File: embedding_ops.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (143 lines) | stat: -rw-r--r-- 7,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['Embedding', 'EmbeddingBag']

class Embedding(nn.Embedding):
    r"""
    An embedding bag module attached with FakeQuantize modules for weight,
    used for quantization aware training.

    We adopt the same interface as `torch.nn.Embedding`, please see
    https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html#torch.nn.Embedding
    for documentation.

    Similar to `torch.nn.Embedding`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight: fake quant module for weight
    """
    _FLOAT_MODULE = nn.Embedding

    def __init__(self, num_embeddings, embedding_dim, padding_idx=None,
                 max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
                 sparse=False, _weight=None, device=None, dtype=None, qconfig=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(num_embeddings, embedding_dim, padding_idx, max_norm,
                         norm_type, scale_grad_by_freq, sparse, _weight,
                         **factory_kwargs)
        assert qconfig, 'qconfig must be provided for QAT module'
        assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
            'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
            str(qconfig.weight().qscheme)
        self.qconfig = qconfig
        self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)

    def forward(self, input) -> Tensor:
        return F.embedding(input, self.weight_fake_quant(self.weight), self.padding_idx,
                           self.max_norm, self.norm_type, self.scale_grad_by_freq,
                           self.sparse)

    @classmethod
    def from_float(cls, mod):
        r"""Create a qat module from a float module

            Args: `mod` a float module, either produced by torch.ao.quantization utilities
            or directly from user
        """
        assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
            cls._FLOAT_MODULE.__name__
        assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
        assert mod.qconfig, 'Input float module must have a valid qconfig'
        weight_qscheme = mod.qconfig.weight().qscheme  # type: ignore[union-attr, operator]
        assert weight_qscheme == torch.per_channel_affine_float_qparams, \
            'Embedding weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
            str(weight_qscheme)

        qconfig = mod.qconfig
        qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.padding_idx,
                                mod.max_norm, mod.norm_type, mod.scale_grad_by_freq,
                                mod.sparse, mod.weight, qconfig=qconfig)

        return qat_embedding_bag

    def to_float(self):
        embedding_bag = torch.nn.Embedding(self.num_embeddings, self.embedding_dim, self.padding_idx,
                                           self.max_norm, self.norm_type, self.scale_grad_by_freq,
                                           self.sparse, None)
        embedding_bag.weight = torch.nn.Parameter(self.weight.detach())
        embedding_bag.train(self.training)
        return embedding_bag

class EmbeddingBag(nn.EmbeddingBag):
    r"""
    An embedding bag module attached with FakeQuantize modules for weight,
    used for quantization aware training.

    We adopt the same interface as `torch.nn.EmbeddingBag`, please see
    https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html#torch.nn.EmbeddingBag
    for documentation.

    Similar to `torch.nn.EmbeddingBag`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight: fake quant module for weight
    """
    _FLOAT_MODULE = nn.EmbeddingBag

    def __init__(self, num_embeddings, embedding_dim, max_norm=None,
                 norm_type=2.0, scale_grad_by_freq=False, mode='mean',
                 sparse=False, _weight=None, include_last_offset=False,
                 padding_idx=None, qconfig=None, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(num_embeddings, embedding_dim, max_norm, norm_type,
                         scale_grad_by_freq, mode, sparse, _weight,
                         include_last_offset, padding_idx, **factory_kwargs)
        assert qconfig, 'qconfig must be provided for QAT module'
        assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
            'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
            str(qconfig.weight().qscheme)
        self.qconfig = qconfig
        self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)

    def forward(self, input, offsets=None, per_sample_weights=None) -> Tensor:
        return F.embedding_bag(input, self.weight_fake_quant(self.weight), offsets,
                               self.max_norm, self.norm_type,
                               self.scale_grad_by_freq, self.mode, self.sparse,
                               per_sample_weights, self.include_last_offset,
                               self.padding_idx)

    @classmethod
    def from_float(cls, mod):
        r"""Create a qat module from a float module

            Args: `mod` a float module, either produced by torch.ao.quantization utilities
            or directly from user
        """
        assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
            cls._FLOAT_MODULE.__name__
        assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
        assert mod.qconfig, 'Input float module must have a valid qconfig'
        weight_qscheme = mod.qconfig.weight().qscheme  # type: ignore[union-attr, operator]
        assert weight_qscheme == torch.per_channel_affine_float_qparams, \
            'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
            str(weight_qscheme)

        qconfig = mod.qconfig
        qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.max_norm, mod.norm_type,
                                mod.scale_grad_by_freq, mod.mode, mod.sparse, mod.weight,
                                mod.include_last_offset, mod.padding_idx, qconfig=qconfig)

        return qat_embedding_bag

    def to_float(self):
        embedding_bag = torch.nn.EmbeddingBag(self.num_embeddings, self.embedding_dim, self.max_norm,
                                              self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
                                              None, self.include_last_offset, self.padding_idx)
        embedding_bag.weight = torch.nn.Parameter(self.weight.detach())
        embedding_bag.train(self.training)
        return embedding_bag