File: linear.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (24 lines) | stat: -rw-r--r-- 903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import torch


class Linear(torch.ao.nn.qat.Linear):
    r"""
    A linear module attached with FakeQuantize modules for weight,
    used for dynamic quantization aware training.

    We adopt the same interface as `torch.nn.Linear`, please see
    https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
    for documentation.

    Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
    default.
    """

    def __init__(self, in_features, out_features, bias=True,
                 qconfig=None, device=None, dtype=None) -> None:
        super().__init__(in_features, out_features, bias, qconfig, device, dtype)
        if not torch.ao.quantization.activation_is_memoryless(qconfig):
            raise ValueError(
                "Dynamic QAT requires a memoryless observer." +
                "This means a MovingAverage observer with averaging constant equal to 1"
            )