1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
"""
This module contains tooling to compare weights and activations
across models. Example usage::
import copy
import torch
import torch.quantization.quantize_fx as quantize_fx
import torch.ao.ns._numeric_suite_fx as ns
m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)).eval()
mp = quantize_fx.prepare_fx(m, {'': torch.quantization.default_qconfig})
# We convert a copy because we need the original prepared model
# to be available for comparisons, and `quantize_fx.convert_fx` is inplace.
mq = quantize_fx.convert_fx(copy.deepcopy(mp))
#
# Comparing weights
#
# extract weight pairs
weight_comparison = ns.extract_weights('a', mp, 'b', mq)
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
weight_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# weight_comparison contains the weights from `mp` and `mq` stored
# in pairs, and can be used for further analysis.
#
# Comparing activations, with error propagation
#
# add loggers
mp_ns, mq_ns = ns.add_loggers(
'a', copy.deepcopy(mp),
'b', copy.deepcopy(mq),
ns.OutputLogger)
# send an example datum to capture intermediate activations
datum = torch.randn(1, 1, 1, 1)
mp_ns(datum)
mq_ns(datum)
# extract intermediate activations
act_comparison = ns.extract_logger_info(
mp_ns, mq_ns, ns.OutputLogger, 'b')
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# act_comparison contains the activations from `mp_ns` and `mq_ns` stored
# in pairs, and can be used for further analysis.
#
# Comparing activations, without error propagation
#
# create shadow model
mp_shadows_mq = ns.add_shadow_loggers(
'a', copy.deepcopy(mp),
'b', copy.deepcopy(mq),
ns.OutputLogger)
# send an example datum to capture intermediate activations
datum = torch.randn(1, 1, 1, 1)
mp_shadows_mq(datum)
# extract intermediate activations
shadow_act_comparison = ns.extract_shadow_logger_info(
mp_shadows_mq, ns.OutputLogger, 'b')
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
shadow_act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# shadow_act_comparison contains the activations from `mp_ns` and `mq_ns` stored
# in pairs, and can be used for further analysis.
"""
import collections
import torch
import torch.nn as nn
import torch.ao.quantization.quantize_fx as quantize_fx
from torch.fx import GraphModule
from torch.fx.graph import Node
from torch.ao.ns.fx.mappings import (
get_base_name_to_sets_of_related_ops,
)
from torch.ao.ns.fx.graph_matcher import (
get_matching_subgraph_pairs,
get_type_a_related_to_b,
)
from .fx.weight_utils import (
extract_weight_from_node,
)
from .fx.graph_passes import (
add_loggers_to_model,
create_a_shadows_b,
)
from .fx.utils import (
rekey_logger_info_on_node_name_of_model,
maybe_add_missing_fqns,
get_target_type_str,
)
from .fx.ns_types import (
NSSingleResultValuesType,
NSResultsType,
NSNodeTargetType,
)
from typing import Dict, Tuple, Callable, List, Optional, Set
RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
class OutputLogger(nn.Module):
"""
Base class for capturing intermediate values.
"""
stats: List[torch.Tensor]
stats_rnn: List[RNNReturnType]
# Mark as impure so that calls to it will not be removed during DCE.
_is_impure = True
def __init__(
self,
ref_node_name: str,
prev_node_name: str,
model_name: str,
ref_name: str,
prev_node_target_type: str,
ref_node_target_type: str,
results_type: str,
index_within_arg: int,
index_of_arg: int,
fqn: Optional[str],
):
super().__init__()
self.stats: List[torch.Tensor] = []
self.stats_rnn: List[RNNReturnType] = []
# name of the node which was responsible for adding this logger
# Note:
# - if we are logging node outputs, this is the same as prev_node_name
# - if we are logging node inputs, this is the name of the node
# whose input this logger is logging.
#
# example, where logger1 is logging input of op1 and logger2 is logging
# the output of op1:
#
# x1 -> logger1 -> op1 -> logger2 -> x2
#
# in this example,
# - logger1's prev_node_name is x1 and ref_node_name is op1
# - logger2's prev_node_name is op1 and ref_node_name is op1
self.ref_node_name = ref_node_name
# name of the node whose output this Logger is capturing
self.prev_node_name = prev_node_name
# name of the model from which the node originated from
self.model_name = model_name
# reference name, used to match loggers from separate models
# to each other
self.ref_name = ref_name
# type of the target of the node whose output this logger is logging
self.prev_node_target_type = prev_node_target_type
# type of the target of the node which was respondible for adding this
# logger
self.ref_node_target_type = ref_node_target_type
# what kind of values are inside of stats
self.results_type = results_type
# index of this node within the arg of the input/output node
# for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
self.index_within_arg = index_within_arg
# index of this node within the args of the input/output node
# for example, in add(x1, x2), x2 would have index_of_arg == 1
self.index_of_arg = index_of_arg
# fully qualified name
self.fqn = fqn
# Note: cannot annotate the type of x because TorchScript does not support
# the Union type.
def forward(self, x):
"""
""" # blank docblock to make autodoc happy
if isinstance(x, torch.Tensor):
self.stats.append(x.detach())
elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2:
new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach()))
self.stats_rnn.append(new_res)
return x
def __repr__(self):
return f"""OutputLogger(ref_name={self.ref_name}, model_name={self.model_name},
prev_node_name={self.prev_node_name}, ref_node_name={self.ref_node_name},
ref_node_target_type={self.ref_node_target_type}
results_type={self.results_type}, index_within_arg={self.index_within_arg},
index_of_arg={self.index_of_arg}, fqn={self.fqn})"""
class NSTracer(quantize_fx.QuantizationTracer):
"""
Just like a regular FX quantization tracer, but treats observers and fake_quantize
modules as leaf modules.
"""
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool:
"""
""" # blank docblock to make autodoc happy
if isinstance(m, torch.ao.quantization.ObserverBase):
return True
elif isinstance(m, torch.ao.quantization.FakeQuantizeBase):
return True
return super().is_leaf_module(m, module_qualified_name)
def _extract_weights_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument: List[Tuple[Node, str]],
results: NSResultsType,
op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
) -> None:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_one_model")
for node, ref_name in nodes_and_names_to_instrument:
res_type = NSSingleResultValuesType.WEIGHT.value
extracted_weight = extract_weight_from_node(
node, model, op_to_type_to_weight_extraction_fn)
if extracted_weight:
if ref_name not in results:
results[ref_name] = {res_type: {}}
results[ref_name][res_type][model_name] = [extracted_weight]
def _extract_weights_impl(
model_name_a: str,
gm_a: GraphModule,
model_name_b: str,
gm_b: GraphModule,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
) -> NSResultsType:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_impl")
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops,
unmatchable_types_map)
# split the subgraph pairs into one data structure for each model
nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = []
nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = []
for match_name, match in matched_subgraph_pairs.items():
subgraph_a, subgraph_b = match
nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name))
nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name))
# populate the results, one model at a time
results: NSResultsType = {}
_extract_weights_one_model(
model_name_a, gm_a, nodes_and_names_to_instrument_a, results,
op_to_type_to_weight_extraction_fn)
_extract_weights_one_model(
model_name_b, gm_b, nodes_and_names_to_instrument_b, results,
op_to_type_to_weight_extraction_fn)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on names of nodes in gm_b
results = rekey_logger_info_on_node_name_of_model(results, model_name_b)
return results
def extract_weights(
model_name_a: str,
model_a: nn.Module,
model_name_b: str,
model_b: nn.Module,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
) -> NSResultsType:
"""
Extract weights from model A and model B, and return a comparison.
Args:
model_name_a: string name of model A to use in results
model_a: model A
model_name_b: string name of model B to use in results
model_b: model B
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
op_to_type_to_weight_extraction_fn: optional override of function which extracts weight
from a type, subject to change
Return:
NSResultsType, containing the weight comparisons
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_weights")
if base_name_to_sets_of_related_ops is None:
base_name_to_sets_of_related_ops = \
get_base_name_to_sets_of_related_ops()
type_a_related_to_b = \
get_type_a_related_to_b(base_name_to_sets_of_related_ops)
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
if hasattr(model_a, '_node_name_to_scope'):
gm_a._node_name_to_scope = model_a._node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
if hasattr(model_b, '_node_name_to_scope'):
gm_b._node_name_to_scope = model_b._node_name_to_scope
return _extract_weights_impl(
model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops,
unmatchable_types_map, op_to_type_to_weight_extraction_fn)
def _add_loggers_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument_inputs: List[Tuple[Node, str, str]],
nodes_and_names_to_instrument_outputs: List[Tuple[Node, str, str]],
logger_cls: Callable,
) -> nn.Module:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_one_model")
# TODO(future PR): do not observe nodes we do not care
# about (both fp32, denylist, etc)
node_to_instrument_inputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
node_to_instrument_outputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
for node, ref_name, ref_node_type in nodes_and_names_to_instrument_inputs:
node_to_instrument_inputs_to_ref_name[node] = (ref_name, ref_node_type)
for node, ref_name, ref_node_type in nodes_and_names_to_instrument_outputs:
node_to_instrument_outputs_to_ref_name[node] = (ref_name, ref_node_type)
model = add_loggers_to_model(
model, node_to_instrument_inputs_to_ref_name,
node_to_instrument_outputs_to_ref_name, logger_cls, model_name)
return model
def _add_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_impl")
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b,
base_name_to_sets_of_related_ops, unmatchable_types_map)
nodes_and_names_to_instrument_inputs_a = []
nodes_and_names_to_instrument_inputs_b = []
nodes_and_names_to_instrument_outputs_a = []
nodes_and_names_to_instrument_outputs_b = []
for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items():
ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a)
ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b)
# Note: for matching inputs we use start_node, such as observing
# the input of linear in linear-relu
if should_log_inputs:
nodes_and_names_to_instrument_inputs_a.append(
(subgraph_a.start_node, match_name, ref_node_type_a))
nodes_and_names_to_instrument_inputs_b.append(
(subgraph_b.start_node, match_name, ref_node_type_b))
# Note: for matching activations we always use end_node,
# such as observing the output of relu in linear-relu
nodes_and_names_to_instrument_outputs_a.append(
(subgraph_a.end_node, match_name, ref_node_type_a))
nodes_and_names_to_instrument_outputs_b.append(
(subgraph_b.end_node, match_name, ref_node_type_b))
new_model_a = _add_loggers_one_model(
name_a, gm_a, nodes_and_names_to_instrument_inputs_a,
nodes_and_names_to_instrument_outputs_a, logger_cls)
new_model_b = _add_loggers_one_model(
name_b, gm_b, nodes_and_names_to_instrument_inputs_b,
nodes_and_names_to_instrument_outputs_b, logger_cls)
return (new_model_a, new_model_b)
def add_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs : bool = False,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
"""
Instrument model A and model B with loggers.
Args:
model_name_a: string name of model A to use in results
model_a: model A
model_name_b: string name of model B to use in results
model_b: model B
logger_cls: class of Logger to use
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
Return:
Returns a tuple of (model_a_with_loggers, model_b_with_loggers). Modifies both models inplace.
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_loggers")
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
if hasattr(model_a, '_node_name_to_scope'):
gm_a._node_name_to_scope = model_a._node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
if hasattr(model_b, '_node_name_to_scope'):
gm_b._node_name_to_scope = model_b._node_name_to_scope
return _add_loggers_impl(
name_a, gm_a, name_b, gm_b, logger_cls,
should_log_inputs=should_log_inputs,
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
unmatchable_types_map=unmatchable_types_map)
def _extract_logger_info_one_model(
model: nn.Module,
results: NSResultsType,
logger_cls: Callable,
) -> None:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_logger_info_one_model")
for gm_name, mod in model.named_modules():
# TODO(future PR): better check when scripted
is_logger = (
isinstance(mod, logger_cls) # type: ignore[arg-type]
or (
isinstance(mod, torch.jit.RecursiveScriptModule)
and mod.original_name == 'OutputLogger'
)
)
if is_logger:
key = mod.ref_name
if key not in results:
results[key] = {}
assert mod.model_name not in results[key], \
f"{mod.model_name} is already present in results"
if mod.results_type not in results[key]:
results[key][mod.results_type] = {}
if mod.model_name not in results[key][mod.results_type]:
results[key][mod.results_type][mod.model_name] = []
stats_to_use = mod.stats
if len(mod.stats_rnn) > 0:
stats_to_use = mod.stats_rnn
results[key][mod.results_type][mod.model_name].append({
'type': mod.results_type,
'values': stats_to_use,
'ref_node_name': mod.ref_node_name,
'ref_node_target_type': mod.ref_node_target_type,
'prev_node_name': mod.prev_node_name,
'prev_node_target_type': mod.prev_node_target_type,
'index_within_arg': mod.index_within_arg,
'index_of_arg': mod.index_of_arg,
'fqn': mod.fqn,
})
# ensure the list stays sorted
results[key][mod.results_type][mod.model_name].sort(
key=lambda res:
f"{res['index_of_arg']}:{res['index_within_arg']}"
)
# TODO(future PR): align on naming
# this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
def extract_logger_info(
model_a: nn.Module,
model_b: nn.Module,
logger_cls: Callable,
model_name_to_use_for_layer_names: str,
) -> NSResultsType:
"""
Traverse all loggers in `model_a` and `model_b`, and extract the logged
information.
Args:
model_a: model A
model_b: model B
logger_cls: class of Logger to use
model_name_to_use_for_layer_names: string name of model to use for
layer names in the output
Return:
NSResultsType, containing the logged comparisons
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_logger_info")
results: NSResultsType = {}
for model in (model_a, model_b):
_extract_logger_info_one_model(model, results, logger_cls)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on the name of model b
results = rekey_logger_info_on_node_name_of_model(
results, model_name_to_use_for_layer_names)
return results
def _add_shadow_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> nn.Module:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_shadow_loggers_impl")
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops,
unmatchable_types_map)
gm_a_shadows_b = create_a_shadows_b(
name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls,
should_log_inputs=should_log_inputs,
node_type_to_io_type_map=node_type_to_io_type_map)
return gm_a_shadows_b
def add_shadow_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs: bool = False,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> nn.Module:
"""
Instrument model A and model B with shadow loggers.
Args:
model_name_a: string name of model A to use in results
model_a: model A
model_name_b: string name of model B to use in results
model_b: model B
logger_cls: class of Logger to use
should_log_inputs: whether to log inputs
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_shadow_loggers")
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
if hasattr(model_a, '_node_name_to_scope'):
gm_a._node_name_to_scope = model_a._node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
if hasattr(model_b, '_node_name_to_scope'):
gm_b._node_name_to_scope = model_b._node_name_to_scope
return _add_shadow_loggers_impl(
name_a, gm_a, name_b, gm_b, logger_cls,
should_log_inputs=should_log_inputs,
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
node_type_to_io_type_map=node_type_to_io_type_map,
unmatchable_types_map=unmatchable_types_map)
def extract_shadow_logger_info(
model_a_shadows_b: nn.Module,
logger_cls: Callable,
model_name_to_use_for_layer_names: str,
) -> NSResultsType:
"""
Traverse all loggers in a shadow model, and extract the logged
information.
Args:
model_a_shadows_b: shadow model
logger_cls: class of Logger to use
model_name_to_use_for_layer_names: string name of model to use for
layer names in the output
Return:
NSResultsType, containing the logged comparisons
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_shadow_logger_info")
results: NSResultsType = collections.defaultdict(dict)
_extract_logger_info_one_model(model_a_shadows_b, results, logger_cls)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on the name of model b
results = rekey_logger_info_on_node_name_of_model(
results, model_name_to_use_for_layer_names)
return dict(results)
def extend_logger_results_with_comparison(
results: NSResultsType,
model_name_1: str,
model_name_2: str,
comparison_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
comparison_name: str,
) -> None:
"""
Compares the logged values from `model_name_2` against the corresponding
values in `model_name_1`, using `comparison_fn`. Records the result
in `model_name_2`'s results under `comparison_name`. Modifies `results` inplace.
Args:
results: the result data structure from `extract_logger_info` or
`extract_shadow_logger_info`.
model_name_1: string name of model 1
model_name_2: string name of model 2
comparison_fn: function to compare two Tensors
model_name_to_use_for_layer_names: string name of model to use for
layer names in the output
"""
for _, results_type_to_results in results.items():
for _, model_name_to_results in results_type_to_results.items():
assert model_name_1 in model_name_to_results, \
f"{model_name_1} not found in results"
assert model_name_2 in model_name_to_results, \
f"{model_name_2} not found in results"
results_1 = model_name_to_results[model_name_1]
results_2 = model_name_to_results[model_name_2]
for result_2 in results_2:
index_within_arg_2 = result_2['index_within_arg']
index_of_arg_2 = result_2['index_of_arg']
# find corresponding result_1
result_1 = None
for cur_result_1 in results_1:
index_within_arg_1 = cur_result_1['index_within_arg']
index_of_arg_1 = cur_result_1['index_of_arg']
if (
(index_within_arg_1 == index_within_arg_2) and
(index_of_arg_1 == index_of_arg_2)
):
result_1 = cur_result_1
break
assert result_1 is not None
values_1 = result_1['values']
values_2 = result_2['values']
result_2[comparison_name] = []
for value_1, value_2 in zip(values_1, values_2):
comparison_result = comparison_fn(value_1, value_2)
result_2[comparison_name].append(comparison_result)
|