1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
from torch.ao.quantization import prepare
from typing import Dict, List, Optional, Any, Union, Callable, Set
from torch.ao.quantization.quantization_mappings import (
get_default_compare_output_module_list,
)
NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST = {
nnqd.Linear,
nnq.Linear,
nnqd.LSTM,
nn.LSTM,
}
def _find_match(
str_list: Union[Dict[str, Any], List[str]], key_str: str,
postfix: str,
) -> Optional[str]:
split_str = key_str.split(".")
if split_str[-1] == postfix:
match_string = "".join(key_str.split(".")[0:-1])
for s2 in str_list:
pattern1 = "".join(s2.split(".")[0:-1])
pattern2 = "".join(s2.split(".")[0:-2])
if match_string == pattern1:
return s2
if match_string == pattern2:
return s2
# For matching "fc.weight" and "fc._packed_params._packed_params"
if postfix == "_packed_params":
match_string = "".join(key_str.split(".")[0:-2])
if len(match_string) == 0:
return None
for s2 in str_list:
pattern1 = "".join(s2.split(".")[0:-1])
pattern2 = "".join(s2.split(".")[0:-2])
if match_string == pattern1:
return s2
if match_string == pattern2:
return s2
return None
else:
return None
def compare_weights(
float_dict: Dict[str, Any], quantized_dict: Dict[str, Any]
) -> Dict[str, Dict[str, torch.Tensor]]:
r"""Compare the weights of the float module with its corresponding quantized
module. Return a dict with key corresponding to module names and each entry being
a dictionary with two keys 'float' and 'quantized', containing the float and
quantized weights. This dict can be used to compare and compute the quantization
error of the weights of float and quantized models.
Example usage::
wt_compare_dict = compare_weights(
float_model.state_dict(), qmodel.state_dict())
for key in wt_compare_dict:
print(
key,
compute_error(
wt_compare_dict[key]['float'],
wt_compare_dict[key]['quantized'].dequantize()
)
)
Args:
float_dict: state dict of the float model
quantized_dict: state dict of the quantized model
Return:
weight_dict: dict with key corresponding to module names and each entry being
a dictionary with two keys 'float' and 'quantized', containing the float and
quantized weights
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_weights")
weight_dict: Dict[str, Dict] = {}
for key in quantized_dict:
match_key = _find_match(float_dict, key, "weight")
if match_key is not None:
weight_dict[key] = {}
weight_dict[key]["float"] = float_dict[match_key]
weight_dict[key]["quantized"] = quantized_dict[key]
continue
# For matching "fc.weight" and "fc._packed_params._packed_params"
match_key = _find_match(float_dict, key, "_packed_params")
if match_key is not None:
weight_dict[key] = {}
weight_dict[key]["float"] = float_dict[match_key]
weight_dict[key]["quantized"] = quantized_dict[key][0]
# For LSTM
split_str = key.split(".")
if split_str[-1] == "param" and split_str[-3] == "_all_weight_values":
layer = split_str[-2]
module_name = ".".join(split_str[:-3])
float_weight_ih_key = module_name + ".weight_ih_l" + layer
float_weight_hh_key = module_name + ".weight_hh_l" + layer
if float_weight_ih_key in float_dict and float_weight_hh_key in float_dict:
weight_dict[key] = {}
weight_dict[key]["float"] = float_dict[float_weight_ih_key]
weight_dict[key]["quantized"] = (
quantized_dict[key].__getstate__()[0][4][0].__getstate__()[0][0]
)
weight_dict[key]["float"] = float_dict[float_weight_hh_key]
weight_dict[key]["quantized"] = (
quantized_dict[key].__getstate__()[0][4][1].__getstate__()[0][0]
)
return weight_dict
def _get_logger_dict_helper(
mod: nn.Module, target_dict: Dict[str, Any],
prefix: str = "",
) -> None:
r"""This is the helper function for get_logger_dict
Args:
mod: module we want to save all logger stats
prefix: prefix for the current module
target_dict: the dictionary used to save all logger stats
"""
def get_prefix(prefix):
return prefix if prefix == "" else prefix + "."
for name, child in mod.named_children():
if isinstance(child, Logger):
target_dict[get_prefix(prefix) + "stats"] = child.stats
break
for name, child in mod.named_children():
module_prefix = get_prefix(prefix) + name if prefix else name
_get_logger_dict_helper(child, target_dict, module_prefix)
def get_logger_dict(mod: nn.Module, prefix: str = "") -> Dict[str, Dict]:
r"""Traverse the modules and save all logger stats into target dict.
This is mainly used for quantization accuracy debug.
Type of loggers supported:
ShadowLogger: used to log the outputs of the quantized module and its matching float shadow module,
OutputLogger: used to log the outputs of the modules
Args:
mod: module we want to save all logger stats
prefix: prefix for the current module
Return:
target_dict: the dictionary used to save all logger stats
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.get_logger_dict")
target_dict: Dict[str, Dict] = {}
_get_logger_dict_helper(mod, target_dict, prefix)
return target_dict
class Logger(nn.Module):
r"""Base class for stats logging
"""
def __init__(self):
super(Logger, self).__init__()
self.stats = {}
# We only insert observer if the op is quantized with static quantization,
# which is identified by activation_observer.dtype == quint8. This is needed
# when attaching Logger as observer for FX mode
self.dtype = torch.quint8
def forward(self, x):
"""
""" # blank docblock to make autodoc happy
pass
class ShadowLogger(Logger):
r"""Class used in Shadow module to record the outputs of the original and
shadow modules.
"""
def __init__(self):
super(ShadowLogger, self).__init__()
self.stats["float"] = []
self.stats["quantized"] = []
def forward(self, x, y):
"""
""" # blank docblock to make autodoc happy
if len(x) > 1:
x = x[0]
if len(y) > 1:
y = y[0]
self.stats["quantized"].append(x.detach())
self.stats["float"].append(y.detach())
class OutputLogger(Logger):
r"""Class used to log the outputs of the module
"""
def __init__(self):
super(OutputLogger, self).__init__()
self.stats["tensor_val"] = []
def forward(self, x):
"""
""" # blank docblock to make autodoc happy
self.stats["tensor_val"].append(x)
return x
def _convert_tuple_to_list(t: Any) -> Any:
return list(_convert_tuple_to_list(x) for x in t) if type(t) is tuple else t
def _dequantize_tensor_list(t: Any) -> Any:
return (
list(_dequantize_tensor_list(x) for x in t)
if type(t) is list
else t.dequantize()
if t.is_quantized
else t
)
class Shadow(nn.Module):
r"""Shadow module attaches the float module to its matching quantized module
as the shadow. Then it uses Logger module to process the outputs of both
modules.
Args:
q_module: module quantized from float_module that we want to shadow
float_module: float module used to shadow q_module
logger_cls: type of logger used to process the outputs of q_module and
float_module. ShadowLogger or custom loggers can be used.
"""
def __init__(self, q_module, float_module, logger_cls):
super(Shadow, self).__init__()
self.orig_module = q_module
self.shadow_module = float_module
self.dequant = nnq.DeQuantize()
self.logger = logger_cls()
def forward(self, *x) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
xl = _convert_tuple_to_list(x)
output = self.orig_module(*xl)
xl_float = _dequantize_tensor_list(xl)
shadow_output = self.shadow_module(*xl_float)
self.logger(output, shadow_output)
return output
def add(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.add(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.add(x, y)
self.logger(output, shadow_output)
return output
def add_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.add_scalar(x, y)
x = x.dequantize()
shadow_output = self.shadow_module.add_scalar(x, y)
self.logger(output, shadow_output)
return output
def mul(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.mul(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.mul(x, y)
self.logger(output, shadow_output)
return output
def mul_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.mul_scalar(x, y)
x = x.dequantize()
shadow_output = self.shadow_module.mul_scalar(x, y)
self.logger(output, shadow_output)
return output
def cat(self, x: List[torch.Tensor], dim: int = 0) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.cat(x, dim)
x = [y.dequantize() for y in x]
shadow_output = self.shadow_module.cat(x, dim)
self.logger(output, shadow_output)
return output
def add_relu(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""
""" # blank docblock to make autodoc happy
output = self.orig_module.add_relu(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.add_relu(x, y)
self.logger(output, shadow_output)
return output
def prepare_model_with_stubs(
float_module: nn.Module, q_module: nn.Module,
module_swap_list: Set[type], logger_cls: Callable,
) -> None:
r"""Prepare the model by attaching the float module to its matching quantized
module as the shadow if the float module type is in module_swap_list.
Example usage::
prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
q_model(data)
ob_dict = get_logger_dict(q_model)
Args:
float_module: float module used to generate the q_module
q_module: module quantized from float_module
module_swap_list: list of float module types to attach the shadow
logger_cls: type of logger to be used in shadow module to process the outputs of
quantized module and its float shadow module
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_with_stubs")
float_module_children = {}
for name, mod in float_module.named_children():
float_module_children[name] = mod
reassign = {}
for name, mod in q_module.named_children():
if name not in float_module_children:
continue
float_mod = float_module_children[name]
if type(float_mod) not in module_swap_list:
prepare_model_with_stubs(float_mod, mod, module_swap_list, logger_cls)
# Insert shadow module only if the module is not of the same type as
# the floating point module
if type(float_mod) in module_swap_list and not _is_identical_module_type(mod, float_mod):
reassign[name] = Shadow(mod, float_mod, logger_cls)
for key, value in reassign.items():
q_module._modules[key] = value
def _is_identical_module_type(mod1, mod2):
# Compare if two modules have the same dtype
mod1_module_types = [type(mod) for mod in mod1.modules()]
mod2_module_types = [type(mod) for mod in mod2.modules()]
return mod1_module_types == mod2_module_types
def compare_model_stub(
float_model: nn.Module, q_model: nn.Module, module_swap_list: Set[type],
*data, logger_cls=ShadowLogger
) -> Dict[str, Dict]:
r"""Compare quantized module in a model with its floating point counterpart,
feeding both of them the same input. Return a dict with key corresponding to
module names and each entry being a dictionary with two keys 'float' and
'quantized', containing the output tensors of quantized and its matching
float shadow module. This dict can be used to compare and compute the module
level quantization error.
This function first call prepare_model_with_stubs() to swap the quantized
module that we want to compare with the Shadow module, which takes quantized
module, corresponding float module and logger as input, and creates a forward
path inside to make the float module to shadow quantized module sharing the
same input. The logger can be customizable, default logger is ShadowLogger
and it will save the outputs of the quantized module and float module that
can be used to compute the module level quantization error.
Example usage::
module_swap_list = [torchvision.models.quantization.resnet.QuantizableBasicBlock]
ob_dict = compare_model_stub(float_model,qmodel,module_swap_list, data)
for key in ob_dict:
print(key, compute_error(ob_dict[key]['float'], ob_dict[key]['quantized'].dequantize()))
Args:
float_model: float model used to generate the q_model
q_model: model quantized from float_model
module_swap_list: list of float module types at which shadow modules will
be attached.
data: input data used to run the prepared q_model
logger_cls: type of logger to be used in shadow module to process the outputs of
quantized module and its float shadow module
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_stub")
prepare_model_with_stubs(float_model, q_model, module_swap_list, logger_cls)
q_model(*data)
ob_dict = get_logger_dict(q_model)
return ob_dict
def get_matching_activations(
float_module: nn.Module, q_module: nn.Module,
) -> Dict[str, Dict[str, torch.Tensor]]:
r"""Find the matching activation between float and quantized modules.
Args:
float_module: float module used to generate the q_module
q_module: module quantized from float_module
Return:
act_dict: dict with key corresponding to quantized module names and each
entry being a dictionary with two keys 'float' and 'quantized', containing
the matching float and quantized activations
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.get_matching_activations")
float_dict = get_logger_dict(float_module)
quantized_dict = get_logger_dict(q_module)
act_dict: Dict[str, Dict] = {}
for key in quantized_dict:
if len(quantized_dict[key]["tensor_val"]) == 0:
continue
match_key = _find_match(sorted(float_dict, reverse=True), key, "stats")
if match_key is not None:
act_dict[key] = {}
act_dict[key]["float"] = float_dict[match_key]["tensor_val"]
act_dict[key]["quantized"] = quantized_dict[key]["tensor_val"]
return act_dict
def prepare_model_outputs(
float_module: nn.Module,
q_module: nn.Module,
logger_cls=OutputLogger,
allow_list=None
) -> None:
r"""Prepare the model by attaching the logger to both float module
and quantized module if they are in the allow_list.
Args:
float_module: float module used to generate the q_module
q_module: module quantized from float_module
logger_cls: type of logger to be attached to float_module and q_module
allow_list: list of module types to attach logger
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_outputs")
if allow_list is None:
allow_list = get_default_compare_output_module_list()
qconfig_debug = torch.ao.quantization.QConfig(activation=logger_cls, weight=None)
float_module.qconfig = qconfig_debug # type: ignore[assignment]
prepare(float_module, inplace=True, allow_list=allow_list, prepare_custom_config_dict={})
q_module.qconfig = qconfig_debug # type: ignore[assignment]
prepare(
q_module,
inplace=True,
allow_list=allow_list,
observer_non_leaf_module_list=NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST,
prepare_custom_config_dict={}
)
def compare_model_outputs(
float_model: nn.Module,
q_model: nn.Module,
*data,
logger_cls=OutputLogger,
allow_list=None
) -> Dict[str, Dict[str, torch.Tensor]]:
r"""Compare output activations between float and quantized models at
corresponding locations for the same input. Return a dict with key corresponding
to quantized module names and each entry being a dictionary with two keys
'float' and 'quantized', containing the activations of quantized model and
float model at matching locations. This dict can be used to compare and
compute the propagation quantization error.
Example usage::
act_compare_dict = compare_model_outputs(float_model, qmodel, data)
for key in act_compare_dict:
print(
key,
compute_error(
act_compare_dict[key]['float'],
act_compare_dict[key]['quantized'].dequantize()
)
)
Args:
float_model: float model used to generate the q_model
q_model: model quantized from float_model
data: input data used to run the prepared float_model and q_model
logger_cls: type of logger to be attached to float_module and q_module
allow_list: list of module types to attach logger
Return:
act_compare_dict: dict with key corresponding to quantized module names
and each entry being a dictionary with two keys 'float' and 'quantized',
containing the matching float and quantized activations
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_outputs")
if allow_list is None:
allow_list = get_default_compare_output_module_list()
prepare_model_outputs(float_model, q_model, logger_cls, allow_list)
float_model(*data)
q_model(*data)
act_compare_dict = get_matching_activations(float_model, q_model)
return act_compare_dict
|