File: normalization.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (204 lines) | stat: -rw-r--r-- 8,250 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch

__all__ = ['LayerNorm', 'GroupNorm', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d']

class LayerNorm(torch.nn.LayerNorm):
    r"""This is the quantized version of :class:`~torch.nn.LayerNorm`.

    Additional args:
        * **scale** - quantization scale of the output, type: double.
        * **zero_point** - quantization zero point of the output, type: long.

    """

    def __init__(self, normalized_shape, weight, bias, scale, zero_point, eps=1e-5,
                 elementwise_affine=True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(LayerNorm, self).__init__(
            normalized_shape, eps=eps, elementwise_affine=elementwise_affine,
            **factory_kwargs)
        self.weight = weight
        self.bias = bias
        self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
        self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))

    def forward(self, input):
        return torch.ops.quantized.layer_norm(
            input, self.normalized_shape, weight=self.weight, bias=self.bias,
            eps=self.eps, output_scale=self.scale, output_zero_point=self.zero_point)

    def _get_name(self):
        return 'QuantizedLayerNorm'

    @classmethod
    def from_float(cls, mod):
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = cls(
            mod.normalized_shape, mod.weight, mod.bias, float(scale),
            int(zero_point), mod.eps, mod.elementwise_affine)
        return new_mod

    @classmethod
    def from_reference(cls, mod, scale, zero_point):
        return cls(
            mod.normalized_shape, mod.weight, mod.bias, float(scale),
            int(zero_point), mod.eps, mod.elementwise_affine)

class GroupNorm(torch.nn.GroupNorm):
    r"""This is the quantized version of :class:`~torch.nn.GroupNorm`.

    Additional args:
        * **scale** - quantization scale of the output, type: double.
        * **zero_point** - quantization zero point of the output, type: long.

    """
    __constants__ = ['num_groups', 'num_channels', 'eps', 'affine']

    def __init__(self, num_groups, num_channels, weight, bias, scale, zero_point, eps=1e-5,
                 affine=True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(GroupNorm, self).__init__(num_groups, num_channels, eps, affine,
                                        **factory_kwargs)
        self.weight = weight
        self.bias = bias
        self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
        self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))

    def forward(self, input):
        return torch.ops.quantized.group_norm(
            input, self.num_groups, self.weight, self.bias, self.eps, self.scale,
            self.zero_point)

    def _get_name(self):
        return 'QuantizedGroupNorm'

    @classmethod
    def from_float(cls, mod):
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = cls(
            mod.num_groups, mod.num_channels, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)
        return new_mod

class InstanceNorm1d(torch.nn.InstanceNorm1d):
    r"""This is the quantized version of :class:`~torch.nn.InstanceNorm1d`.

    Additional args:
        * **scale** - quantization scale of the output, type: double.
        * **zero_point** - quantization zero point of the output, type: long.

    """
    def __init__(self, num_features, weight, bias, scale, zero_point,
                 eps=1e-5, momentum=0.1, affine=False,
                 track_running_stats=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(InstanceNorm1d, self).__init__(
            num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)
        self.weight = weight
        self.bias = bias
        self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
        self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))

    def forward(self, input):
        return torch.ops.quantized.instance_norm(
            input, self.weight, self.bias, self.eps, self.scale,
            self.zero_point)

    def _get_name(self):
        return 'QuantizedInstanceNorm1d'

    @classmethod
    def from_float(cls, mod):
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)
        return new_mod

    @classmethod
    def from_reference(cls, mod, scale, zero_point):
        return cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)

class InstanceNorm2d(torch.nn.InstanceNorm2d):
    r"""This is the quantized version of :class:`~torch.nn.InstanceNorm2d`.

    Additional args:
        * **scale** - quantization scale of the output, type: double.
        * **zero_point** - quantization zero point of the output, type: long.

    """
    def __init__(self, num_features, weight, bias, scale, zero_point,
                 eps=1e-5, momentum=0.1, affine=False,
                 track_running_stats=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(InstanceNorm2d, self).__init__(
            num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)
        self.weight = weight
        self.bias = bias
        self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
        self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))

    def forward(self, input):
        return torch.ops.quantized.instance_norm(
            input, self.weight, self.bias, self.eps, self.scale,
            self.zero_point)

    def _get_name(self):
        return 'QuantizedInstanceNorm2d'

    @classmethod
    def from_float(cls, mod):
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)
        return new_mod

    @classmethod
    def from_reference(cls, mod, scale, zero_point):
        return cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)

class InstanceNorm3d(torch.nn.InstanceNorm3d):
    r"""This is the quantized version of :class:`~torch.nn.InstanceNorm3d`.

    Additional args:
        * **scale** - quantization scale of the output, type: double.
        * **zero_point** - quantization zero point of the output, type: long.

    """
    def __init__(self, num_features, weight, bias, scale, zero_point,
                 eps=1e-5, momentum=0.1, affine=False,
                 track_running_stats=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(InstanceNorm3d, self).__init__(
            num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)
        self.weight = weight
        self.bias = bias
        self.register_buffer('scale', torch.tensor(scale, **factory_kwargs))
        self.register_buffer('zero_point', torch.tensor(zero_point, **factory_kwargs))

    def forward(self, input):
        return torch.ops.quantized.instance_norm(
            input, self.weight, self.bias, self.eps, self.scale,
            self.zero_point)

    def _get_name(self):
        return 'QuantizedInstanceNorm3d'

    @classmethod
    def from_float(cls, mod):
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        new_mod = cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)
        return new_mod

    @classmethod
    def from_reference(cls, mod, scale, zero_point):
        return cls(
            mod.num_features, mod.weight, mod.bias, float(scale), int(zero_point),
            mod.eps, mod.affine)