File: conv.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (399 lines) | stat: -rw-r--r-- 17,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# coding=utf-8
r"""Dynamically quantized convolution modules."""

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch import Tensor
from torch._ops import ops
from torch.nn.common_types import _size_1_t
from torch.nn.modules.utils import _single, _pair, _triple
from torch.ao.nn.quantized.modules.conv import _reverse_repeat_padding
import torch.ao.nn.quantized as nnq
import warnings

__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d']

class Conv1d(nnq.Conv1d):
    r"""A dynamically quantized conv module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.Conv1d` and :class:`~torch.nn.quantized.dynamic.Conv1d` and

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point

    See :class:`~torch.nn.Conv1d` for other attributes.

    Examples::

        >>> m = nn.quantized.dynamic.Conv1d(16, 33, 3, stride=2)
        >>> input = torch.randn(20, 16, 100)
        >>> # xdoctest: +SKIP
        >>> output = m(input)

    """

    _FLOAT_MODULE = nn.Conv1d
    _NNIQAT_CONV_BN_MODULE = None  # type: ignore[assignment]
    _NNI_CONV_RELU_MODULE = None  # type: ignore[assignment]

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: _size_1_t,
                 stride: _size_1_t = 1,
                 padding: _size_1_t = 0,
                 dilation: _size_1_t = 1,
                 groups: int = 1,
                 bias: bool = True,
                 padding_mode: str = 'zeros',
                 device=None,
                 dtype=None,
                 reduce_range=True):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _single(kernel_size)
        stride = _single(stride)
        padding = padding if isinstance(padding, str) else _single(padding)
        dilation = _single(dilation)

        super(Conv1d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConv1d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 3:
            raise ValueError("Input shape must be `(N, C, L)`!")
        if self.padding_mode != 'zeros':
            # Padding in Conv1d is stored as (p, p), need to get (p,)
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1])
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return ops.quantized.conv1d_dynamic(input, self._packed_params, reduce_range)


class Conv2d(nnq.Conv2d):
    r"""A dynamically quantized conv module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.Conv2d` and :class:`~torch.nn.quantized.dynamic.Conv2d` and

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point

    See :class:`~torch.nn.Conv2d` for other attributes.

    Examples::

        >>> # With square kernels and equal stride
        >>> m = nn.quantized.dynamic.Conv2d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nn.quantized.dynamic.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> # non-square kernels and unequal stride and with padding and dilation
        >>> m = nn.quantized.dynamic.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
        >>> input = torch.randn(20, 16, 50, 100)
        >>> # xdoctest: +SKIP
        >>> output = m(input)

    """
    _FLOAT_MODULE = nn.Conv2d
    _NNIQAT_CONV_BN_MODULE = None  # type: ignore[assignment]
    _NNI_CONV_RELU_MODULE = None  # type: ignore[assignment]

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros', device=None, dtype=None):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)

        super(Conv2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConv2d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        if self.padding_mode != 'zeros':
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return ops.quantized.conv2d_dynamic(
            input, self._packed_params, reduce_range)


class Conv3d(nnq.Conv3d):
    r"""A dynamically quantized conv module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.Conv3d` and :class:`~torch.nn.quantized.dynamic.Conv3d` and

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point

    See :class:`~torch.nn.Conv3d` for other attributes.

    Examples::

        >>> # With square kernels and equal stride
        >>> m = nn.quantized.dynamic.Conv3d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nn.quantized.dynamic.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2))
        >>> # non-square kernels and unequal stride and with padding and dilation
        >>> m = nn.quantized.dynamic.Conv3d(16, 33, (3, 5, 5), stride=(1, 2, 2), padding=(1, 2, 2), dilation=(1, 2, 2))
        >>> input = torch.randn(20, 16, 56, 56, 56)
        >>> # xdoctest: +SKIP
        >>> output = m(input)

    """
    _FLOAT_MODULE = nn.Conv3d
    _NNIQAT_CONV_BN_MODULE = None  # type: ignore[assignment]
    _NNI_CONV_RELU_MODULE = None  # type: ignore[assignment]

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros', device=None, dtype=None):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        assert padding_mode != 'reflect', "Conv3d does not support reflection padding"
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _triple(kernel_size)
        stride = _triple(stride)
        padding = _triple(padding)
        dilation = _triple(dilation)
        super(Conv3d, self)._init(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            False, _triple(0), groups, bias, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConv3d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, D, H, W)`!")
        if self.padding_mode != 'zeros':
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return ops.quantized.conv3d_dynamic(
            input, self._packed_params, reduce_range)


class ConvTranspose1d(nnq.ConvTranspose1d):
    r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.ConvTranspose1d`.

    For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv1d`

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point
    See :class:`~torch.nn.ConvTranspose1d` for other attributes.

    Examples::

        >>> # With square kernels and equal stride
        >>> # xdoctest: +SKIP
        >>> m = nndq.ConvTranspose1d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nndq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> output = m(input)
        >>> # exact output size can be also specified as an argument
        >>> downsample = nndq.Conv1d(16, 16, 3, stride=2, padding=1)
        >>> upsample = nndq.ConvTranspose1d(16, 16, 3, stride=2, padding=1)
        >>> h = downsample(input)
        >>> h.size()
        torch.Size([1, 16, 6])
        >>> output = upsample(h, output_size=input.size())
        >>> output.size()
        torch.Size([1, 16, 12])
    """

    _FLOAT_MODULE = nn.ConvTranspose1d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros', device=None, dtype=None):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(ConvTranspose1d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConvTranpose1d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 3:
            raise ValueError("Input shape must be `(N, C, L)`!")
        return torch.ops.quantized.conv_transpose1d_dynamic(
            input, self._packed_params, reduce_range)


class ConvTranspose2d(nnq.ConvTranspose2d):
    r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.ConvTranspose2d`.

    For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv2d`

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point
    See :class:`~torch.nn.ConvTranspose2d` for other attributes.

    Examples::

        >>> # With square kernels and equal stride
        >>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> # xdoctest: +SKIP
        >>> output = m(input)
        >>> # exact output size can be also specified as an argument
        >>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1)
        >>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
        >>> h = downsample(input)
        >>> h.size()
        torch.Size([1, 16, 6, 6])
        >>> output = upsample(h, output_size=input.size())
        >>> output.size()
        torch.Size([1, 16, 12, 12])
    """

    _FLOAT_MODULE = nn.ConvTranspose2d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros', device=None, dtype=None):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(ConvTranspose2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConvTranpose2d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        return ops.quantized.conv_transpose2d_dynamic(
            input, self._packed_params, reduce_range)


class ConvTranspose3d(nnq.ConvTranspose3d):
    r"""A dynamically quantized transposed convolution module with floating point tensors as inputs and outputs.

    For details on input arguments, parameters, and implementation see
    :class:`~torch.nn.ConvTranspose3d`.

    For special notes, please, see :class:`~torch.nn.quantized.dynamic.Conv3d`

    Attributes:
        weight (Tensor):     packed tensor derived from the learnable weight
                             parameter.
        scale (Tensor):      scalar for the output scale
        zero_point (Tensor): scalar for the output zero point
    See :class:`~torch.nn.ConvTranspose3d` for other attributes.

    Examples::

        >>> # With cubic kernels and equal stride
        >>> m = nnq.ConvTranspose3d(16, 33, 3, stride=2)
        >>> # non-cubic kernels and unequal stride and with padding
        >>> m = nnq.ConvTranspose3d(16, 33, (3, 3, 5), stride=(2, 1, 1), padding=(4, 2, 2))
        >>> # xdoctest: +SKIP
        >>> output = m(input)
        >>> # exact output size can be also specified as an argument
        >>> downsample = nnq.Conv3d(16, 16, 3, stride=2, padding=1)
        >>> upsample = nnq.ConvTranspose3d(16, 16, 3, stride=2, padding=1)
        >>> h = downsample(input)
        >>> h.size()
        torch.Size([1, 16, 6, 6, 6])
        >>> output = upsample(h, output_size=input.size())
        >>> output.size()
        torch.Size([1, 16, 12, 12, 12])
    """

    _FLOAT_MODULE = nn.ConvTranspose3d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros', device=None, dtype=None):
        warnings.warn(
            "The current implementation of the {} module has poor numerical accuracy and its use is not recommended".format(
                self._get_name()
            )
        )
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(ConvTranspose3d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, **factory_kwargs)

    def _get_name(self):
        return 'DynamicQuantizedConvTranpose3d'

    def forward(self, input: Tensor, reduce_range: bool = True) -> Tensor:
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, T, H, W)`!")
        return ops.quantized.conv_transpose3d_dynamic(
            input, self._packed_params, reduce_range)