File: utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (160 lines) | stat: -rw-r--r-- 7,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import typing

class ReferenceQuantizedModule(torch.nn.Module):
    def _init_weight_qparams(self, weight_qparams, device):
        if weight_qparams is None:
            weight_qparams = {
                "qscheme": torch.per_tensor_affine,
                "dtype": torch.quint8,
                "scale": 1.0,
                "zero_point": 0
            }
        self.weight_qscheme: torch.qscheme = weight_qparams["qscheme"]
        self.weight_dtype = weight_qparams["dtype"]
        assert self.weight_qscheme in [
            None, torch.per_tensor_affine, torch.per_channel_affine,
            torch.per_channel_affine_float_qparams], \
            Exception(f"qscheme: {self.weight_qscheme} is not support in reference quantized {self._get_name()}")
        if self.weight_dtype in [torch.quint8, torch.qint8, torch.quint4x2, torch.qint32]:
            zero_point_dtype = weight_qparams["zero_point"].dtype if \
                isinstance(weight_qparams["zero_point"], torch.Tensor) else \
                torch.int
            w_scale = weight_qparams["scale"]
            w_scale_tensor = w_scale.clone().detach() \
                if isinstance(w_scale, torch.Tensor) \
                else torch.tensor(w_scale, dtype=torch.float, device=device)
            self.register_buffer("weight_scale", w_scale_tensor)
            w_zp = weight_qparams["zero_point"]
            w_zp_tensor = w_zp.clone().detach() \
                if isinstance(w_zp, torch.Tensor) \
                else torch.tensor(w_zp, dtype=zero_point_dtype, device=device)
            self.register_buffer("weight_zero_point", w_zp_tensor)
            if self.weight_qscheme in [torch.per_channel_affine, torch.per_channel_affine_float_qparams]:
                w_axis = weight_qparams["axis"]
                w_axis_tensor = w_axis.clone().detach() \
                    if isinstance(w_axis, torch.Tensor) \
                    else torch.tensor(w_axis, dtype=torch.int, device=device)
                self.register_buffer("weight_axis", w_axis_tensor)
            else:
                # added for TorchScriptability, not used
                self.register_buffer(
                    "weight_axis", torch.tensor(0, dtype=torch.int, device=device))
        else:
            # added for TorchScriptability, and for torch.float
            self.register_buffer("weight_scale", torch.tensor(1.0, dtype=torch.float, device=device))
            self.register_buffer("weight_zero_point", torch.tensor(0, dtype=torch.int, device=device))
            self.register_buffer(
                "weight_axis", torch.tensor(0, dtype=torch.int, device=device))

    def get_weight(self):
        """
        Fake quantize (quantize and dequantize) the weight with
        the quantization parameters for weight, this is used to
        simulate the numerics for the quantized weight in a quantized
        model
        """
        # suppress mypy warning
        assert isinstance(self.weight_scale, torch.Tensor)
        assert isinstance(self.weight_zero_point, torch.Tensor)
        assert isinstance(self.weight_axis, torch.Tensor)
        return _quantize_and_dequantize_weight(
            self.weight,  # type: ignore[arg-type]
            self.weight_qscheme,
            self.weight_dtype,
            self.weight_scale,
            self.weight_zero_point, self.weight_axis)

    def get_quantized_weight(self):
        # suppress mypy warning
        assert isinstance(self.weight_scale, torch.Tensor)
        assert isinstance(self.weight_zero_point, torch.Tensor)
        assert isinstance(self.weight_axis, torch.Tensor)
        return _quantize_weight(
            self.weight,  # type: ignore[arg-type]
            self.weight_qscheme,
            self.weight_dtype,
            self.weight_scale,
            self.weight_zero_point,
            self.weight_axis)

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super()._save_to_state_dict(destination, prefix, keep_vars)
        _save_weight_qparams(
            destination, prefix, self.weight_qscheme, self.weight_dtype,
            self.weight_scale, self.weight_zero_point, self.weight_axis)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        for key in _get_weight_qparam_keys(state_dict, prefix):
            setattr(self, key, state_dict[prefix + key])
            state_dict.pop(prefix + key)

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, False,
            missing_keys, unexpected_keys, error_msgs)

def _quantize_weight(
        weight: torch.Tensor,
        weight_qscheme: torch.qscheme,
        weight_dtype: torch.dtype,
        weight_scale: torch.Tensor,
        weight_zero_point: torch.Tensor,
        weight_axis: torch.Tensor):
    if weight_dtype == torch.float16:
        weight = weight.to(weight_dtype)
        return weight

    if weight_qscheme == torch.per_tensor_affine:
        if weight_dtype in [torch.quint8, torch.qint8, torch.qint32]:
            weight = torch.quantize_per_tensor(weight, weight_scale, weight_zero_point, weight_dtype)
            return weight
    elif weight_qscheme in [torch.per_channel_affine, torch.per_channel_affine_float_qparams]:
        if weight_dtype in [torch.quint8, torch.qint8, torch.quint4x2, torch.qint32]:
            weight = torch.quantize_per_channel(
                weight, weight_scale,
                weight_zero_point, weight_axis.item(), weight_dtype)  # type: ignore[arg-type]
            return weight
    raise Exception(f"Unsupported dtype and qscheme: {weight_dtype}, {weight_qscheme}")

def _quantize_and_dequantize_weight(
        weight: torch.Tensor,
        weight_qscheme: torch.qscheme,
        weight_dtype: torch.dtype,
        weight_scale: torch.Tensor,
        weight_zero_point: torch.Tensor,
        weight_axis: torch.Tensor):
    """ Quantize and then dequantize the weight based on
    the quantization parameters
    """
    if weight_qscheme in [
            torch.per_tensor_affine,
            torch.per_channel_affine,
            torch.per_channel_affine_float_qparams]:
        weight_quant = _quantize_weight(
            weight, weight_qscheme, weight_dtype, weight_scale, weight_zero_point, weight_axis)
        weight_dequant = weight_quant.dequantize()
    else:
        weight_dequant = weight
    return weight_dequant

def _save_weight_qparams(destination, prefix, weight_qscheme, weight_dtype, weight_scale, weight_zero_point, weight_axis):
    destination[prefix + "weight_qscheme"] = weight_qscheme
    destination[prefix + "weight_dtype"] = weight_dtype
    if weight_qscheme is not None:
        destination[prefix + "weight_scale"] = weight_scale
        destination[prefix + "weight_zero_point"] = weight_zero_point
        if weight_qscheme == torch.per_channel_affine:
            destination[prefix + "weight_axis"] = weight_axis

def _get_weight_qparam_keys(
        state_dict: typing.Dict[str, typing.Any],
        prefix: str):
    keys = ["weight_qscheme", "weight_dtype"]
    weight_qscheme = state_dict[prefix + "weight_qscheme"]
    if weight_qscheme is not None:
        keys.append("weight_scale")
        keys.append("weight_zero_point")
        if weight_qscheme == torch.quantize_per_channel:
            keys.append("weight_axis")
    return keys