File: fused.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (128 lines) | stat: -rw-r--r-- 7,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d
from torch.nn.utils.parametrize import type_before_parametrizations

__all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d',
           'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d',
           'LinearBn1d']
# Used for identifying intrinsic modules used in quantization
class _FusedModule(torch.nn.Sequential):
    pass

class ConvReLU1d(_FusedModule):
    r"""This is a sequential container which calls the Conv1d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class ConvReLU2d(_FusedModule):
    r"""This is a sequential container which calls the Conv2d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class ConvReLU3d(_FusedModule):
    r"""This is a sequential container which calls the Conv3d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class LinearReLU(_FusedModule):
    r"""This is a sequential container which calls the Linear and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, relu):
        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(linear), type_before_parametrizations(relu))
        super().__init__(linear, relu)

class ConvBn1d(_FusedModule):
    r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super().__init__(conv, bn)

class ConvBn2d(_FusedModule):
    r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super(ConvBn2d, self).__init__(conv, bn)

class ConvBnReLU1d(_FusedModule):
    r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)

class ConvBnReLU2d(_FusedModule):
    r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)

class ConvBn3d(_FusedModule):
    r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super().__init__(conv, bn)

class ConvBnReLU3d(_FusedModule):
    r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)


class BNReLU2d(_FusedModule):
    r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, batch_norm, relu):
        assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
        super().__init__(batch_norm, relu)

class BNReLU3d(_FusedModule):
    r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, batch_norm, relu):
        assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
        super().__init__(batch_norm, relu)


class LinearBn1d(_FusedModule):
    r"""This is a sequential container which calls the Linear and BatchNorm1d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, bn):
        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \
            'Incorrect types for input modules{}{}'.format(type_before_parametrizations(linear), type_before_parametrizations(bn))
        super().__init__(linear, bn)