grad}
Example::
>>> torch.range(1, 4)
tensor([ 1., 2., 3., 4.])
>>> torch.range(1, 4, 0.5)
tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
""".format(
**factory_common_args
),
)
add_docstr(
torch.arange,
r"""
arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil`
with values from the interval ``[start, end)`` taken with common difference
:attr:`step` beginning from `start`.
Note that non-integer :attr:`step` is subject to floating point rounding errors when
comparing against :attr:`end`; to avoid inconsistency, we advise adding a small epsilon to :attr:`end`
in such cases.
.. math::
\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
"""
+ r"""
Args:
start (Number): the starting value for the set of points. Default: ``0``.
end (Number): the ending value for the set of points
step (Number): the gap between each pair of adjacent points. Default: ``1``.
Keyword args:
{out}
{dtype} If `dtype` is not given, infer the data type from the other input
arguments. If any of `start`, `end`, or `stop` are floating-point, the
`dtype` is inferred to be the default dtype, see
:meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to
be `torch.int64`.
{layout}
{device}
{requires_grad}
Example::
>>> torch.arange(5)
tensor([ 0, 1, 2, 3, 4])
>>> torch.arange(1, 4)
tensor([ 1, 2, 3])
>>> torch.arange(1, 2.5, 0.5)
tensor([ 1.0000, 1.5000, 2.0000])
""".format(
**factory_common_args
),
)
add_docstr(
torch.ravel,
r"""
ravel(input) -> Tensor
Return a contiguous flattened tensor. A copy is made only if needed.
Args:
{input}
Example::
>>> t = torch.tensor([[[1, 2],
... [3, 4]],
... [[5, 6],
... [7, 8]]])
>>> torch.ravel(t)
tensor([1, 2, 3, 4, 5, 6, 7, 8])
""".format(
**common_args
),
)
add_docstr(
torch.remainder,
r"""
remainder(input, other, *, out=None) -> Tensor
Computes
`Python's modulus operation <https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations>`_
entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value
is less than that of :attr:`other`.
It may also be defined in terms of :func:`torch.div` as
.. code:: python
torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer and float inputs.
.. note::
Complex inputs are not supported. In some cases, it is not mathematically
possible to satisfy the definition of a modulo operation with complex numbers.
See :func:`torch.fmod` for how division by zero is handled.
.. seealso::
:func:`torch.fmod` which implements C++'s `std::fmod <https://en.cppreference.com/w/cpp/numeric/math/fmod>`_.
This one is defined in terms of division rounding towards zero.
Args:
input (Tensor or Scalar): the dividend
other (Tensor or Scalar): the divisor
Keyword args:
{out}
Example::
>>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
tensor([ 1., 0., 1., 1., 0., 1.])
>>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5)
tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ])
""".format(
**common_args
),
)
add_docstr(
torch.renorm,
r"""
renorm(input, p, dim, maxnorm, *, out=None) -> Tensor
Returns a tensor where each sub-tensor of :attr:`input` along dimension
:attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower
than the value :attr:`maxnorm`
.. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged
Args:
{input}
p (float): the power for the norm computation
dim (int): the dimension to slice over to get the sub-tensors
maxnorm (float): the maximum norm to keep each sub-tensor under
Keyword args:
{out}
Example::
>>> x = torch.ones(3, 3)
>>> x[1].fill_(2)
tensor([ 2., 2., 2.])
>>> x[2].fill_(3)
tensor([ 3., 3., 3.])
>>> x
tensor([[ 1., 1., 1.],
[ 2., 2., 2.],
[ 3., 3., 3.]])
>>> torch.renorm(x, 1, 0, 5)
tensor([[ 1.0000, 1.0000, 1.0000],
[ 1.6667, 1.6667, 1.6667],
[ 1.6667, 1.6667, 1.6667]])
""".format(
**common_args
),
)
add_docstr(
torch.reshape,
r"""
reshape(input, shape) -> Tensor
Returns a tensor with the same data and number of elements as :attr:`input`,
but with the specified shape. When possible, the returned tensor will be a view
of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs
with compatible strides can be reshaped without copying, but you should not
depend on the copying vs. viewing behavior.
See :meth:`torch.Tensor.view` on when it is possible to return a view.
A single dimension may be -1, in which case it's inferred from the remaining
dimensions and the number of elements in :attr:`input`.
Args:
input (Tensor): the tensor to be reshaped
shape (tuple of int): the new shape
Example::
>>> a = torch.arange(4.)
>>> torch.reshape(a, (2, 2))
tensor([[ 0., 1.],
[ 2., 3.]])
>>> b = torch.tensor([[0, 1], [2, 3]])
>>> torch.reshape(b, (-1,))
tensor([ 0, 1, 2, 3])
""",
)
add_docstr(
torch.result_type,
r"""
result_type(tensor1, tensor2) -> dtype
Returns the :class:`torch.dtype` that would result from performing an arithmetic
operation on the provided input tensors. See type promotion :ref:`documentation <type-promotion-doc>`
for more information on the type promotion logic.
Args:
tensor1 (Tensor or Number): an input tensor or number
tensor2 (Tensor or Number): an input tensor or number
Example::
>>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0)
torch.float32
>>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1))
torch.uint8
""",
)
add_docstr(
torch.row_stack,
r"""
row_stack(tensors, *, out=None) -> Tensor
Alias of :func:`torch.vstack`.
""",
)
add_docstr(
torch.round,
r"""
round(input, *, decimals=0, out=None) -> Tensor
Rounds elements of :attr:`input` to the nearest integer.
For integer inputs, follows the array-api convention of returning a
copy of the input tensor.
.. note::
This function implements the "round half to even" to
break ties when a number is equidistant from two
integers (e.g. `round(2.5)` is 2).
When the :attr:\`decimals\` argument is specified the
algorithm used is similar to NumPy's `around`. This
algorithm is fast but inexact and it can easily
overflow for low precision dtypes.
Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`.
.. seealso::
:func:`torch.ceil`, which rounds up.
:func:`torch.floor`, which rounds down.
:func:`torch.trunc`, which rounds towards zero.
Args:
{input}
decimals (int): Number of decimal places to round to (default: 0).
If decimals is negative, it specifies the number of positions
to the left of the decimal point.
Keyword args:
{out}
Example::
>>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7)))
tensor([ 5., -2., 9., -8.])
>>> # Values equidistant from two integers are rounded towards the
>>> # the nearest even value (zero is treated as even)
>>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5]))
tensor([-0., 0., 2., 2.])
>>> # A positive decimals argument rounds to the to that decimal place
>>> torch.round(torch.tensor([0.1234567]), decimals=3)
tensor([0.1230])
>>> # A negative decimals argument rounds to the left of the decimal
>>> torch.round(torch.tensor([1200.1234567]), decimals=-3)
tensor([1000.])
""".format(
**common_args
),
)
add_docstr(
torch.rsqrt,
r"""
rsqrt(input, *, out=None) -> Tensor
Returns a new tensor with the reciprocal of the square-root of each of
the elements of :attr:`input`.
.. math::
\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}}
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.0370, 0.2970, 1.5420, -0.9105])
>>> torch.rsqrt(a)
tensor([ nan, 1.8351, 0.8053, nan])
""".format(
**common_args
),
)
add_docstr(
torch.scatter,
r"""
scatter(input, dim, index, src) -> Tensor
Out-of-place version of :meth:`torch.Tensor.scatter_`
""",
)
add_docstr(
torch.scatter_add,
r"""
scatter_add(input, dim, index, src) -> Tensor
Out-of-place version of :meth:`torch.Tensor.scatter_add_`
""",
)
add_docstr(
torch.scatter_reduce,
r"""
scatter_reduce(input, dim, index, src, reduce, *, include_self=True) -> Tensor
Out-of-place version of :meth:`torch.Tensor.scatter_reduce_`
""",
)
add_docstr(
torch.select,
r"""
select(input, dim, index) -> Tensor
Slices the :attr:`input` tensor along the selected dimension at the given index.
This function returns a view of the original tensor with the given dimension removed.
Args:
{input}
dim (int): the dimension to slice
index (int): the index to select with
.. note::
:meth:`select` is equivalent to slicing. For example,
``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and
``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``.
""".format(
**common_args
),
)
add_docstr(
torch.select_scatter,
r"""
select_scatter(input, src, dim, index) -> Tensor
Embeds the values of the :attr:`src` tensor into :attr:`input` at the given index.
This function returns a tensor with fresh storage; it does not create a view.
Args:
{input}
src (Tensor): The tensor to embed into :attr:`input`
dim (int): the dimension to insert the slice into.
index (int): the index to select with
.. note::
:attr:`src` must be of the proper size in order to be embedded
into :attr:`input`. Specifically, it should have the same shape as
``torch.select(input, dim, index)``
Example::
>>> a = torch.zeros(2, 2)
>>> b = torch.ones(2)
>>> a.select_scatter(b, 0, 0)
tensor([[1., 1.],
[0., 0.]])
""".format(
**common_args
),
)
add_docstr(
torch.slice_scatter,
r"""
slice_scatter(input, src, dim=0, start=None, end=None, step=1) -> Tensor
Embeds the values of the :attr:`src` tensor into :attr:`input` at the given
dimension.
This function returns a tensor with fresh storage; it does not create a view.
Args:
{input}
src (Tensor): The tensor to embed into :attr:`input`
dim (int): the dimension to insert the slice into
start (Optional[int]): the start index of where to insert the slice
end (Optional[int]): the end index of where to insert the slice
step (int): the how many elements to skip in
Example::
>>> a = torch.zeros(8, 8)
>>> b = torch.ones(8)
>>> a.slice_scatter(b, start=6)
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1.]])
>>> b = torch.ones(2)
>>> a.slice_scatter(b, dim=1, start=2, end=6, step=2)
tensor([[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.]])
""".format(
**common_args
),
)
add_docstr(
torch.set_flush_denormal,
r"""
set_flush_denormal(mode) -> bool
Disables denormal floating numbers on CPU.
Returns ``True`` if your system supports flushing denormal numbers and it
successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal`
is only supported on x86 architectures supporting SSE3.
Args:
mode (bool): Controls whether to enable flush denormal mode or not
Example::
>>> torch.set_flush_denormal(True)
True
>>> torch.tensor([1e-323], dtype=torch.float64)
tensor([ 0.], dtype=torch.float64)
>>> torch.set_flush_denormal(False)
True
>>> torch.tensor([1e-323], dtype=torch.float64)
tensor(9.88131e-324 *
[ 1.0000], dtype=torch.float64)
""",
)
add_docstr(
torch.set_num_threads,
r"""
set_num_threads(int)
Sets the number of threads used for intraop parallelism on CPU.
.. warning::
To ensure that the correct number of threads is used, set_num_threads
must be called before running eager, JIT or autograd code.
""",
)
add_docstr(
torch.set_num_interop_threads,
r"""
set_num_interop_threads(int)
Sets the number of threads used for interop parallelism
(e.g. in JIT interpreter) on CPU.
.. warning::
Can only be called once and before any inter-op parallel work
is started (e.g. JIT execution).
""",
)
add_docstr(
torch.sigmoid,
r"""
sigmoid(input, *, out=None) -> Tensor
Alias for :func:`torch.special.expit`.
""",
)
add_docstr(
torch.logit,
r"""
logit(input, eps=None, *, out=None) -> Tensor
Alias for :func:`torch.special.logit`.
""",
)
add_docstr(
torch.sign,
r"""
sign(input, *, out=None) -> Tensor
Returns a new tensor with the signs of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \operatorname{sgn}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.tensor([0.7, -1.2, 0., 2.3])
>>> a
tensor([ 0.7000, -1.2000, 0.0000, 2.3000])
>>> torch.sign(a)
tensor([ 1., -1., 0., 1.])
""".format(
**common_args
),
)
add_docstr(
torch.signbit,
r"""
signbit(input, *, out=None) -> Tensor
Tests if each element of :attr:`input` has its sign bit set or not.
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.tensor([0.7, -1.2, 0., 2.3])
>>> torch.signbit(a)
tensor([ False, True, False, False])
>>> a = torch.tensor([-0.0, 0.0])
>>> torch.signbit(a)
tensor([ True, False])
.. note::
signbit handles signed zeros, so negative zero (-0) returns True.
""".format(
**common_args
),
)
add_docstr(
torch.sgn,
r"""
sgn(input, *, out=None) -> Tensor
This function is an extension of torch.sign() to complex tensors.
It computes a new tensor whose elements have
the same angles as the corresponding elements of :attr:`input` and
absolute values (i.e. magnitudes) of one for complex tensors and
is equivalent to torch.sign() for non-complex tensors.
.. math::
\text{out}_{i} = \begin{cases}
0 & |\text{{input}}_i| == 0 \\
\frac{{\text{{input}}_i}}{|{\text{{input}}_i}|} & \text{otherwise}
\end{cases}
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> t = torch.tensor([3+4j, 7-24j, 0, 1+2j])
>>> t.sgn()
tensor([0.6000+0.8000j, 0.2800-0.9600j, 0.0000+0.0000j, 0.4472+0.8944j])
""".format(
**common_args
),
)
add_docstr(
torch.sin,
r"""
sin(input, *, out=None) -> Tensor
Returns a new tensor with the sine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sin(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.5461, 0.1347, -2.7266, -0.2746])
>>> torch.sin(a)
tensor([-0.5194, 0.1343, -0.4032, -0.2711])
""".format(
**common_args
),
)
add_docstr(
torch.sinc,
r"""
sinc(input, *, out=None) -> Tensor
Alias for :func:`torch.special.sinc`.
""",
)
add_docstr(
torch.sinh,
r"""
sinh(input, *, out=None) -> Tensor
Returns a new tensor with the hyperbolic sine of the elements of
:attr:`input`.
.. math::
\text{out}_{i} = \sinh(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.5380, -0.8632, -0.1265, 0.9399])
>>> torch.sinh(a)
tensor([ 0.5644, -0.9744, -0.1268, 1.0845])
.. note::
When :attr:`input` is on the CPU, the implementation of torch.sinh may use
the Sleef library, which rounds very large results to infinity or negative
infinity. See `here <https://sleef.org/purec.xhtml>`_ for details.
""".format(
**common_args
),
)
add_docstr(
torch.sort,
r"""
sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor)
Sorts the elements of the :attr:`input` tensor along a given dimension
in ascending order by value.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
If :attr:`descending` is ``True`` then the elements are sorted in descending
order by value.
If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving
the order of equivalent elements.
A namedtuple of (values, indices) is returned, where the `values` are the
sorted values and `indices` are the indices of the elements in the original
`input` tensor.
Args:
{input}
dim (int, optional): the dimension to sort along
descending (bool, optional): controls the sorting order (ascending or descending)
stable (bool, optional): makes the sorting routine stable, which guarantees that the order
of equivalent elements is preserved.
Keyword args:
out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can
be optionally given to be used as output buffers
Example::
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162, 0.0608, 0.6719, 2.3332],
[-0.5793, 0.0061, 0.6058, 0.9497],
[-0.5071, 0.3343, 0.9553, 1.0960]])
>>> indices
tensor([[ 1, 0, 2, 3],
[ 3, 1, 0, 2],
[ 0, 3, 1, 2]])
>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162, 0.6719, -0.5793],
[ 0.0608, 0.0061, 0.9497, 0.3343],
[ 0.6058, 0.9553, 1.0960, 2.3332]])
>>> indices
tensor([[ 2, 0, 0, 1],
[ 0, 1, 1, 2],
[ 1, 2, 2, 0]])
>>> x = torch.tensor([0, 1] * 9)
>>> x.sort()
torch.return_types.sort(
values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1]))
>>> x.sort(stable=True)
torch.return_types.sort(
values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17]))
""".format(
**common_args
),
)
add_docstr(
torch.argsort,
r"""
argsort(input, dim=-1, descending=False, stable=False) -> Tensor
Returns the indices that sort a tensor along a given dimension in ascending
order by value.
This is the second value returned by :meth:`torch.sort`. See its documentation
for the exact semantics of this method.
If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving
the order of equivalent elements. If ``False``, the relative order of values
which compare equal is not guaranteed. ``True`` is slower.
Args:
{input}
dim (int, optional): the dimension to sort along
descending (bool, optional): controls the sorting order (ascending or descending)
stable (bool, optional): controls the relative order of equivalent elements
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
[ 0.1598, 0.0788, -0.0745, -1.2700],
[ 1.2208, 1.0722, -0.7064, 1.2564],
[ 0.0669, -0.2318, -0.8229, -0.9280]])
>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],
[3, 2, 1, 0],
[2, 1, 0, 3],
[3, 2, 1, 0]])
""".format(
**common_args
),
)
add_docstr(
torch.msort,
r"""
msort(input, *, out=None) -> Tensor
Sorts the elements of the :attr:`input` tensor along its first dimension
in ascending order by value.
.. note:: `torch.msort(t)` is equivalent to `torch.sort(t, dim=0)[0]`.
See also :func:`torch.sort`.
Args:
{input}
Keyword args:
{out}
Example::
>>> t = torch.randn(3, 4)
>>> t
tensor([[-0.1321, 0.4370, -1.2631, -1.1289],
[-2.0527, -1.1250, 0.2275, 0.3077],
[-0.0881, -0.1259, -0.5495, 1.0284]])
>>> torch.msort(t)
tensor([[-2.0527, -1.1250, -1.2631, -1.1289],
[-0.1321, -0.1259, -0.5495, 0.3077],
[-0.0881, 0.4370, 0.2275, 1.0284]])
""".format(
**common_args
),
)
add_docstr(
torch.sparse_compressed_tensor,
r"""sparse_compressed_tensor(compressed_indices, plain_indices, values, size=None, """
r"""*, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in Compressed Sparse format - CSR,
CSC, BSR, or BSC - <sparse-compressed-docs>` with specified values at
the given :attr:`compressed_indices` and :attr:`plain_indices`. Sparse
matrix multiplication operations in Compressed Sparse format are
typically faster than that for sparse tensors in COO format. Make you
have a look at :ref:`the note on the data type of the indices
<sparse-compressed-docs>`.
Args:
compressed_indices (array_like): (B+1)-dimensional array of size
``(*batchsize, compressed_dim_size + 1)``. The last element of
each batch is the number of non-zero elements or blocks. This
tensor encodes the index in ``values`` and ``plain_indices``
depending on where the given compressed dimension (row or
column) starts. Each successive number in the tensor
subtracted by the number before it denotes the number of
elements or blocks in a given compressed dimension.
plain_indices (array_like): Plain dimension (column or row)
co-ordinates of each element or block in values. (B+1)-dimensional
tensor with the same length as values.
values (array_list): Initial values for the tensor. Can be a list,
tuple, NumPy ``ndarray``, scalar, and other types. that
represents a (1+K)-dimensional or (1+2+K)-dimensional tensor
where ``K`` is the number of dense dimensions.
size (list, tuple, :class:`torch.Size`, optional): Size of the
sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols *
blocksize[1], *densesize)`` where ``blocksize[0] ==
blocksize[1] == 1`` for CSR and CSC formats. If not provided,
the size will be inferred as the minimum size big enough to
hold all non-zero elements or blocks.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. Default: if None, infers data type from
:attr:`values`.
layout (:class:`torch.layout`, required): the desired layout of
returned tensor: :attr:`torch.sparse_csr`,
:attr:`torch.sparse_csc`, :attr:`torch.sparse_bsr`, or
:attr:`torch.sparse_bsc`.
device (:class:`torch.device`, optional): the desired device of
returned tensor. Default: if None, uses the current device
for the default tensor type (see
:func:`torch.set_default_tensor_type`). :attr:`device` will be
the CPU for CPU tensor types and the current CUDA device for
CUDA tensor types.
{requires_grad}
Example::
>>> compressed_indices = [0, 2, 4]
>>> plain_indices = [0, 1, 0, 1]
>>> values = [1, 2, 3, 4]
>>> torch.sparse_compressed_tensor(torch.tensor(compressed_indices, dtype=torch.int64),
... torch.tensor(plain_indices, dtype=torch.int64),
... torch.tensor(values), dtype=torch.double, layout=torch.sparse_csr)
tensor(crow_indices=tensor([0, 2, 4]),
col_indices=tensor([0, 1, 0, 1]),
values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4,
dtype=torch.float64, layout=torch.sparse_csr)
""".format(
**factory_common_args
),
)
add_docstr(
torch.sparse_csr_tensor,
r"""
sparse_csr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in CSR (Compressed Sparse Row) <sparse-csr-docs>` with specified
values at the given :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix multiplication operations
in CSR format are typically faster than that for sparse tensors in COO format. Make you have a look
at :ref:`the note on the data type of the indices <sparse-csr-docs>`.
Args:
crow_indices (array_like): (B+1)-dimensional array of size
``(*batchsize, nrows + 1)``. The last element of each batch
is the number of non-zeros. This tensor encodes the index in
values and col_indices depending on where the given row
starts. Each successive number in the tensor subtracted by the
number before it denotes the number of elements in a given
row.
col_indices (array_like): Column co-ordinates of each element in
values. (B+1)-dimensional tensor with the same length
as values.
values (array_list): Initial values for the tensor. Can be a list,
tuple, NumPy ``ndarray``, scalar, and other types that
represents a (1+K)-dimensonal tensor where ``K`` is the number
of dense dimensions.
size (list, tuple, :class:`torch.Size`, optional): Size of the
sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If
not provided, the size will be inferred as the minimum size
big enough to hold all non-zero elements.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. Default: if None, infers data type from
:attr:`values`.
device (:class:`torch.device`, optional): the desired device of
returned tensor. Default: if None, uses the current device
for the default tensor type (see
:func:`torch.set_default_tensor_type`). :attr:`device` will be
the CPU for CPU tensor types and the current CUDA device for
CUDA tensor types.
{requires_grad}
Example::
>>> crow_indices = [0, 2, 4]
>>> col_indices = [0, 1, 0, 1]
>>> values = [1, 2, 3, 4]
>>> torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64),
... torch.tensor(col_indices, dtype=torch.int64),
... torch.tensor(values), dtype=torch.double)
tensor(crow_indices=tensor([0, 2, 4]),
col_indices=tensor([0, 1, 0, 1]),
values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4,
dtype=torch.float64, layout=torch.sparse_csr)
""".format(
**factory_common_args
),
)
add_docstr(
torch.sparse_csc_tensor,
r"""
sparse_csc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in CSC (Compressed Sparse Column)
<sparse-csc-docs>` with specified values at the given
:attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix
multiplication operations in CSC format are typically faster than that
for sparse tensors in COO format. Make you have a look at :ref:`the
note on the data type of the indices <sparse-csc-docs>`.
Args:
ccol_indices (array_like): (B+1)-dimensional array of size
``(*batchsize, ncols + 1)``. The last element of each batch
is the number of non-zeros. This tensor encodes the index in
values and row_indices depending on where the given column
starts. Each successive number in the tensor subtracted by the
number before it denotes the number of elements in a given
column.
row_indices (array_like): Row co-ordinates of each element in
values. (B+1)-dimensional tensor with the same length as
values.
values (array_list): Initial values for the tensor. Can be a list,
tuple, NumPy ``ndarray``, scalar, and other types that
represents a (1+K)-dimensonal tensor where ``K`` is the number
of dense dimensions.
size (list, tuple, :class:`torch.Size`, optional): Size of the
sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If
not provided, the size will be inferred as the minimum size
big enough to hold all non-zero elements.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. Default: if None, infers data type from
:attr:`values`.
device (:class:`torch.device`, optional): the desired device of
returned tensor. Default: if None, uses the current device
for the default tensor type (see
:func:`torch.set_default_tensor_type`). :attr:`device` will be
the CPU for CPU tensor types and the current CUDA device for
CUDA tensor types.
{requires_grad}
Example::
>>> ccol_indices = [0, 2, 4]
>>> row_indices = [0, 1, 0, 1]
>>> values = [1, 2, 3, 4]
>>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64),
... torch.tensor(row_indices, dtype=torch.int64),
... torch.tensor(values), dtype=torch.double)
tensor(ccol_indices=tensor([0, 2, 4]),
row_indices=tensor([0, 1, 0, 1]),
values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4,
dtype=torch.float64, layout=torch.sparse_csc)
""".format(
**factory_common_args
),
)
add_docstr(
torch.sparse_bsr_tensor,
r"""
sparse_bsr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in BSR (Block Compressed Sparse Row))
<sparse-bsr-docs>` with specified 2-dimensional blocks at the given
:attr:`crow_indices` and :attr:`col_indices`. Sparse matrix
multiplication operations in BSR format are typically faster than that
for sparse tensors in COO format. Make you have a look at :ref:`the
note on the data type of the indices <sparse-bsr-docs>`.
Args:
crow_indices (array_like): (B+1)-dimensional array of size
``(*batchsize, nrowblocks + 1)``. The last element of each
batch is the number of non-zeros. This tensor encodes the
block index in values and col_indices depending on where the
given row block starts. Each successive number in the tensor
subtracted by the number before it denotes the number of
blocks in a given row.
col_indices (array_like): Column block co-ordinates of each block
in values. (B+1)-dimensional tensor with the same length as
values.
values (array_list): Initial values for the tensor. Can be a list,
tuple, NumPy ``ndarray``, scalar, and other types that
represents a (1 + 2 + K)-dimensonal tensor where ``K`` is the
number of dense dimensions.
size (list, tuple, :class:`torch.Size`, optional): Size of the
sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols *
blocksize[1], *densesize)`` where ``blocksize ==
values.shape[1:3]``. If not provided, the size will be
inferred as the minimum size big enough to hold all non-zero
blocks.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. Default: if None, infers data type from
:attr:`values`.
device (:class:`torch.device`, optional): the desired device of
returned tensor. Default: if None, uses the current device
for the default tensor type (see
:func:`torch.set_default_tensor_type`). :attr:`device` will be
the CPU for CPU tensor types and the current CUDA device for
CUDA tensor types.
{requires_grad}
Example::
>>> crow_indices = [0, 1, 2]
>>> col_indices = [0, 1]
>>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> torch.sparse_bsr_tensor(torch.tensor(crow_indices, dtype=torch.int64),
... torch.tensor(col_indices, dtype=torch.int64),
... torch.tensor(values), dtype=torch.double)
tensor(crow_indices=tensor([0, 1, 2]),
col_indices=tensor([0, 1]),
values=tensor([[[1., 2.],
[3., 4.]],
[[5., 6.],
[7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64,
layout=torch.sparse_bsr)
""".format(
**factory_common_args
),
)
add_docstr(
torch.sparse_bsc_tensor,
r"""
sparse_bsc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in BSC (Block Compressed Sparse
Column)) <sparse-bsc-docs>` with specified 2-dimensional blocks at the
given :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix
multiplication operations in BSC format are typically faster than that
for sparse tensors in COO format. Make you have a look at :ref:`the
note on the data type of the indices <sparse-bsc-docs>`.
Args:
ccol_indices (array_like): (B+1)-dimensional array of size
``(*batchsize, ncolblocks + 1)``. The last element of each
batch is the number of non-zeros. This tensor encodes the
index in values and row_indices depending on where the given
column starts. Each successive number in the tensor subtracted
by the number before it denotes the number of elements in a
given column.
row_indices (array_like): Row block co-ordinates of each block in
values. (B+1)-dimensional tensor with the same length
as values.
values (array_list): Initial blocks for the tensor. Can be a list,
tuple, NumPy ``ndarray``, and other types that
represents a (1 + 2 + K)-dimensonal tensor where ``K`` is the
number of dense dimensions.
size (list, tuple, :class:`torch.Size`, optional): Size of the
sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols *
blocksize[1], *densesize)`` If not provided, the size will be
inferred as the minimum size big enough to hold all non-zero
blocks.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. Default: if None, infers data type from
:attr:`values`.
device (:class:`torch.device`, optional): the desired device of
returned tensor. Default: if None, uses the current device
for the default tensor type (see
:func:`torch.set_default_tensor_type`). :attr:`device` will be
the CPU for CPU tensor types and the current CUDA device for
CUDA tensor types.
{requires_grad}
Example::
>>> ccol_indices = [0, 1, 2]
>>> row_indices = [0, 1]
>>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> torch.sparse_bsc_tensor(torch.tensor(ccol_indices, dtype=torch.int64),
... torch.tensor(row_indices, dtype=torch.int64),
... torch.tensor(values), dtype=torch.double)
tensor(ccol_indices=tensor([0, 1, 2]),
row_indices=tensor([0, 1]),
values=tensor([[[1., 2.],
[3., 4.]],
[[5., 6.],
[7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64,
layout=torch.sparse_bsc)
""".format(
**factory_common_args
),
)
add_docstr(
torch.sparse_coo_tensor,
r"""
sparse_coo_tensor(indices, values, size=None, *, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a :ref:`sparse tensor in COO(rdinate) format
<sparse-coo-docs>` with specified values at the given
:attr:`indices`.
.. note::
This function returns an :ref:`uncoalesced tensor <sparse-uncoalesced-coo-docs>`.
Args:
indices (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor`
internally. The indices are the coordinates of the non-zero values in the matrix, and thus
should be two-dimensional where the first dimension is the number of tensor dimensions and
the second dimension is the number of non-zero values.
values (array_like): Initial values for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not
provided the size will be inferred as the minimum size big enough to hold all non-zero
elements.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if None, infers data type from :attr:`values`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if None, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
{requires_grad}
Example::
>>> i = torch.tensor([[0, 1, 1],
... [2, 0, 2]])
>>> v = torch.tensor([3, 4, 5], dtype=torch.float32)
>>> torch.sparse_coo_tensor(i, v, [2, 4])
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3., 4., 5.]),
size=(2, 4), nnz=3, layout=torch.sparse_coo)
>>> torch.sparse_coo_tensor(i, v) # Shape inference
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3., 4., 5.]),
size=(2, 3), nnz=3, layout=torch.sparse_coo)
>>> torch.sparse_coo_tensor(i, v, [2, 4],
... dtype=torch.float64,
... device=torch.device('cuda:0'))
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3., 4., 5.]),
device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64,
layout=torch.sparse_coo)
# Create an empty sparse tensor with the following invariants:
# 1. sparse_dim + dense_dim = len(SparseTensor.shape)
# 2. SparseTensor._indices().shape = (sparse_dim, nnz)
# 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])
#
# For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and
# sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0))
>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])
tensor(indices=tensor([], size=(1, 0)),
values=tensor([], size=(0,)),
size=(1,), nnz=0, layout=torch.sparse_coo)
# and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and
# sparse_dim = 1
>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
tensor(indices=tensor([], size=(1, 0)),
values=tensor([], size=(0, 2)),
size=(1, 2), nnz=0, layout=torch.sparse_coo)
.. _torch.sparse: https://pytorch.org/docs/stable/sparse.html
""".format(
**factory_common_args
),
)
add_docstr(
torch.sqrt,
r"""
sqrt(input, *, out=None) -> Tensor
Returns a new tensor with the square-root of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sqrt{\text{input}_{i}}
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-2.0755, 1.0226, 0.0831, 0.4806])
>>> torch.sqrt(a)
tensor([ nan, 1.0112, 0.2883, 0.6933])
""".format(
**common_args
),
)
add_docstr(
torch.square,
r"""
square(input, *, out=None) -> Tensor
Returns a new tensor with the square of the elements of :attr:`input`.
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-2.0755, 1.0226, 0.0831, 0.4806])
>>> torch.square(a)
tensor([ 4.3077, 1.0457, 0.0069, 0.2310])
""".format(
**common_args
),
)
add_docstr(
torch.squeeze,
r"""
squeeze(input, dim=None) -> Tensor
Returns a tensor with all the dimensions of :attr:`input` of size `1` removed.
For example, if `input` is of shape:
:math:`(A \times 1 \times B \times C \times 1 \times D)` then the `out` tensor
will be of shape: :math:`(A \times B \times C \times D)`.
When :attr:`dim` is given, a squeeze operation is done only in the given
dimension. If `input` is of shape: :math:`(A \times 1 \times B)`,
``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)``
will squeeze the tensor to the shape :math:`(A \times B)`.
.. note:: The returned tensor shares the storage with the input tensor,
so changing the contents of one will change the contents of the other.
.. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)`
will also remove the batch dimension, which can lead to unexpected
errors.
Args:
{input}
dim (int, optional): if given, the input will be squeezed only in
this dimension
Example::
>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])
""".format(
**common_args
),
)
add_docstr(
torch.std,
r"""
std(input, dim, unbiased, keepdim=False, *, out=None) -> Tensor
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample deviation is calculated, without any correction.
Args:
{input}
{dim}
Keyword args:
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
{keepdim}
{out}
.. function:: std(input, unbiased) -> Tensor
:noindex:
Calculates the standard deviation of all elements in the :attr:`input` tensor.
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample deviation is calculated, without any correction.
Args:
{input}
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
Example::
>>> a = torch.tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.std(a, unbiased=False)
tensor(0.4188)
""".format(
**multi_dim_common
),
)
add_docstr(
torch.std_mean,
r"""
std_mean(input, dim, unbiased, keepdim=False, *, out=None) -> (Tensor, Tensor)
If :attr:`unbiased` is ``True``, Bessel's correction will be used to calculate
the standard deviation. Otherwise, the sample deviation is calculated, without
any correction.
Args:
{input}
{opt_dim}
Keyword args:
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
{keepdim}
{out}
Returns:
A tuple (std, mean) containing the standard deviation and mean.
.. function:: std_mean(input, unbiased) -> (Tensor, Tensor)
:noindex:
Calculates the standard deviation and mean of all elements in the :attr:`input`
tensor.
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample deviation is calculated, without any correction.
Args:
{input}
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
Returns:
A tuple (std, mean) containing the standard deviation and mean.
Example::
>>> a = torch.tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.std_mean(a, unbiased=False)
(tensor(0.4188), tensor(-0.8509))
""".format(
**multi_dim_common
),
)
add_docstr(
torch.sub,
r"""
sub(input, other, *, alpha=1, out=None) -> Tensor
Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`.
.. math::
\text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i
"""
+ r"""
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs.
Args:
{input}
other (Tensor or Number): the tensor or number to subtract from :attr:`input`.
Keyword args:
alpha (Number): the multiplier for :attr:`other`.
{out}
Example::
>>> a = torch.tensor((1, 2))
>>> b = torch.tensor((0, 1))
>>> torch.sub(a, b, alpha=2)
tensor([1, 0])
""".format(
**common_args
),
)
add_docstr(
torch.subtract,
r"""
subtract(input, other, *, alpha=1, out=None) -> Tensor
Alias for :func:`torch.sub`.
""",
)
add_docstr(
torch.sum,
r"""
sum(input, *, dtype=None) -> Tensor
Returns the sum of all elements in the :attr:`input` tensor.
Args:
{input}
Keyword args:
{dtype}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567, 0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
.. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor
:noindex:
Returns the sum of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
reduce over all of them.
{keepdim_details}
Args:
{input}
{opt_dim}
{keepdim}
Keyword args:
{dtype}
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475, 0.0737, -0.3429],
[-0.2993, 0.9138, 0.9337, -1.6864],
[ 0.1132, 0.7892, -0.1003, 0.5688],
[ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381, 1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([ 435., 1335., 2235., 3135.])
""".format(
**multi_dim_common
),
)
add_docstr(
torch.nansum,
r"""
nansum(input, *, dtype=None) -> Tensor
Returns the sum of all elements, treating Not a Numbers (NaNs) as zero.
Args:
{input}
Keyword args:
{dtype}
Example::
>>> a = torch.tensor([1., 2., float('nan'), 4.])
>>> torch.nansum(a)
tensor(7.)
.. function:: nansum(input, dim, keepdim=False, *, dtype=None) -> Tensor
:noindex:
Returns the sum of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`, treating Not a Numbers (NaNs) as zero.
If :attr:`dim` is a list of dimensions, reduce over all of them.
{keepdim_details}
Args:
{input}
{opt_dim}
{keepdim}
Keyword args:
{dtype}
Example::
>>> torch.nansum(torch.tensor([1., float("nan")]))
1.0
>>> a = torch.tensor([[1, 2], [3., float("nan")]])
>>> torch.nansum(a)
tensor(6.)
>>> torch.nansum(a, dim=0)
tensor([4., 2.])
>>> torch.nansum(a, dim=1)
tensor([3., 3.])
""".format(
**multi_dim_common
),
)
add_docstr(
torch.svd,
r"""
svd(input, some=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor)
Computes the singular value decomposition of either a matrix or batch of
matrices :attr:`input`. The singular value decomposition is represented as a
namedtuple `(U, S, V)`, such that :attr:`input` :math:`= U \text{diag}(S) V^{\text{H}}`.
where :math:`V^{\text{H}}` is the transpose of `V` for real inputs,
and the conjugate transpose of `V` for complex inputs.
If :attr:`input` is a batch of matrices, then `U`, `S`, and `V` are also
batched with the same batch dimensions as :attr:`input`.
If :attr:`some` is `True` (default), the method returns the reduced singular
value decomposition. In this case, if the last two dimensions of :attr:`input` are
`m` and `n`, then the returned `U` and `V` matrices will contain only
`min(n, m)` orthonormal columns.
If :attr:`compute_uv` is `False`, the returned `U` and `V` will be
zero-filled matrices of shape `(m, m)` and `(n, n)`
respectively, and the same device as :attr:`input`. The argument :attr:`some`
has no effect when :attr:`compute_uv` is `False`.
Supports :attr:`input` of float, double, cfloat and cdouble data types.
The dtypes of `U` and `V` are the same as :attr:`input`'s. `S` will
always be real-valued, even if :attr:`input` is complex.
.. warning::
:func:`torch.svd` is deprecated in favor of :func:`torch.linalg.svd`
and will be removed in a future PyTorch release.
``U, S, V = torch.svd(A, some=some, compute_uv=True)`` (default) should be replaced with
.. code:: python
U, S, Vh = torch.linalg.svd(A, full_matrices=not some)
V = Vh.mH
``_, S, _ = torch.svd(A, some=some, compute_uv=False)`` should be replaced with
.. code:: python
S = torch.linalg.svdvals(A)
.. note:: Differences with :func:`torch.linalg.svd`:
* :attr:`some` is the opposite of
:func:`torch.linalg.svd`'s :attr:`full_matrices`. Note that
default value for both is `True`, so the default behavior is
effectively the opposite.
* :func:`torch.svd` returns `V`, whereas :func:`torch.linalg.svd` returns
`Vh`, that is, :math:`V^{\text{H}}`.
* If :attr:`compute_uv` is `False`, :func:`torch.svd` returns zero-filled
tensors for `U` and `Vh`, whereas :func:`torch.linalg.svd` returns
empty tensors.
.. note:: The singular values are returned in descending order. If :attr:`input` is a batch of matrices,
then the singular values of each matrix in the batch are returned in descending order.
.. note:: The `S` tensor can only be used to compute gradients if :attr:`compute_uv` is `True`.
.. note:: When :attr:`some` is `False`, the gradients on `U[..., :, min(m, n):]`
and `V[..., :, min(m, n):]` will be ignored in the backward pass, as those vectors
can be arbitrary bases of the corresponding subspaces.
.. note:: The implementation of :func:`torch.linalg.svd` on CPU uses LAPACK's routine `?gesdd`
(a divide-and-conquer algorithm) instead of `?gesvd` for speed. Analogously,
on GPU, it uses cuSOLVER's routines `gesvdj` and `gesvdjBatched` on CUDA 10.1.243
and later, and MAGMA's routine `gesdd` on earlier versions of CUDA.
.. note:: The returned `U` will not be contiguous. The matrix (or batch of matrices) will
be represented as a column-major matrix (i.e. Fortran-contiguous).
.. warning:: The gradients with respect to `U` and `V` will only be finite when the input does not
have zero nor repeated singular values.
.. warning:: If the distance between any two singular values is close to zero, the gradients with respect to
`U` and `V` will be numerically unstable, as they depends on
:math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`. The same happens when the matrix
has small singular values, as these gradients also depend on `S⁻¹`.
.. warning:: For complex-valued :attr:`input` the singular value decomposition is not unique,
as `U` and `V` may be multiplied by an arbitrary phase factor :math:`e^{i \phi}` on every column.
The same happens when :attr:`input` has repeated singular values, where one may multiply
the columns of the spanning subspace in `U` and `V` by a rotation matrix
and `the resulting vectors will span the same subspace`_.
Different platforms, like NumPy, or inputs on different device types,
may produce different `U` and `V` tensors.
Args:
input (Tensor): the input tensor of size `(*, m, n)` where `*` is zero or more
batch dimensions consisting of `(m, n)` matrices.
some (bool, optional): controls whether to compute the reduced or full decomposition, and
consequently, the shape of returned `U` and `V`. Default: `True`.
compute_uv (bool, optional): controls whether to compute `U` and `V`. Default: `True`.
Keyword args:
out (tuple, optional): the output tuple of tensors
Example::
>>> a = torch.randn(5, 3)
>>> a
tensor([[ 0.2364, -0.7752, 0.6372],
[ 1.7201, 0.7394, -0.0504],
[-0.3371, -1.0584, 0.5296],
[ 0.3550, -0.4022, 1.5569],
[ 0.2445, -0.0158, 1.1414]])
>>> u, s, v = torch.svd(a)
>>> u
tensor([[ 0.4027, 0.0287, 0.5434],
[-0.1946, 0.8833, 0.3679],
[ 0.4296, -0.2890, 0.5261],
[ 0.6604, 0.2717, -0.2618],
[ 0.4234, 0.2481, -0.4733]])
>>> s
tensor([2.3289, 2.0315, 0.7806])
>>> v
tensor([[-0.0199, 0.8766, 0.4809],
[-0.5080, 0.4054, -0.7600],
[ 0.8611, 0.2594, -0.4373]])
>>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t()))
tensor(8.6531e-07)
>>> a_big = torch.randn(7, 5, 3)
>>> u, s, v = torch.svd(a_big)
>>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.mT))
tensor(2.6503e-06)
.. _the resulting vectors will span the same subspace:
(https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD)
""",
)
add_docstr(
torch.symeig,
r"""
symeig(input, eigenvectors=False, upper=True, *, out=None) -> (Tensor, Tensor)
This function returns eigenvalues and eigenvectors
of a real symmetric or complex Hermitian matrix :attr:`input` or a batch thereof,
represented by a namedtuple (eigenvalues, eigenvectors).
This function calculates all eigenvalues (and vectors) of :attr:`input`
such that :math:`\text{input} = V \text{diag}(e) V^T`.
The boolean argument :attr:`eigenvectors` defines computation of
both eigenvectors and eigenvalues or eigenvalues only.
If it is ``False``, only eigenvalues are computed. If it is ``True``,
both eigenvalues and eigenvectors are computed.
Since the input matrix :attr:`input` is supposed to be symmetric or Hermitian,
only the upper triangular portion is used by default.
If :attr:`upper` is ``False``, then lower triangular portion is used.
.. warning::
:func:`torch.symeig` is deprecated in favor of :func:`torch.linalg.eigh`
and will be removed in a future PyTorch release. The default behavior has changed
from using the upper triangular portion of the matrix by default to using the
lower triangular portion.
``L, _ = torch.symeig(A, upper=upper)`` should be replaced with
.. code :: python
UPLO = "U" if upper else "L"
L = torch.linalg.eigvalsh(A, UPLO=UPLO)
``L, V = torch.symeig(A, eigenvectors=True, upper=upper)`` should be replaced with
.. code :: python
UPLO = "U" if upper else "L"
L, V = torch.linalg.eigh(A, UPLO=UPLO)
.. note:: The eigenvalues are returned in ascending order. If :attr:`input` is a batch of matrices,
then the eigenvalues of each matrix in the batch is returned in ascending order.
.. note:: Irrespective of the original strides, the returned matrix `V` will
be transposed, i.e. with strides `V.contiguous().mT.stride()`.
.. warning:: Extra care needs to be taken when backward through outputs. Such
operation is only stable when all eigenvalues are distinct and becomes
less stable the smaller :math:`\min_{i \neq j} |\lambda_i - \lambda_j|` is.
Args:
input (Tensor): the input tensor of size :math:`(*, n, n)` where `*` is zero or more
batch dimensions consisting of symmetric or Hermitian matrices.
eigenvectors(bool, optional): controls whether eigenvectors have to be computed
upper(bool, optional): controls whether to consider upper-triangular or lower-triangular region
Keyword args:
out (tuple, optional): the output tuple of (Tensor, Tensor)
Returns:
(Tensor, Tensor): A namedtuple (eigenvalues, eigenvectors) containing
- **eigenvalues** (*Tensor*): Shape :math:`(*, m)`. The eigenvalues in ascending order.
- **eigenvectors** (*Tensor*): Shape :math:`(*, m, m)`.
If ``eigenvectors=False``, it's an empty tensor.
Otherwise, this tensor contains the orthonormal eigenvectors of the ``input``.
Examples::
>>> a = torch.randn(5, 5)
>>> a = a + a.t() # To make a symmetric
>>> a
tensor([[-5.7827, 4.4559, -0.2344, -1.7123, -1.8330],
[ 4.4559, 1.4250, -2.8636, -3.2100, -0.1798],
[-0.2344, -2.8636, 1.7112, -5.5785, 7.1988],
[-1.7123, -3.2100, -5.5785, -2.6227, 3.1036],
[-1.8330, -0.1798, 7.1988, 3.1036, -5.1453]])
>>> e, v = torch.symeig(a, eigenvectors=True)
>>> e
tensor([-13.7012, -7.7497, -2.3163, 5.2477, 8.1050])
>>> v
tensor([[ 0.1643, 0.9034, -0.0291, 0.3508, 0.1817],
[-0.2417, -0.3071, -0.5081, 0.6534, 0.4026],
[-0.5176, 0.1223, -0.0220, 0.3295, -0.7798],
[-0.4850, 0.2695, -0.5773, -0.5840, 0.1337],
[ 0.6415, -0.0447, -0.6381, -0.0193, -0.4230]])
>>> a_big = torch.randn(5, 2, 2)
>>> a_big = a_big + a_big.mT # To make a_big symmetric
>>> e, v = a_big.symeig(eigenvectors=True)
>>> torch.allclose(torch.matmul(v, torch.matmul(e.diag_embed(), v.mT)), a_big)
True
""",
)
add_docstr(
torch.t,
r"""
t(input) -> Tensor
Expects :attr:`input` to be <= 2-D tensor and transposes dimensions 0
and 1.
0-D and 1-D tensors are returned as is. When input is a 2-D tensor this
is equivalent to ``transpose(input, 0, 1)``.
Args:
{input}
Example::
>>> x = torch.randn(())
>>> x
tensor(0.1995)
>>> torch.t(x)
tensor(0.1995)
>>> x = torch.randn(3)
>>> x
tensor([ 2.4320, -0.4608, 0.7702])
>>> torch.t(x)
tensor([ 2.4320, -0.4608, 0.7702])
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.4875, 0.9158, -0.5872],
[ 0.3938, -0.6929, 0.6932]])
>>> torch.t(x)
tensor([[ 0.4875, 0.3938],
[ 0.9158, -0.6929],
[-0.5872, 0.6932]])
See also :func:`torch.transpose`.
""".format(
**common_args
),
)
add_docstr(
torch.flip,
r"""
flip(input, dims) -> Tensor
Reverse the order of a n-D tensor along given axis in dims.
.. note::
`torch.flip` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flip`,
which returns a view in constant time. Since copying a tensor's data is more work than viewing that data,
`torch.flip` is expected to be slower than `np.flip`.
Args:
{input}
dims (a list or tuple): axis to flip on
Example::
>>> x = torch.arange(8).view(2, 2, 2)
>>> x
tensor([[[ 0, 1],
[ 2, 3]],
[[ 4, 5],
[ 6, 7]]])
>>> torch.flip(x, [0, 1])
tensor([[[ 6, 7],
[ 4, 5]],
[[ 2, 3],
[ 0, 1]]])
""".format(
**common_args
),
)
add_docstr(
torch.fliplr,
r"""
fliplr(input) -> Tensor
Flip tensor in the left/right direction, returning a new tensor.
Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.
Note:
Requires the tensor to be at least 2-D.
.. note::
`torch.fliplr` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.fliplr`,
which returns a view in constant time. Since copying a tensor's data is more work than viewing that data,
`torch.fliplr` is expected to be slower than `np.fliplr`.
Args:
input (Tensor): Must be at least 2-dimensional.
Example::
>>> x = torch.arange(4).view(2, 2)
>>> x
tensor([[0, 1],
[2, 3]])
>>> torch.fliplr(x)
tensor([[1, 0],
[3, 2]])
""".format(
**common_args
),
)
add_docstr(
torch.flipud,
r"""
flipud(input) -> Tensor
Flip tensor in the up/down direction, returning a new tensor.
Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.
Note:
Requires the tensor to be at least 1-D.
.. note::
`torch.flipud` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flipud`,
which returns a view in constant time. Since copying a tensor's data is more work than viewing that data,
`torch.flipud` is expected to be slower than `np.flipud`.
Args:
input (Tensor): Must be at least 1-dimensional.
Example::
>>> x = torch.arange(4).view(2, 2)
>>> x
tensor([[0, 1],
[2, 3]])
>>> torch.flipud(x)
tensor([[2, 3],
[0, 1]])
""".format(
**common_args
),
)
add_docstr(
torch.roll,
r"""
roll(input, shifts, dims=None) -> Tensor
Roll the tensor :attr:`input` along the given dimension(s). Elements that are
shifted beyond the last position are re-introduced at the first position. If
:attr:`dims` is `None`, the tensor will be flattened before rolling and then
restored to the original shape.
Args:
{input}
shifts (int or tuple of ints): The number of places by which the elements
of the tensor are shifted. If shifts is a tuple, dims must be a tuple of
the same size, and each dimension will be rolled by the corresponding
value
dims (int or tuple of ints): Axis along which to roll
Example::
>>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2)
>>> x
tensor([[1, 2],
[3, 4],
[5, 6],
[7, 8]])
>>> torch.roll(x, 1)
tensor([[8, 1],
[2, 3],
[4, 5],
[6, 7]])
>>> torch.roll(x, 1, 0)
tensor([[7, 8],
[1, 2],
[3, 4],
[5, 6]])
>>> torch.roll(x, -1, 0)
tensor([[3, 4],
[5, 6],
[7, 8],
[1, 2]])
>>> torch.roll(x, shifts=(2, 1), dims=(0, 1))
tensor([[6, 5],
[8, 7],
[2, 1],
[4, 3]])
""".format(
**common_args
),
)
add_docstr(
torch.rot90,
r"""
rot90(input, k=1, dims=[0,1]) -> Tensor
Rotate a n-D tensor by 90 degrees in the plane specified by dims axis.
Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.
Args:
{input}
k (int): number of times to rotate. Default value is 1
dims (a list or tuple): axis to rotate. Default value is [0, 1]
Example::
>>> x = torch.arange(4).view(2, 2)
>>> x
tensor([[0, 1],
[2, 3]])
>>> torch.rot90(x, 1, [0, 1])
tensor([[1, 3],
[0, 2]])
>>> x = torch.arange(8).view(2, 2, 2)
>>> x
tensor([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> torch.rot90(x, 1, [1, 2])
tensor([[[1, 3],
[0, 2]],
[[5, 7],
[4, 6]]])
""".format(
**common_args
),
)
add_docstr(
torch.take,
r"""
take(input, index) -> Tensor
Returns a new tensor with the elements of :attr:`input` at the given indices.
The input tensor is treated as if it were viewed as a 1-D tensor. The result
takes the same shape as the indices.
Args:
{input}
index (LongTensor): the indices into tensor
Example::
>>> src = torch.tensor([[4, 3, 5],
... [6, 7, 8]])
>>> torch.take(src, torch.tensor([0, 2, 5]))
tensor([ 4, 5, 8])
""".format(
**common_args
),
)
add_docstr(
torch.take_along_dim,
r"""
take_along_dim(input, indices, dim, *, out=None) -> Tensor
Selects values from :attr:`input` at the 1-dimensional indices from :attr:`indices` along the given :attr:`dim`.
Functions that return indices along a dimension, like :func:`torch.argmax` and :func:`torch.argsort`,
are designed to work with this function. See the examples below.
.. note::
This function is similar to NumPy's `take_along_axis`.
See also :func:`torch.gather`.
Args:
{input}
indices (tensor): the indices into :attr:`input`. Must have long dtype.
dim (int): dimension to select along.
Keyword args:
{out}
Example::
>>> t = torch.tensor([[10, 30, 20], [60, 40, 50]])
>>> max_idx = torch.argmax(t)
>>> torch.take_along_dim(t, max_idx)
tensor([60])
>>> sorted_idx = torch.argsort(t, dim=1)
>>> torch.take_along_dim(t, sorted_idx, dim=1)
tensor([[10, 20, 30],
[40, 50, 60]])
""".format(
**common_args
),
)
add_docstr(
torch.tan,
r"""
tan(input, *, out=None) -> Tensor
Returns a new tensor with the tangent of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \tan(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-1.2027, -1.7687, 0.4412, -1.3856])
>>> torch.tan(a)
tensor([-2.5930, 4.9859, 0.4722, -5.3366])
""".format(
**common_args
),
)
add_docstr(
torch.tanh,
r"""
tanh(input, *, out=None) -> Tensor
Returns a new tensor with the hyperbolic tangent of the elements
of :attr:`input`.
.. math::
\text{out}_{i} = \tanh(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.8986, -0.7279, 1.1745, 0.2611])
>>> torch.tanh(a)
tensor([ 0.7156, -0.6218, 0.8257, 0.2553])
""".format(
**common_args
),
)
add_docstr(
torch.topk,
r"""
topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor)
Returns the :attr:`k` largest elements of the given :attr:`input` tensor along
a given dimension.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
If :attr:`largest` is ``False`` then the `k` smallest elements are returned.
A namedtuple of `(values, indices)` is returned with the `values` and
`indices` of the largest `k` elements of each row of the `input` tensor in the
given dimension `dim`.
The boolean option :attr:`sorted` if ``True``, will make sure that the returned
`k` elements are themselves sorted
Args:
{input}
k (int): the k in "top-k"
dim (int, optional): the dimension to sort along
largest (bool, optional): controls whether to return largest or
smallest elements
sorted (bool, optional): controls whether to return the elements
in sorted order
Keyword args:
out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be
optionally given to be used as output buffers
Example::
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.topk(x, 3)
torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))
""".format(
**common_args
),
)
add_docstr(
torch.trace,
r"""
trace(input) -> Tensor
Returns the sum of the elements of the diagonal of the input 2-D matrix.
Example::
>>> x = torch.arange(1., 10.).view(3, 3)
>>> x
tensor([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]])
>>> torch.trace(x)
tensor(15.)
""",
)
add_docstr(
torch.transpose,
r"""
transpose(input, dim0, dim1) -> Tensor
Returns a tensor that is a transposed version of :attr:`input`.
The given dimensions :attr:`dim0` and :attr:`dim1` are swapped.
If :attr:`input` is a strided tensor then the resulting :attr:`out`
tensor shares its underlying storage with the :attr:`input` tensor, so
changing the content of one would change the content of the other.
If :attr:`input` is a :ref:`sparse tensor <sparse-docs>` then the
resulting :attr:`out` tensor *does not* share the underlying storage
with the :attr:`input` tensor.
If :attr:`input` is a :ref:`sparse tensor <sparse-docs>` with compressed
layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments
:attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must
both be sparse dimensions. The batch dimensions of a sparse tensor are the
dimensions preceding the sparse dimensions.
.. note::
Transpositions which interchange the sparse dimensions of a `SparseCSR`
or `SparseCSC` layout tensor will result in the layout changing between
the two options. Transposition of the sparse dimensions of a ` SparseBSR`
or `SparseBSC` layout tensor will likewise generate a result with the
opposite layout.
Args:
{input}
dim0 (int): the first dimension to be transposed
dim1 (int): the second dimension to be transposed
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 1.0028, -0.9893, 0.5809],
[-0.1669, 0.7299, 0.4942]])
>>> torch.transpose(x, 0, 1)
tensor([[ 1.0028, -0.1669],
[-0.9893, 0.7299],
[ 0.5809, 0.4942]])
See also :func:`torch.t`.
""".format(
**common_args
),
)
add_docstr(
torch.triangular_solve,
r"""
triangular_solve(b, A, upper=True, transpose=False, unitriangular=False, *, out=None) -> (Tensor, Tensor)
Solves a system of equations with a square upper or lower triangular invertible matrix :math:`A`
and multiple right-hand sides :math:`b`.
In symbols, it solves :math:`AX = b` and assumes :math:`A` is square upper-triangular
(or lower-triangular if :attr:`upper`\ `= False`) and does not have zeros on the diagonal.
`torch.triangular_solve(b, A)` can take in 2D inputs `b, A` or inputs that are
batches of 2D matrices. If the inputs are batches, then returns
batched outputs `X`
If the diagonal of :attr:`A` contains zeros or elements that are very close to zero and
:attr:`unitriangular`\ `= False` (default) or if the input matrix is badly conditioned,
the result may contain `NaN` s.
Supports input of float, double, cfloat and cdouble data types.
.. warning::
:func:`torch.triangular_solve` is deprecated in favor of :func:`torch.linalg.solve_triangular`
and will be removed in a future PyTorch release.
:func:`torch.linalg.solve_triangular` has its arguments reversed and does not return a
copy of one of the inputs.
``X = torch.triangular_solve(B, A).solution`` should be replaced with
.. code:: python
X = torch.linalg.solve_triangular(A, B)
Args:
b (Tensor): multiple right-hand sides of size :math:`(*, m, k)` where
:math:`*` is zero of more batch dimensions
A (Tensor): the input triangular coefficient matrix of size :math:`(*, m, m)`
where :math:`*` is zero or more batch dimensions
upper (bool, optional): whether :math:`A` is upper or lower triangular. Default: ``True``.
transpose (bool, optional): solves `op(A)X = b` where `op(A) = A^T` if this flag is ``True``,
and `op(A) = A` if it is ``False``. Default: ``False``.
unitriangular (bool, optional): whether :math:`A` is unit triangular.
If True, the diagonal elements of :math:`A` are assumed to be
1 and not referenced from :math:`A`. Default: ``False``.
Keyword args:
out ((Tensor, Tensor), optional): tuple of two tensors to write
the output to. Ignored if `None`. Default: `None`.
Returns:
A namedtuple `(solution, cloned_coefficient)` where `cloned_coefficient`
is a clone of :math:`A` and `solution` is the solution :math:`X` to :math:`AX = b`
(or whatever variant of the system of equations, depending on the keyword arguments.)
Examples::
>>> A = torch.randn(2, 2).triu()
>>> A
tensor([[ 1.1527, -1.0753],
[ 0.0000, 0.7986]])
>>> b = torch.randn(2, 3)
>>> b
tensor([[-0.0210, 2.3513, -1.5492],
[ 1.5429, 0.7403, -1.0243]])
>>> torch.triangular_solve(b, A)
torch.return_types.triangular_solve(
solution=tensor([[ 1.7841, 2.9046, -2.5405],
[ 1.9320, 0.9270, -1.2826]]),
cloned_coefficient=tensor([[ 1.1527, -1.0753],
[ 0.0000, 0.7986]]))
""",
)
add_docstr(
torch.tril,
r"""
tril(input, diagonal=0, *, out=None) -> Tensor
Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices
:attr:`input`, the other elements of the result tensor :attr:`out` are set to 0.
The lower triangular part of the matrix is defined as the elements on and
below the diagonal.
The argument :attr:`diagonal` controls which diagonal to consider. If
:attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
"""
+ r"""
Args:
{input}
diagonal (int, optional): the diagonal to consider
Keyword args:
{out}
Example::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-1.0813, -0.8619, 0.7105],
[ 0.0935, 0.1380, 2.2112],
[-0.3409, -0.9828, 0.0289]])
>>> torch.tril(a)
tensor([[-1.0813, 0.0000, 0.0000],
[ 0.0935, 0.1380, 0.0000],
[-0.3409, -0.9828, 0.0289]])
>>> b = torch.randn(4, 6)
>>> b
tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461],
[ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145],
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864],
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]])
>>> torch.tril(b, diagonal=1)
tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000],
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000],
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]])
>>> torch.tril(b, diagonal=-1)
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]])
""".format(
**common_args
),
)
# docstr is split in two parts to avoid format mis-captureing :math: braces '{}'
# as common args.
add_docstr(
torch.tril_indices,
r"""
tril_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
Returns the indices of the lower triangular part of a :attr:`row`-by-
:attr:`col` matrix in a 2-by-N Tensor, where the first row contains row
coordinates of all indices and the second row contains column coordinates.
Indices are ordered based on rows and then columns.
The lower triangular part of the matrix is defined as the elements on and
below the diagonal.
The argument :attr:`offset` controls which diagonal to consider. If
:attr:`offset` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]`
where :math:`d_{1}, d_{2}` are the dimensions of the matrix.
.. note::
When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to
prevent overflow during calculation.
"""
+ r"""
Args:
row (``int``): number of rows in the 2-D matrix.
col (``int``): number of columns in the 2-D matrix.
offset (``int``): diagonal offset from the main diagonal.
Default: if not provided, 0.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, ``torch.long``.
{device}
layout (:class:`torch.layout`, optional): currently only support ``torch.strided``.
Example::
>>> a = torch.tril_indices(3, 3)
>>> a
tensor([[0, 1, 1, 2, 2, 2],
[0, 0, 1, 0, 1, 2]])
>>> a = torch.tril_indices(4, 3, -1)
>>> a
tensor([[1, 2, 2, 3, 3, 3],
[0, 0, 1, 0, 1, 2]])
>>> a = torch.tril_indices(4, 3, 1)
>>> a
tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3],
[0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.triu,
r"""
triu(input, diagonal=0, *, out=None) -> Tensor
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`input`, the other elements of the result tensor :attr:`out` are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
The argument :attr:`diagonal` controls which diagonal to consider. If
:attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
"""
+ r"""
Args:
{input}
diagonal (int, optional): the diagonal to consider
Keyword args:
{out}
Example::
>>> a = torch.randn(3, 3)
>>> a
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.2072, -1.0680, 0.6602],
[ 0.3480, -0.5211, -0.4573]])
>>> torch.triu(a)
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.0000, -1.0680, 0.6602],
[ 0.0000, 0.0000, -0.4573]])
>>> torch.triu(a, diagonal=1)
tensor([[ 0.0000, 0.5207, 2.0049],
[ 0.0000, 0.0000, 0.6602],
[ 0.0000, 0.0000, 0.0000]])
>>> torch.triu(a, diagonal=-1)
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.2072, -1.0680, 0.6602],
[ 0.0000, -0.5211, -0.4573]])
>>> b = torch.randn(4, 6)
>>> b
tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
[-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857],
[ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
[-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]])
>>> torch.triu(b, diagonal=1)
tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
[ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857],
[ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]])
>>> torch.triu(b, diagonal=-1)
tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
[-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857],
[ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
[ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]])
""".format(
**common_args
),
)
# docstr is split in two parts to avoid format mis-capturing :math: braces '{}'
# as common args.
add_docstr(
torch.triu_indices,
r"""
triu_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
Returns the indices of the upper triangular part of a :attr:`row` by
:attr:`col` matrix in a 2-by-N Tensor, where the first row contains row
coordinates of all indices and the second row contains column coordinates.
Indices are ordered based on rows and then columns.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
The argument :attr:`offset` controls which diagonal to consider. If
:attr:`offset` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]`
where :math:`d_{1}, d_{2}` are the dimensions of the matrix.
.. note::
When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to
prevent overflow during calculation.
"""
+ r"""
Args:
row (``int``): number of rows in the 2-D matrix.
col (``int``): number of columns in the 2-D matrix.
offset (``int``): diagonal offset from the main diagonal.
Default: if not provided, 0.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, ``torch.long``.
{device}
layout (:class:`torch.layout`, optional): currently only support ``torch.strided``.
Example::
>>> a = torch.triu_indices(3, 3)
>>> a
tensor([[0, 0, 0, 1, 1, 2],
[0, 1, 2, 1, 2, 2]])
>>> a = torch.triu_indices(4, 3, -1)
>>> a
tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3],
[0, 1, 2, 0, 1, 2, 1, 2, 2]])
>>> a = torch.triu_indices(4, 3, 1)
>>> a
tensor([[0, 0, 1],
[1, 2, 2]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.true_divide,
r"""
true_divide(dividend, divisor, *, out) -> Tensor
Alias for :func:`torch.div` with ``rounding_mode=None``.
""",
)
add_docstr(
torch.trunc,
r"""
trunc(input, *, out=None) -> Tensor
Returns a new tensor with the truncated integer values of
the elements of :attr:`input`.
For integer inputs, follows the array-api convention of returning a
copy of the input tensor.
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 3.4742, 0.5466, -0.8008, -0.9079])
>>> torch.trunc(a)
tensor([ 3., 0., -0., -0.])
""".format(
**common_args
),
)
add_docstr(
torch.fake_quantize_per_tensor_affine,
r"""
fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor
Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`,
:attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`.
.. math::
\text{output} = min(
\text{quant\_max},
max(
\text{quant\_min},
\text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point}
)
)
Args:
input (Tensor): the input value(s), ``torch.float32`` tensor
scale (double scalar or ``float32`` Tensor): quantization scale
zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point
quant_min (int64): lower bound of the quantized domain
quant_max (int64): upper bound of the quantized domain
Returns:
Tensor: A newly fake_quantized ``torch.float32`` tensor
Example::
>>> x = torch.randn(4)
>>> x
tensor([ 0.0552, 0.9730, 0.3973, -1.0780])
>>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255)
tensor([0.1000, 1.0000, 0.4000, 0.0000])
>>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255)
tensor([0.6000, 0.4000, 0.0000, 0.0000])
""",
)
add_docstr(
torch.fake_quantize_per_channel_affine,
r"""
fake_quantize_per_channel_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor
Returns a new tensor with the data in :attr:`input` fake quantized per channel using :attr:`scale`,
:attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`, across the channel specified by :attr:`axis`.
.. math::
\text{output} = min(
\text{quant\_max},
max(
\text{quant\_min},
\text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point}
)
)
Args:
input (Tensor): the input value(s), in ``torch.float32``
scale (Tensor): quantization scale, per channel in ``torch.float32``
zero_point (Tensor): quantization zero_point, per channel in ``torch.int32`` or ``torch.half`` or ``torch.float32``
axis (int32): channel axis
quant_min (int64): lower bound of the quantized domain
quant_max (int64): upper bound of the quantized domain
Returns:
Tensor: A newly fake_quantized per channel ``torch.float32`` tensor
Example::
>>> x = torch.randn(2, 2, 2)
>>> x
tensor([[[-0.2525, -0.0466],
[ 0.3491, -0.2168]],
[[-0.5906, 1.6258],
[ 0.6444, -0.0542]]])
>>> scales = (torch.randn(2) + 1) * 0.05
>>> scales
tensor([0.0475, 0.0486])
>>> zero_points = torch.zeros(2).to(torch.int32)
>>> zero_points
tensor([0, 0])
>>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255)
tensor([[[0.0000, 0.0000],
[0.3405, 0.0000]],
[[0.0000, 1.6134],
[0.6323, 0.0000]]])
""",
)
add_docstr(
torch.fix,
r"""
fix(input, *, out=None) -> Tensor
Alias for :func:`torch.trunc`
""",
)
add_docstr(
torch.unsqueeze,
r"""
unsqueeze(input, dim) -> Tensor
Returns a new tensor with a dimension of size one inserted at the
specified position.
The returned tensor shares the same underlying data with this tensor.
A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)``
can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze`
applied at :attr:`dim` = ``dim + input.dim() + 1``.
Args:
{input}
dim (int): the index at which to insert the singleton dimension
Example::
>>> x = torch.tensor([1, 2, 3, 4])
>>> torch.unsqueeze(x, 0)
tensor([[ 1, 2, 3, 4]])
>>> torch.unsqueeze(x, 1)
tensor([[ 1],
[ 2],
[ 3],
[ 4]])
""".format(
**common_args
),
)
add_docstr(
torch.var,
r"""
var(input, dim, unbiased, keepdim=False, *, out=None) -> Tensor
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample variance is calculated, without any correction.
Args:
{input}
{opt_dim}
Keyword args:
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
{keepdim}
{out}
.. function:: var(input, unbiased) -> Tensor
:noindex:
Calculates the variance of all elements in the :attr:`input` tensor.
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample deviation is calculated, without any correction.
Args:
{input}
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
Example::
>>> a = torch.tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.var(a, unbiased=False)
tensor(0.1754)
""".format(
**multi_dim_common
),
)
add_docstr(
torch.var_mean,
r"""
var_mean(input, dim, unbiased, keepdim=False, *, out=None) -> (Tensor, Tensor)
If :attr:`unbiased` is ``True``, Bessel's correction will be used to calculate
the variance. Otherwise, the sample variance is calculated, without any
correction.
Args:
{input}
{opt_dim}
Keyword args:
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
{keepdim}
{out}
Returns:
A tuple (var, mean) containing the variance and mean.
.. function:: var_mean(input, unbiased) -> (Tensor, Tensor)
:noindex:
Calculates the variance and mean of all elements in the :attr:`input`
tensor.
If :attr:`unbiased` is ``True``, Bessel's correction will be used.
Otherwise, the sample deviation is calculated, without any correction.
Args:
{input}
unbiased (bool): whether to use Bessel's correction (:math:`\delta N = 1`).
Returns:
A tuple (var, mean) containing the variance and mean.
Example::
>>> a = torch.tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.var_mean(a, unbiased=False)
(tensor(0.1754), tensor(-0.8509))
""".format(
**multi_dim_common
),
)
add_docstr(
torch.zeros,
r"""
zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `0`, with the shape defined
by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword args:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.zeros(2, 3)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> torch.zeros(5)
tensor([ 0., 0., 0., 0., 0.])
""".format(
**factory_common_args
),
)
add_docstr(
torch.zeros_like,
r"""
zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns a tensor filled with the scalar value `0`, with the same size as
:attr:`input`. ``torch.zeros_like(input)`` is equivalent to
``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
.. warning::
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
the old ``torch.zeros_like(input, out=output)`` is equivalent to
``torch.zeros(input.size(), out=output)``.
Args:
{input}
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
Example::
>>> input = torch.empty(2, 3)
>>> torch.zeros_like(input)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.empty,
"""
empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, \
memory_format=torch.contiguous_format) -> Tensor
Returns a tensor filled with uninitialized data. The shape of the tensor is
defined by the variable argument :attr:`size`.
Args:
size (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
Keyword args:
{out}
{dtype}
{layout}
{device}
{requires_grad}
{pin_memory}
{memory_format}
Example::
>>> torch.empty((2,3), dtype=torch.int64)
tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13],
[ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.empty_like,
r"""
empty_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns an uninitialized tensor with the same size as :attr:`input`.
``torch.empty_like(input)`` is equivalent to
``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
Example::
>>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda')
>>> torch.empty_like(a)
tensor([[0, 0, 0],
[0, 0, 0]], device='cuda:0', dtype=torch.int32)
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.empty_strided,
r"""
empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor
Creates a tensor with the specified :attr:`size` and :attr:`stride` and filled with undefined data.
.. warning::
If the constructed tensor is "overlapped" (with multiple indices referring to the same element
in memory) its behavior is undefined.
Args:
size (tuple of int): the shape of the output tensor
stride (tuple of int): the strides of the output tensor
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{pin_memory}
Example::
>>> a = torch.empty_strided((2, 3), (1, 2))
>>> a
tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07],
[0.0000e+00, 0.0000e+00, 3.0705e-41]])
>>> a.stride()
(1, 2)
>>> a.size()
torch.Size([2, 3])
""".format(
**factory_common_args
),
)
add_docstr(
torch.full,
r"""
full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The
tensor's dtype is inferred from :attr:`fill_value`.
Args:
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
shape of the output tensor.
fill_value (Scalar): the value to fill the output tensor with.
Keyword args:
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.full((2, 3), 3.141592)
tensor([[ 3.1416, 3.1416, 3.1416],
[ 3.1416, 3.1416, 3.1416]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.full_like,
"""
full_like(input, fill_value, \\*, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
memory_format=torch.preserve_format) -> Tensor
Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`.
``torch.full_like(input, fill_value)`` is equivalent to
``torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
fill_value: the number to fill the output tensor with.
Keyword args:
{dtype}
{layout}
{device}
{requires_grad}
{memory_format}
""".format(
**factory_like_common_args
),
)
add_docstr(
torch.det,
r"""
det(input) -> Tensor
Alias for :func:`torch.linalg.det`
""",
)
add_docstr(
torch.where,
r"""
where(condition, x, y) -> Tensor
Return a tensor of elements selected from either :attr:`x` or :attr:`y`, depending on :attr:`condition`.
The operation is defined as:
.. math::
\text{out}_i = \begin{cases}
\text{x}_i & \text{if } \text{condition}_i \\
\text{y}_i & \text{otherwise} \\
\end{cases}
.. note::
The tensors :attr:`condition`, :attr:`x`, :attr:`y` must be :ref:`broadcastable <broadcasting-semantics>`.
Arguments:
condition (BoolTensor): When True (nonzero), yield x, otherwise yield y
x (Tensor or Scalar): value (if :attr:`x` is a scalar) or values selected at indices
where :attr:`condition` is ``True``
y (Tensor or Scalar): value (if :attr:`y` is a scalar) or values selected at indices
where :attr:`condition` is ``False``
Returns:
Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`x`, :attr:`y`
Example::
>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> x
tensor([[-0.4620, 0.3139],
[ 0.3898, -0.7197],
[ 0.0478, -0.1657]])
>>> torch.where(x > 0, x, y)
tensor([[ 1.0000, 0.3139],
[ 0.3898, 1.0000],
[ 0.0478, 1.0000]])
>>> x = torch.randn(2, 2, dtype=torch.double)
>>> x
tensor([[ 1.0779, 0.0383],
[-0.8785, -1.1089]], dtype=torch.float64)
>>> torch.where(x > 0, x, 0.)
tensor([[1.0779, 0.0383],
[0.0000, 0.0000]], dtype=torch.float64)
.. function:: where(condition) -> tuple of LongTensor
:noindex:
``torch.where(condition)`` is identical to
``torch.nonzero(condition, as_tuple=True)``.
.. note::
See also :func:`torch.nonzero`.
""",
)
add_docstr(
torch.logdet,
r"""
logdet(input) -> Tensor
Calculates log determinant of a square matrix or batches of square matrices.
It returns ``-inf`` if the input has a determinant of zero, and ``NaN`` if it has
a negative determinant.
.. note::
Backward through :meth:`logdet` internally uses SVD results when :attr:`input`
is not invertible. In this case, double backward through :meth:`logdet` will
be unstable in when :attr:`input` doesn't have distinct singular values. See
:func:`torch.linalg.svd` for details.
.. seealso::
:func:`torch.linalg.slogdet` computes the sign (resp. angle) and natural logarithm of the
absolute value of the determinant of real-valued (resp. complex) square matrices.
Arguments:
input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more
batch dimensions.
Example::
>>> A = torch.randn(3, 3)
>>> torch.det(A)
tensor(0.2611)
>>> torch.logdet(A)
tensor(-1.3430)
>>> A
tensor([[[ 0.9254, -0.6213],
[-0.5787, 1.6843]],
[[ 0.3242, -0.9665],
[ 0.4539, -0.0887]],
[[ 1.1336, -0.4025],
[-0.7089, 0.9032]]])
>>> A.det()
tensor([1.1990, 0.4099, 0.7386])
>>> A.det().log()
tensor([ 0.1815, -0.8917, -0.3031])
""",
)
add_docstr(
torch.slogdet,
r"""
slogdet(input) -> (Tensor, Tensor)
Alias for :func:`torch.linalg.slogdet`
""",
)
add_docstr(
torch.pinverse,
r"""
pinverse(input, rcond=1e-15) -> Tensor
Alias for :func:`torch.linalg.pinv`
""",
)
add_docstr(
torch.hann_window,
"""
hann_window(window_length, periodic=True, *, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Hann window function.
.. math::
w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] =
\sin^2 \left( \frac{\pi n}{N - 1} \right),
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.hann_window(L, periodic=True)`` equal to
``torch.hann_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
"""
+ r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
Keyword args:
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(
**factory_common_args
),
)
add_docstr(
torch.hamming_window,
"""
hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Hamming window function.
.. math::
w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right),
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.hamming_window(L, periodic=True)`` equal to
``torch.hamming_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
.. note::
This is a generalized version of :meth:`torch.hann_window`.
"""
+ r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
alpha (float, optional): The coefficient :math:`\alpha` in the equation above
beta (float, optional): The coefficient :math:`\beta` in the equation above
Keyword args:
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(
**factory_common_args
),
)
add_docstr(
torch.bartlett_window,
"""
bartlett_window(window_length, periodic=True, *, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Bartlett window function.
.. math::
w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases}
\frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\
2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\
\end{cases},
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.bartlett_window(L, periodic=True)`` equal to
``torch.bartlett_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
"""
+ r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
Keyword args:
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(
**factory_common_args
),
)
add_docstr(
torch.blackman_window,
"""
blackman_window(window_length, periodic=True, *, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Blackman window function.
.. math::
w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right)
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.blackman_window(L, periodic=True)`` equal to
``torch.blackman_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
"""
+ r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
Keyword args:
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(
**factory_common_args
),
)
add_docstr(
torch.kaiser_window,
"""
kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
"""
+ r"""
Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`.
Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and
``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True,
where ``L`` is the :attr:`window_length`. This function computes:
.. math::
out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )
Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling
``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``.
The :attr:`periodic` argument is intended as a helpful shorthand
to produce a periodic window as input to functions like :func:`torch.stft`.
.. note::
If :attr:`window_length` is one, then the returned window is a single element tensor containing a one.
"""
+ r"""
Args:
window_length (int): length of the window.
periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis.
If False, returns a symmetric window suitable for use in filter design.
beta (float, optional): shape parameter for the window.
Keyword args:
{dtype}
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
""".format(
**factory_common_args
),
)
add_docstr(
torch.vander,
"""
vander(x, N=None, increasing=False) -> Tensor
"""
+ r"""
Generates a Vandermonde matrix.
The columns of the output matrix are elementwise powers of the input vector :math:`x^{{(N-1)}}, x^{{(N-2)}}, ..., x^0`.
If increasing is True, the order of the columns is reversed :math:`x^0, x^1, ..., x^{{(N-1)}}`. Such a
matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
Arguments:
x (Tensor): 1-D input tensor.
N (int, optional): Number of columns in the output. If N is not specified,
a square array is returned :math:`(N = len(x))`.
increasing (bool, optional): Order of the powers of the columns. If True,
the powers increase from left to right, if False (the default) they are reversed.
Returns:
Tensor: Vandermonde matrix. If increasing is False, the first column is :math:`x^{{(N-1)}}`,
the second :math:`x^{{(N-2)}}` and so forth. If increasing is True, the columns
are :math:`x^0, x^1, ..., x^{{(N-1)}}`.
Example::
>>> x = torch.tensor([1, 2, 3, 5])
>>> torch.vander(x)
tensor([[ 1, 1, 1, 1],
[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])
>>> torch.vander(x, N=3)
tensor([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> torch.vander(x, N=3, increasing=True)
tensor([[ 1, 1, 1],
[ 1, 2, 4],
[ 1, 3, 9],
[ 1, 5, 25]])
""".format(
**factory_common_args
),
)
add_docstr(
torch.unbind,
r"""
unbind(input, dim=0) -> seq
Removes a tensor dimension.
Returns a tuple of all slices along a given dimension, already without it.
Arguments:
input (Tensor): the tensor to unbind
dim (int): dimension to remove
Example::
>>> torch.unbind(torch.tensor([[1, 2, 3],
>>> [4, 5, 6],
>>> [7, 8, 9]]))
(tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))
""",
)
add_docstr(
torch.combinations,
r"""
combinations(input, r=2, with_replacement=False) -> seq
Compute combinations of length :math:`r` of the given tensor. The behavior is similar to
python's `itertools.combinations` when `with_replacement` is set to `False`, and
`itertools.combinations_with_replacement` when `with_replacement` is set to `True`.
Arguments:
input (Tensor): 1D vector.
r (int, optional): number of elements to combine
with_replacement (bool, optional): whether to allow duplication in combination
Returns:
Tensor: A tensor equivalent to converting all the input tensors into lists, do
`itertools.combinations` or `itertools.combinations_with_replacement` on these
lists, and finally convert the resulting list into tensor.
Example::
>>> a = [1, 2, 3]
>>> list(itertools.combinations(a, r=2))
[(1, 2), (1, 3), (2, 3)]
>>> list(itertools.combinations(a, r=3))
[(1, 2, 3)]
>>> list(itertools.combinations_with_replacement(a, r=2))
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
>>> tensor_a = torch.tensor(a)
>>> torch.combinations(tensor_a)
tensor([[1, 2],
[1, 3],
[2, 3]])
>>> torch.combinations(tensor_a, r=3)
tensor([[1, 2, 3]])
>>> torch.combinations(tensor_a, with_replacement=True)
tensor([[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]])
""",
)
add_docstr(
torch.trapezoid,
r"""
trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor
Computes the `trapezoidal rule <https://en.wikipedia.org/wiki/Trapezoidal_rule>`_ along
:attr:`dim`. By default the spacing between elements is assumed to be 1, but
:attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be
used to specify arbitrary spacing along :attr:`dim`.
Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`,
the default computation is
.. math::
\begin{aligned}
\sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1})
\end{aligned}
When :attr:`dx` is specified the computation becomes
.. math::
\begin{aligned}
\sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1})
\end{aligned}
effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified,
assuming :attr:`x` is also a one-dimensional tensor with
elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes
.. math::
\begin{aligned}
\sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1})
\end{aligned}
When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed.
The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x`
and :attr:`y`, the function computes the difference between consecutive elements along
dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have
the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1.
After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule.
See the examples below for details.
.. note::
The trapezoidal rule is a technique for approximating the definite integral of a function
by averaging its left and right Riemann sums. The approximation becomes more accurate as
the resolution of the partition increases.
Arguments:
y (Tensor): Values to use when computing the trapezoidal rule.
x (Tensor): If specified, defines spacing between values as specified above.
Keyword arguments:
dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx`
are specified then this defaults to 1. Effectively multiplies the result by its value.
dim (int): The dimension along which to compute the trapezoidal rule.
The last (inner-most) dimension by default.
Examples::
>>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1
>>> y = torch.tensor([1, 5, 10])
>>> torch.trapezoid(y)
tensor(10.5)
>>> # Computes the same trapezoidal rule directly to verify
>>> (1 + 10 + 10) / 2
10.5
>>> # Computes the trapezoidal rule in 1D with constant spacing of 2
>>> # NOTE: the result is the same as before, but multiplied by 2
>>> torch.trapezoid(y, dx=2)
21.0
>>> # Computes the trapezoidal rule in 1D with arbitrary spacing
>>> x = torch.tensor([1, 3, 6])
>>> torch.trapezoid(y, x)
28.5
>>> # Computes the same trapezoidal rule directly to verify
>>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2
28.5
>>> # Computes the trapezoidal rule for each row of a 3x3 matrix
>>> y = torch.arange(9).reshape(3, 3)
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> torch.trapezoid(y)
tensor([ 2., 8., 14.])
>>> # Computes the trapezoidal rule for each column of the matrix
>>> torch.trapezoid(y, dim=0)
tensor([ 6., 8., 10.])
>>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix
>>> # with the same arbitrary spacing
>>> y = torch.ones(3, 3)
>>> x = torch.tensor([1, 3, 6])
>>> torch.trapezoid(y, x)
array([5., 5., 5.])
>>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix
>>> # with different arbitrary spacing per row
>>> y = torch.ones(3, 3)
>>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]])
>>> torch.trapezoid(y, x)
array([2., 4., 6.])
""",
)
add_docstr(
torch.trapz,
r"""
trapz(y, x, *, dim=-1) -> Tensor
Alias for :func:`torch.trapezoid`.
""",
)
add_docstr(
torch.cumulative_trapezoid,
r"""
cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor
Cumulatively computes the `trapezoidal rule <https://en.wikipedia.org/wiki/Trapezoidal_rule>`_
along :attr:`dim`. By default the spacing between elements is assumed to be 1, but
:attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be
used to specify arbitrary spacing along :attr:`dim`.
For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid`
and this function is that, :func:`torch.trapezoid` returns a value for each integration,
where as this function returns a cumulative value for every spacing within the integration. This
is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum.
Arguments:
y (Tensor): Values to use when computing the trapezoidal rule.
x (Tensor): If specified, defines spacing between values as specified above.
Keyword arguments:
dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx`
are specified then this defaults to 1. Effectively multiplies the result by its value.
dim (int): The dimension along which to compute the trapezoidal rule.
The last (inner-most) dimension by default.
Examples::
>>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1.
>>> y = torch.tensor([1, 5, 10])
>>> torch.cumulative_trapezoid(y)
tensor([3., 10.5])
>>> # Computes the same trapezoidal rule directly up to each element to verify
>>> (1 + 5) / 2
3.0
>>> (1 + 10 + 10) / 2
10.5
>>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2
>>> # NOTE: the result is the same as before, but multiplied by 2
>>> torch.cumulative_trapezoid(y, dx=2)
tensor([6., 21.])
>>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing
>>> x = torch.tensor([1, 3, 6])
>>> torch.cumulative_trapezoid(y, x)
tensor([6., 28.5])
>>> # Computes the same trapezoidal rule directly up to each element to verify
>>> ((3 - 1) * (1 + 5)) / 2
6.0
>>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2
28.5
>>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix
>>> y = torch.arange(9).reshape(3, 3)
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> torch.cumulative_trapezoid(y)
tensor([[ 0.5, 2.],
[ 3.5, 8.],
[ 6.5, 14.]])
>>> # Cumulatively computes the trapezoidal rule for each column of the matrix
>>> torch.cumulative_trapezoid(y, dim=0)
tensor([[ 1.5, 2.5, 3.5],
[ 6.0, 8.0, 10.0]])
>>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix
>>> # with the same arbitrary spacing
>>> y = torch.ones(3, 3)
>>> x = torch.tensor([1, 3, 6])
>>> torch.cumulative_trapezoid(y, x)
tensor([[2., 5.],
[2., 5.],
[2., 5.]])
>>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix
>>> # with different arbitrary spacing per row
>>> y = torch.ones(3, 3)
>>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]])
>>> torch.cumulative_trapezoid(y, x)
tensor([[1., 2.],
[2., 4.],
[3., 6.]])
""",
)
add_docstr(
torch.repeat_interleave,
r"""
repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor
Repeat elements of a tensor.
.. warning::
This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``.
Args:
{input}
repeats (Tensor or int): The number of repetitions for each element.
repeats is broadcasted to fit the shape of the given axis.
dim (int, optional): The dimension along which to repeat values.
By default, use the flattened input array, and return a flat output
array.
Keyword args:
output_size (int, optional): Total output size for the given axis
( e.g. sum of repeats). If given, it will avoid stream syncronization
needed to calculate output shape of the tensor.
Returns:
Tensor: Repeated tensor which has the same shape as input, except along the given axis.
Example::
>>> x = torch.tensor([1, 2, 3])
>>> x.repeat_interleave(2)
tensor([1, 1, 2, 2, 3, 3])
>>> y = torch.tensor([[1, 2], [3, 4]])
>>> torch.repeat_interleave(y, 2)
tensor([1, 1, 2, 2, 3, 3, 4, 4])
>>> torch.repeat_interleave(y, 3, dim=1)
tensor([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
tensor([[1, 2],
[3, 4],
[3, 4]])
>>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3)
tensor([[1, 2],
[3, 4],
[3, 4]])
.. function:: repeat_interleave(repeats, *, output_size=None) -> Tensor
:noindex:
If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be
`tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times,
`1` appears `n2` times, `2` appears `n3` times, etc.
""".format(
**common_args
),
)
add_docstr(
torch.tile,
r"""
tile(input, dims) -> Tensor
Constructs a tensor by repeating the elements of :attr:`input`.
The :attr:`dims` argument specifies the number of repetitions
in each dimension.
If :attr:`dims` specifies fewer dimensions than :attr:`input` has, then
ones are prepended to :attr:`dims` until all dimensions are specified.
For example, if :attr:`input` has shape (8, 6, 4, 2) and :attr:`dims`
is (2, 2), then :attr:`dims` is treated as (1, 1, 2, 2).
Analogously, if :attr:`input` has fewer dimensions than :attr:`dims`
specifies, then :attr:`input` is treated as if it were unsqueezed at
dimension zero until it has as many dimensions as :attr:`dims` specifies.
For example, if :attr:`input` has shape (4, 2) and :attr:`dims`
is (3, 3, 2, 2), then :attr:`input` is treated as if it had the
shape (1, 1, 4, 2).
.. note::
This function is similar to NumPy's tile function.
Args:
input (Tensor): the tensor whose elements to repeat.
dims (tuple): the number of repetitions per dimension.
Example::
>>> x = torch.tensor([1, 2, 3])
>>> x.tile((2,))
tensor([1, 2, 3, 1, 2, 3])
>>> y = torch.tensor([[1, 2], [3, 4]])
>>> torch.tile(y, (2, 2))
tensor([[1, 2, 1, 2],
[3, 4, 3, 4],
[1, 2, 1, 2],
[3, 4, 3, 4]])
""",
)
add_docstr(
torch.quantize_per_tensor,
r"""
quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor
Converts a float tensor to a quantized tensor with given scale and zero point.
Arguments:
input (Tensor): float tensor or list of tensors to quantize
scale (float or Tensor): scale to apply in quantization formula
zero_point (int or Tensor): offset in integer value that maps to float zero
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32``
Returns:
Tensor: A newly quantized tensor or list of quantized tensors.
Example::
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8)
tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10)
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr()
tensor([ 0, 10, 20, 30], dtype=torch.uint8)
>>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])],
>>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8)
(tensor([-1., 0.], size=(2,), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10),
tensor([-2., 2.], size=(2,), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20))
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8)
tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10)
""",
)
add_docstr(
torch.quantize_per_tensor_dynamic,
r"""
quantize_per_tensor_dynamic(input, dtype, reduce_range) -> Tensor
Converts a float tensor to a quantized tensor with scale and zero_point calculated
dynamically based on the input.
Arguments:
input (Tensor): float tensor or list of tensors to quantize
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``
reduce_range (bool): a flag to indicate whether to reduce the range of quantized
data by 1 bit, it's required to avoid instruction overflow for some hardwares
Returns:
Tensor: A newly (dynamically) quantized tensor
Example::
>>> t = torch.quantize_per_tensor_dynamic(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.quint8, False)
>>> print(t)
tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.011764705882352941,
zero_point=85)
>>> t.int_repr()
tensor([ 0, 85, 170, 255], dtype=torch.uint8)
""",
)
add_docstr(
torch.quantize_per_channel,
r"""
quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor
Converts a float tensor to a per-channel quantized tensor with given scales and zero points.
Arguments:
input (Tensor): float tensor to quantize
scales (Tensor): float 1D tensor of scales to use, size should match ``input.size(axis)``
zero_points (int): integer 1D tensor of offset to use, size should match ``input.size(axis)``
axis (int): dimension on which apply per-channel quantization
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32``
Returns:
Tensor: A newly quantized tensor
Example::
>>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
>>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8)
tensor([[-1., 0.],
[ 1., 2.]], size=(2, 2), dtype=torch.quint8,
quantization_scheme=torch.per_channel_affine,
scale=tensor([0.1000, 0.0100], dtype=torch.float64),
zero_point=tensor([10, 0]), axis=0)
>>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr()
tensor([[ 0, 10],
[100, 200]], dtype=torch.uint8)
""",
)
add_docstr(
torch.quantized_batch_norm,
r"""
quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) -> Tensor
Applies batch normalization on a 4D (NCHW) quantized tensor.
.. math::
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
Arguments:
input (Tensor): quantized tensor
weight (Tensor): float tensor that corresponds to the gamma, size C
bias (Tensor): float tensor that corresponds to the beta, size C
mean (Tensor): float mean value in batch normalization, size C
var (Tensor): float tensor for variance, size C
eps (float): a value added to the denominator for numerical stability.
output_scale (float): output quantized tensor scale
output_zero_point (int): output quantized tensor zero_point
Returns:
Tensor: A quantized tensor with batch normalization applied.
Example::
>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2)
tensor([[[[-0.2000, -0.2000],
[ 1.6000, -0.2000]],
[[-0.4000, -0.4000],
[-0.4000, 0.6000]]],
[[[-0.2000, -0.2000],
[-0.2000, -0.2000]],
[[ 0.6000, -0.4000],
[ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2)
""",
)
add_docstr(
torch.quantized_max_pool1d,
r"""
quantized_max_pool1d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor
Applies a 1D max pooling over an input quantized tensor composed of several input planes.
Arguments:
input (Tensor): quantized tensor
kernel_size (list of int): the size of the sliding window
stride (``list of int``, optional): the stride of the sliding window
padding (``list of int``, opttional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2
dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1
ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape.
Defaults to False.
Returns:
Tensor: A quantized tensor with max_pool1d applied.
Example::
>>> qx = torch.quantize_per_tensor(torch.rand(2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_max_pool1d(qx, [2])
tensor([[0.0000],
[1.5000]], size=(2, 1), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)
""",
)
add_docstr(
torch.quantized_max_pool2d,
r"""
quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor
Applies a 2D max pooling over an input quantized tensor composed of several input planes.
Arguments:
input (Tensor): quantized tensor
kernel_size (``list of int``): the size of the sliding window
stride (``list of int``, optional): the stride of the sliding window
padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2
dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1
ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape.
Defaults to False.
Returns:
Tensor: A quantized tensor with max_pool2d applied.
Example::
>>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8)
>>> torch.quantized_max_pool2d(qx, [2,2])
tensor([[[[1.5000]],
[[1.5000]]],
[[[0.0000]],
[[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8,
quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)
""",
)
add_docstr(
torch.Generator,
r"""
Generator(device='cpu') -> Generator
Creates and returns a generator object that manages the state of the algorithm which
produces pseudo random numbers. Used as a keyword argument in many :ref:`inplace-random-sampling`
functions.
Arguments:
device (:class:`torch.device`, optional): the desired device for the generator.
Returns:
Generator: An torch.Generator object.
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> g_cpu = torch.Generator()
>>> g_cuda = torch.Generator(device='cuda')
""",
)
add_docstr(
torch.Generator.set_state,
r"""
Generator.set_state(new_state) -> void
Sets the Generator state.
Arguments:
new_state (torch.ByteTensor): The desired state.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu_other = torch.Generator()
>>> g_cpu.set_state(g_cpu_other.get_state())
""",
)
add_docstr(
torch.Generator.get_state,
r"""
Generator.get_state() -> Tensor
Returns the Generator state as a ``torch.ByteTensor``.
Returns:
Tensor: A ``torch.ByteTensor`` which contains all the necessary bits
to restore a Generator to a specific point in time.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu.get_state()
""",
)
add_docstr(
torch.Generator.manual_seed,
r"""
Generator.manual_seed(seed) -> Generator
Sets the seed for generating random numbers. Returns a `torch.Generator` object.
It is recommended to set a large seed, i.e. a number that has a good balance of 0
and 1 bits. Avoid having many 0 bits in the seed.
Arguments:
seed (int): The desired seed. Value must be within the inclusive range
`[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError
is raised. Negative inputs are remapped to positive values with the formula
`0xffff_ffff_ffff_ffff + seed`.
Returns:
Generator: An torch.Generator object.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu.manual_seed(2147483647)
""",
)
add_docstr(
torch.Generator.initial_seed,
r"""
Generator.initial_seed() -> int
Returns the initial seed for generating random numbers.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu.initial_seed()
2147483647
""",
)
add_docstr(
torch.Generator.seed,
r"""
Generator.seed() -> int
Gets a non-deterministic random number from std::random_device or the current
time and uses it to seed a Generator.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu.seed()
1516516984916
""",
)
add_docstr(
torch.Generator.device,
r"""
Generator.device -> device
Gets the current device of the generator.
Example::
>>> g_cpu = torch.Generator()
>>> g_cpu.device
device(type='cpu')
""",
)
add_docstr(
torch._assert_async,
r"""
_assert_async(tensor) -> void
Asynchronously assert that the contents of tensor are nonzero. For CPU tensors,
this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for
CUDA tensors, we DO NOT synchronize and you may only find out the assertion
failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for
testing invariants in CUDA tensors without giving up performance. This function
is NOT intended to be used for regular error checking, as it will trash your CUDA
context if the assert fails (forcing you to restart your PyTorch process.)
Args:
tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero
elements (including False for boolean tensors) cause an assertion failure
to be raised.
""",
)
add_docstr(
torch.searchsorted,
r"""
searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side='left', out=None, sorter=None) -> Tensor
Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the
corresponding values in :attr:`values` were inserted before the indices, when sorted, the order
of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved.
Return a new tensor with the same size as :attr:`values`. If :attr:`right` is False or side is
'left (default), then the left boundary of :attr:`sorted_sequence` is closed. More formally,
the returned index satisfies the following rules:
.. list-table::
:widths: 12 10 78
:header-rows: 1
* - :attr:`sorted_sequence`
- :attr:`right`
- *returned index satisfies*
* - 1-D
- False
- ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]``
* - 1-D
- True
- ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]``
* - N-D
- False
- ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]``
* - N-D
- True
- ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]``
Args:
sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost*
dimension unless :attr:`sorter` is provided, in which case the sequence does not
need to be sorted
values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s).
Keyword args:
out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise.
Default value is False, i.e. default output data type is torch.int64.
right (bool, optional): if False, return the first suitable location that is found. If True, return the
last such index. If no suitable index found, return 0 for non-numerical value
(eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence`
(one pass the last index of the *innermost* dimension). In other words, if False,
gets the lower bound index for each value in :attr:`values` on the corresponding
*innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper
bound index instead. Default value is False. :attr:`side` does the same and is
preferred. It will error if :attr:`side` is set to "left" while this is True.
side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right`
and "right" corresponds to True for :attr:`right`. It will error if this is set to
"left" while :attr:`right` is True.
out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided.
sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted
:attr:`sorted_sequence` containing a sequence of indices that sort it in the
ascending order on the innermost dimension
Example::
>>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
>>> sorted_sequence
tensor([[ 1, 3, 5, 7, 9],
[ 2, 4, 6, 8, 10]])
>>> values = torch.tensor([[3, 6, 9], [3, 6, 9]])
>>> values
tensor([[3, 6, 9],
[3, 6, 9]])
>>> torch.searchsorted(sorted_sequence, values)
tensor([[1, 3, 4],
[1, 2, 4]])
>>> torch.searchsorted(sorted_sequence, values, side='right')
tensor([[2, 3, 5],
[1, 3, 4]])
>>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9])
>>> sorted_sequence_1d
tensor([1, 3, 5, 7, 9])
>>> torch.searchsorted(sorted_sequence_1d, values)
tensor([[1, 3, 4],
[1, 3, 4]])
""",
)
add_docstr(
torch.bucketize,
r"""
bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor
Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the
boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size
as :attr:`input`. If :attr:`right` is False (default), then the left boundary is closed. More
formally, the returned index satisfies the following rules:
.. list-table::
:widths: 15 85
:header-rows: 1
* - :attr:`right`
- *returned index satisfies*
* - False
- ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]``
* - True
- ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]``
Args:
input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s).
boundaries (Tensor): 1-D tensor, must contain a monotonically increasing sequence.
Keyword args:
out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise.
Default value is False, i.e. default output data type is torch.int64.
right (bool, optional): if False, return the first suitable location that is found. If True, return the
last such index. If no suitable index found, return 0 for non-numerical value
(eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index).
In other words, if False, gets the lower bound index for each value in :attr:`input`
from :attr:`boundaries`. If True, gets the upper bound index instead.
Default value is False.
out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided.
Example::
>>> boundaries = torch.tensor([1, 3, 5, 7, 9])
>>> boundaries
tensor([1, 3, 5, 7, 9])
>>> v = torch.tensor([[3, 6, 9], [3, 6, 9]])
>>> v
tensor([[3, 6, 9],
[3, 6, 9]])
>>> torch.bucketize(v, boundaries)
tensor([[1, 3, 4],
[1, 3, 4]])
>>> torch.bucketize(v, boundaries, right=True)
tensor([[2, 3, 5],
[2, 3, 5]])
""",
)
add_docstr(
torch.view_as_real_copy,
r"""
Performs the same operation as :func:`torch.view_as_real`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.view_as_complex_copy,
r"""
Performs the same operation as :func:`torch.view_as_complex`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.as_strided_copy,
r"""
Performs the same operation as :func:`torch.as_strided`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.diagonal_copy,
r"""
Performs the same operation as :func:`torch.diagonal`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.expand_copy,
r"""
Performs the same operation as :func:`torch.expand`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.permute_copy,
r"""
Performs the same operation as :func:`torch.permute`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.select_copy,
r"""
Performs the same operation as :func:`torch.select`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.detach_copy,
r"""
Performs the same operation as :func:`torch.detach`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.slice_copy,
r"""
Performs the same operation as :func:`torch.slice`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.split_copy,
r"""
Performs the same operation as :func:`torch.split`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.split_with_sizes_copy,
r"""
Performs the same operation as :func:`torch.split_with_sizes`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.squeeze_copy,
r"""
Performs the same operation as :func:`torch.squeeze`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.t_copy,
r"""
Performs the same operation as :func:`torch.t`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.transpose_copy,
r"""
Performs the same operation as :func:`torch.transpose`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.unsqueeze_copy,
r"""
Performs the same operation as :func:`torch.unsqueeze`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.indices_copy,
r"""
Performs the same operation as :func:`torch.indices`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.values_copy,
r"""
Performs the same operation as :func:`torch.values`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.crow_indices_copy,
r"""
Performs the same operation as :func:`torch.crow_indices`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.col_indices_copy,
r"""
Performs the same operation as :func:`torch.col_indices`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.unbind_copy,
r"""
Performs the same operation as :func:`torch.unbind`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.view_copy,
r"""
Performs the same operation as :func:`torch.view`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.unfold_copy,
r"""
Performs the same operation as :func:`torch.unfold`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
add_docstr(
torch.alias_copy,
r"""
Performs the same operation as :func:`torch.alias`, but all output tensors
are freshly created instead of aliasing the input.
""",
)
|