File: rnn.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (479 lines) | stat: -rw-r--r-- 20,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import torch
import torch.nn as nn
from torch import Tensor
from .utils import _quantize_and_dequantize_weight
from .utils import _quantize_weight
from typing import Optional, Dict, Any, Tuple
from torch import _VF
from torch.nn.utils.rnn import PackedSequence

__all__ = ['RNNCellBase', 'RNNCell', 'LSTMCell', 'GRUCell', 'RNNBase', 'LSTM', 'get_quantized_weight']

def _apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
    return tensor.index_select(dim, permutation)

def _get_weight_and_quantization_params(module, wn):
    weight = getattr(module, wn)
    params = [weight]
    for param_name in [wn + n for n in ["_qscheme", "_dtype", "_scale", "_zero_point", "_axis"]]:
        if hasattr(module, param_name):
            param = getattr(module, param_name)
        else:
            param = None
        params.append(param)
    return params

def get_quantized_weight(module, wn):
    if not hasattr(module, wn):
        return None
    params = _get_weight_and_quantization_params(module, wn)
    weight = _quantize_weight(*params)
    return weight

def _get_quantize_and_dequantized_weight(module, wn):
    if not hasattr(module, wn):
        return None
    params = _get_weight_and_quantization_params(module, wn)
    weight = _quantize_and_dequantize_weight(*params)
    return weight

class RNNCellBase(nn.RNNCellBase):
    def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int,
                 device=None, dtype=None, weight_qparams_dict=None) -> None:
        super().__init__(input_size, hidden_size, bias, num_chunks, device=device, dtype=dtype)
        if weight_qparams_dict is None:
            weight_qparams = {
                "qscheme": torch.per_tensor_affine,
                "dtype": torch.quint8,
                "scale": 1.0,
                "zero_point": 0
            }
            weight_qparams_dict = {
                "weight_ih": weight_qparams,
                "weight_hh": weight_qparams
            }
        assert len(weight_qparams_dict) == 2, "Expected length for weight_qparams_dict to be 2 for QuantizedRNNCellBase(Reference)"
        self._init_weight_qparams_dict(weight_qparams_dict, device)

    def _init_weight_qparams_dict(self, weight_qparams_dict, device):
        assert weight_qparams_dict is not None
        for key, weight_qparams in weight_qparams_dict.items():
            # TODO: refactor the duplicated code to utils.py
            weight_qscheme = weight_qparams["qscheme"]
            weight_dtype = weight_qparams["dtype"]
            setattr(self, key + "_qscheme", weight_qscheme)
            setattr(self, key + "_dtype", weight_dtype)
            assert weight_qscheme in [None, torch.per_tensor_affine, torch.per_channel_affine], \
                Exception(f"qscheme: {weight_qscheme} is not support in {self._get_name()}")
            if weight_qscheme is not None:
                scale = weight_qparams["scale"]
                scale_tensor = scale.clone().detach() \
                    if isinstance(scale, torch.Tensor) else \
                    torch.tensor(scale, dtype=torch.float, device=device)
                self.register_buffer(key + "_scale", scale_tensor)
                zp = weight_qparams["zero_point"]
                zp_tensor = zp.clone().detach() \
                    if isinstance(zp, torch.Tensor) else \
                    torch.tensor(zp, dtype=torch.int, device=device)
                self.register_buffer(key + "_zero_point", zp_tensor)
                if weight_qscheme == torch.per_channel_affine:
                    axis = weight_qparams["axis"]
                    axis_tensor = axis.clone().detach() \
                        if isinstance(axis, torch.Tensor) else \
                        torch.tensor(axis, dtype=torch.int, device=device)
                    self.register_buffer(key + "_axis", axis_tensor)
                else:
                    # added for TorchScriptability, not used
                    self.register_buffer(
                        key + "_axis", torch.tensor(0, dtype=torch.int, device=device))

    def _get_name(self):
        return "QuantizedRNNCellBase(Reference)"

    def get_quantized_weight_ih(self):
        return get_quantized_weight(self, "weight_ih")

    def get_quantized_weight_hh(self):
        return get_quantized_weight(self, "weight_hh")

    def get_weight_ih(self):
        return _get_quantize_and_dequantized_weight(self, "weight_ih")

    def get_weight_hh(self):
        return _get_quantize_and_dequantized_weight(self, "weight_hh")

class RNNCell(RNNCellBase):
    """
    We'll store weight_qparams for all the weights (weight_ih and weight_hh),
    we need to pass in a `weight_qparams_dict` that maps from weight name,
    e.g. weight_ih, to the weight_qparams for that weight
    """
    def __init__(self, input_size: int, hidden_size: int, bias: bool = True, nonlinearity: str = "tanh",
                 device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict}
        super().__init__(input_size, hidden_size, bias, num_chunks=1, **factory_kwargs)
        self.nonlinearity = nonlinearity

    def _get_name(self):
        return "QuantizedRNNCell(Reference)"

    # TODO: refactor nn.RNNCell to have a _forward that takes weight_ih and weight_hh as input
    # and remove duplicated code, same for the other two Cell modules
    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
        assert input.dim() in (1, 2), \
            f"RNNCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
        is_batched = input.dim() == 2
        if not is_batched:
            input = input.unsqueeze(0)

        if hx is None:
            hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
        else:
            hx = hx.unsqueeze(0) if not is_batched else hx

        if self.nonlinearity == "tanh":
            ret = _VF.rnn_tanh_cell(
                input, hx,
                self.get_weight_ih(), self.get_weight_hh(),
                self.bias_ih, self.bias_hh,
            )
        elif self.nonlinearity == "relu":
            ret = _VF.rnn_relu_cell(
                input, hx,
                self.get_weight_ih(), self.get_weight_hh(),
                self.bias_ih, self.bias_hh,
            )
        else:
            ret = input  # TODO: remove when jit supports exception flow
            raise RuntimeError(
                "Unknown nonlinearity: {}".format(self.nonlinearity))

        if not is_batched:
            ret = ret.squeeze(0)

        return ret

    @classmethod
    def from_float(cls, mod, weight_qparams_dict):
        ref_mod = cls(
            mod.input_size,
            mod.hidden_size,
            mod.bias,
            mod.nonlinearity,
            mod.weight_ih.device,
            mod.weight_ih.dtype,
            weight_qparams_dict)
        ref_mod.weight_ih = mod.weight_ih
        ref_mod.weight_hh = mod.weight_hh
        ref_mod.bias_ih = mod.bias_ih
        ref_mod.bias_hh = mod.bias_hh
        return ref_mod

class LSTMCell(RNNCellBase):
    """
    We'll store weight_qparams for all the weights (weight_ih and weight_hh),
    we need to pass in a `weight_qparams_dict` that maps from weight name,
    e.g. weight_ih, to the weight_qparams for that weight
    """
    def __init__(self, input_size: int, hidden_size: int, bias: bool = True,
                 device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict}
        super().__init__(input_size, hidden_size, bias, num_chunks=4, **factory_kwargs)

    def _get_name(self):
        return "QuantizedLSTMCell(Reference)"

    def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]:
        assert input.dim() in (1, 2), \
            f"LSTMCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
        is_batched = input.dim() == 2
        if not is_batched:
            input = input.unsqueeze(0)

        if hx is None:
            zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
            hx = (zeros, zeros)
        else:
            hx = (hx[0].unsqueeze(0), hx[1].unsqueeze(0)) if not is_batched else hx

        ret = _VF.lstm_cell(
            input, hx,
            self.get_weight_ih(), self.get_weight_hh(),
            self.bias_ih, self.bias_hh,
        )

        if not is_batched:
            ret = (ret[0].squeeze(0), ret[1].squeeze(0))
        return ret

    @classmethod
    def from_float(cls, mod, weight_qparams_dict):
        ref_mod = cls(
            mod.input_size,
            mod.hidden_size,
            mod.bias,
            mod.weight_ih.device,
            mod.weight_ih.dtype,
            weight_qparams_dict)
        ref_mod.weight_ih = mod.weight_ih
        ref_mod.weight_hh = mod.weight_hh
        ref_mod.bias_ih = mod.bias_ih
        ref_mod.bias_hh = mod.bias_hh
        return ref_mod

class GRUCell(RNNCellBase):
    """
    We'll store weight_qparams for all the weights (weight_ih and weight_hh),
    we need to pass in a `weight_qparams_dict` that maps from weight name,
    e.g. weight_ih, to the weight_qparams for that weight
    """
    def __init__(self, input_size: int, hidden_size: int, bias: bool = True,
                 device=None, dtype=None, weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype, 'weight_qparams_dict': weight_qparams_dict}
        super().__init__(input_size, hidden_size, bias, num_chunks=3, **factory_kwargs)

    def _get_name(self):
        return "QuantizedGRUCell(Reference)"

    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
        assert input.dim() in (1, 2), \
            f"GRUCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
        is_batched = input.dim() == 2
        if not is_batched:
            input = input.unsqueeze(0)

        if hx is None:
            hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
        else:
            hx = hx.unsqueeze(0) if not is_batched else hx

        ret = _VF.gru_cell(
            input, hx,
            self.get_weight_ih(), self.get_weight_hh(),
            self.bias_ih, self.bias_hh,
        )

        if not is_batched:
            ret = ret.squeeze(0)

        return ret

    @classmethod
    def from_float(cls, mod, weight_qparams_dict):
        ref_mod = cls(
            mod.input_size,
            mod.hidden_size,
            mod.bias,
            mod.weight_ih.device,
            mod.weight_ih.dtype,
            weight_qparams_dict)
        ref_mod.weight_ih = mod.weight_ih
        ref_mod.weight_hh = mod.weight_hh
        ref_mod.bias_ih = mod.bias_ih
        ref_mod.bias_hh = mod.bias_hh
        return ref_mod

class RNNBase(nn.RNNBase):
    def __init__(self, mode: str, input_size: int, hidden_size: int,
                 num_layers: int = 1, bias: bool = True, batch_first: bool = False,
                 dropout: float = 0., bidirectional: bool = False, proj_size: int = 0,
                 device=None, dtype=None,
                 weight_qparams_dict: Optional[Dict[str, Dict[str, Any]]] = None) -> None:
        super().__init__(
            mode, input_size, hidden_size, num_layers, bias, batch_first, dropout,
            bidirectional, proj_size, device, dtype
        )
        if weight_qparams_dict is None:
            weight_qparams = {
                'qscheme': torch.per_tensor_affine,
                'dtype': torch.quint8,
                'scale': 1.0,
                'zero_point': 0
            }
            weight_qparams_dict = {}
            for wn in self._flat_weights_names:
                if wn.startswith("weight"):
                    weight_qparams_dict[wn] = weight_qparams
        self._init_weight_qparams_dict(weight_qparams_dict, device)

    def _init_weight_qparams_dict(self, weight_qparams_dict, device):
        for key, weight_qparams in weight_qparams_dict.items():
            weight_qscheme = weight_qparams["qscheme"]
            weight_dtype = weight_qparams["dtype"]
            setattr(self, key + "_qscheme", weight_qscheme)
            setattr(self, key + "_dtype", weight_dtype)
            assert weight_qscheme in [None, torch.per_tensor_affine, torch.per_channel_affine], \
                Exception(f"qscheme: {weight_qscheme} is not support in {self._get_name()}")
            if weight_qscheme is not None:
                self.register_buffer(
                    key + "_scale",
                    torch.tensor(weight_qparams["scale"], dtype=torch.float, device=device))
                self.register_buffer(
                    key + "_zero_point",
                    torch.tensor(weight_qparams["zero_point"], dtype=torch.int, device=device))
                if weight_qscheme == torch.per_channel_affine:
                    self.register_buffer(
                        key + "_axis",
                        torch.tensor(weight_qparams["axis"], dtype=torch.int, device=device))
                else:
                    # added for TorchScriptability, not used
                    self.register_buffer(
                        key + "_axis", torch.tensor(0, dtype=torch.int, device=device))

class LSTM(RNNBase):
    """ Reference Quantized LSTM Module
    We'll store weight_qparams for all the weights in _flat_weights, we need to pass in
    a `weight_qparams_dict` that maps from weight name, e.g. weight_ih_l0,
    to the weight_qparams for that weight
    """
    def __init__(self, *args, **kwargs):
        super().__init__('LSTM', *args, **kwargs)

    # Same as above, see torch/nn/modules/module.py::_forward_unimplemented
    def permute_hidden(self,  # type: ignore[override]
                       hx: Tuple[Tensor, Tensor],
                       permutation: Optional[Tensor]
                       ) -> Tuple[Tensor, Tensor]:
        if permutation is None:
            return hx
        return _apply_permutation(hx[0], permutation), _apply_permutation(hx[1], permutation)

    def get_expected_cell_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]:
        if batch_sizes is not None:
            mini_batch = int(batch_sizes[0])
        else:
            mini_batch = input.size(0) if self.batch_first else input.size(1)
        num_directions = 2 if self.bidirectional else 1
        expected_hidden_size = (self.num_layers * num_directions,
                                mini_batch, self.hidden_size)
        return expected_hidden_size

    # In the future, we should prevent mypy from applying contravariance rules here.
    # See torch/nn/modules/module.py::_forward_unimplemented
    def check_forward_args(self,  # type: ignore[override]
                           input: Tensor,
                           hidden: Tuple[Tensor, Tensor],
                           batch_sizes: Optional[Tensor],
                           ):
        self.check_input(input, batch_sizes)
        self.check_hidden_size(hidden[0], self.get_expected_hidden_size(input, batch_sizes),
                               'Expected hidden[0] size {}, got {}')
        self.check_hidden_size(hidden[1], self.get_expected_cell_size(input, batch_sizes),
                               'Expected hidden[1] size {}, got {}')

    def get_quantized_weight_bias_dict(self):
        """ dictionary from flat_weight_name to quantized weight or (unquantized) bias
        e.g.
        {
          "weight_ih_l0": quantized_weight,
          "bias_ih_l0": unquantized_bias,
          ...
        }
        """
        quantized_weight_bias_dict = {}
        for wn in self._flat_weights_names:
            if hasattr(self, wn):
                if wn.startswith("weight"):
                    weight_or_bias = get_quantized_weight(self, wn)
                else:
                    weight_or_bias = getattr(self, wn)
            else:
                weight_or_bias = None
            quantized_weight_bias_dict[wn] = weight_or_bias
        return quantized_weight_bias_dict

    def get_flat_weights(self):
        flat_weights = []
        for wn in self._flat_weights_names:
            if hasattr(self, wn):
                weight = getattr(self, wn)
                if wn.startswith("weight"):
                    params = _get_weight_and_quantization_params(self, wn)
                    weight = _quantize_and_dequantize_weight(*params)
            else:
                weight = None
            flat_weights.append(weight)
        return flat_weights

    def forward(self, input, hx=None):  # noqa: F811
        orig_input = input
        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        batch_sizes = None
        if isinstance(orig_input, PackedSequence):
            input, batch_sizes, sorted_indices, unsorted_indices = input
            max_batch_size = batch_sizes[0]
            max_batch_size = int(max_batch_size)
        else:
            batch_sizes = None
            is_batched = input.dim() == 3
            batch_dim = 0 if self.batch_first else 1
            if not is_batched:
                input = input.unsqueeze(batch_dim)
            max_batch_size = input.size(0) if self.batch_first else input.size(1)
            sorted_indices = None
            unsorted_indices = None

        if hx is None:
            num_directions = 2 if self.bidirectional else 1
            real_hidden_size = self.proj_size if self.proj_size > 0 else self.hidden_size
            h_zeros = torch.zeros(self.num_layers * num_directions,
                                  max_batch_size, real_hidden_size,
                                  dtype=input.dtype, device=input.device)
            c_zeros = torch.zeros(self.num_layers * num_directions,
                                  max_batch_size, self.hidden_size,
                                  dtype=input.dtype, device=input.device)
            hx = (h_zeros, c_zeros)
        else:
            if batch_sizes is None:  # If not PackedSequence input.
                if is_batched:
                    if (hx[0].dim() != 3 or hx[1].dim() != 3):
                        msg = ("For batched 3-D input, hx and cx should "
                               f"also be 3-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors")
                        raise RuntimeError(msg)
                else:
                    if hx[0].dim() != 2 or hx[1].dim() != 2:
                        msg = ("For unbatched 2-D input, hx and cx should "
                               f"also be 2-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors")
                        raise RuntimeError(msg)
                    hx = (hx[0].unsqueeze(1), hx[1].unsqueeze(1))

            # Each batch of the hidden state should match the input sequence that
            # the user believes he/she is passing in.
            hx = self.permute_hidden(hx, sorted_indices)

        self.check_forward_args(input, hx, batch_sizes)
        if batch_sizes is None:
            result = _VF.lstm(input, hx, self.get_flat_weights(), self.bias, self.num_layers,
                              self.dropout, self.training, self.bidirectional, self.batch_first)
        else:
            result = _VF.lstm(input, batch_sizes, hx, self.get_flat_weights(), self.bias,
                              self.num_layers, self.dropout, self.training, self.bidirectional)
        output = result[0]
        hidden = result[1:]
        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        if isinstance(orig_input, PackedSequence):
            output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
            return output_packed, self.permute_hidden(hidden, unsorted_indices)
        else:
            if not is_batched:
                output = output.squeeze(batch_dim)
                hidden = (hidden[0].squeeze(1), hidden[1].squeeze(1))
            return output, self.permute_hidden(hidden, unsorted_indices)

    def _get_name(self):
        return "QuantizedLSTM(Reference)"

    @classmethod
    def from_float(cls, mod, weight_qparams_dict):
        ref_mod = cls(
            mod.input_size,
            mod.hidden_size,
            mod.num_layers,
            mod.bias,
            mod.batch_first,
            mod.dropout,
            mod.bidirectional,
            weight_qparams_dict=weight_qparams_dict)
        for wn in mod._flat_weights_names:
            setattr(ref_mod, wn, getattr(mod, wn))
        return ref_mod