File: pattern_utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (199 lines) | stat: -rw-r--r-- 8,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.nn.functional as F
toq = torch.ops.quantized

from torch.fx import GraphModule
from torch.fx.graph import Node

from torch.ao.quantization.utils import getattr_from_fqn
from .ns_types import NSNodeTargetType
from torch.ao.quantization.fx.backend_config_utils import get_native_quant_patterns
from torch.ao.quantization import (
    ObserverBase,
    FakeQuantizeBase,
)

from typing import Dict, Tuple, Set, Callable, Any, Union, List


def get_type_a_related_to_b(
    base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
) -> Set[Tuple[NSNodeTargetType, NSNodeTargetType]]:
    # TODO(future PR): allow customizations
    # TODO(future PR): reuse existing quantization mappings
    # TODO(future PR): add the rest of modules and ops here
    type_a_related_to_b: Set[Tuple[NSNodeTargetType, NSNodeTargetType]] = set()

    for base_name, s in base_name_to_sets_of_related_ops.items():
        s_list = list(s)
        # add every bidirectional pair
        for idx_0 in range(0, len(s_list)):
            for idx_1 in range(idx_0, len(s_list)):
                type_a_related_to_b.add((s_list[idx_0], s_list[idx_1]))
                type_a_related_to_b.add((s_list[idx_1], s_list[idx_0]))

    return type_a_related_to_b


NSFusionElType = Union[
    Callable,  # call_function or call_module type, example: F.linear or nn.Conv2d
    str,  # call_method name, example: "dequantize"
    Tuple[str, Any],  # call_method name and first argument, example: ("to", torch.float16)
]
NSFusionType = Union[
    Tuple[NSFusionElType, NSFusionElType],
    Tuple[NSFusionElType, NSFusionElType, NSFusionElType, NSFusionElType],
]

def get_reversed_fusions() -> List[Tuple[NSFusionType, int]]:
    """
    Set of potential fusions, in reverse order.  The order is reversed
    to match how fusion patterns are defined in quantization code.

    Fusion format:
    ((fusion_op_0, fusion_op_1), base_op_idx)

    Where base_op_idx is the idx of the op we should use to match other related
    ops. Note: base_op_idx is specified in non-reverse order, i.e. a base_op_idx
    of 0 represents the first op in regular (non-reverse) order, 1 represents the
    second op, etc.
    """
    results: List[Tuple[NSFusionType, int]] = []

    # Possible syntaxes:
    # * single op: torch.nn.Conv2d
    # * multiple ops: (torch.nn.ReLU, torch.nn.Conv2d)
    # For fusions, we only care about patterns composed of multiple ops.
    # TODO(future PR): allow customizations from default patterns.
    all_quant_patterns = get_native_quant_patterns()

    default_base_op_idx = 0
    for quant_pattern, _quant_handler in all_quant_patterns.items():
        # TODO: this is a temporary hack to flatten the patterns from quantization so
        # that it works with the ns matcher function, maybe we should use `is_match`
        # in torch.ao.quantization.fx.match_utils to match the patterns
        if isinstance(quant_pattern, tuple) and len(quant_pattern) == 2 and \
           isinstance(quant_pattern[1], tuple) and len(quant_pattern[1]) == 2:
            # flatten the pattern with form (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
            quant_pattern = (quant_pattern[0], quant_pattern[1][0], quant_pattern[1][1])

        # Only patterns of multiple ops are fusions, ignore
        # patterns which contain a single ops (they get matched
        # without caring about fusions).
        if isinstance(quant_pattern, tuple):
            results.append((quant_pattern, default_base_op_idx))  # type: ignore[arg-type]

        # For each pattern, add additional patterns with observers and
        # fake quants at the end.
        # TODO(future PR): if needed, implement matching for a node
        #   having multiple output observers.
        for cls in (ObserverBase, FakeQuantizeBase):
            if isinstance(quant_pattern, tuple):
                new_pattern = (cls, *quant_pattern)
            else:
                new_pattern = (cls, quant_pattern)
            results.append((new_pattern, default_base_op_idx))  # type: ignore[arg-type]


    # After this point, results countains values such as
    # [..., ((torch.nn.Relu, torch.nn.Conv2d), 0), ...]

    # Patterns for matching fp16 emulation are not specified in the quantization
    # fusion mappings.  For now, define them here.
    fp16_em_base_op_idx = 1
    patterns_to_add = [
        # linear-relu fp16 emulation:
        # fp16_to_fp32 -> linear -> relu -> fp32_to_fp16
        ((("to", torch.float16), F.relu, F.linear, "dequantize"), fp16_em_base_op_idx,),
        # Conv-BN fusion (this happens outside of quantization patterns,
        # which is why it is defined separately here).
        ((nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
        ((nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
        ((nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
        ((nn.ReLU, nn.BatchNorm1d, nn.Conv1d), default_base_op_idx),
        ((nn.ReLU, nn.BatchNorm2d, nn.Conv2d), default_base_op_idx),
        ((nn.ReLU, nn.BatchNorm3d, nn.Conv3d), default_base_op_idx),
    ]
    for p in patterns_to_add:
        results.append(p)  # type: ignore[arg-type]
        results.append(((ObserverBase, *p[0]), p[1]))  # type: ignore[arg-type]
        results.append(((FakeQuantizeBase, *p[0]), p[1]))  # type: ignore[arg-type]

    return results


def end_node_matches_reversed_fusion(
    end_node: Node,
    reversed_fusion: NSFusionType,
    gm: GraphModule,
    seen_nodes: Set[Node],
) -> bool:
    """
    Returns true if a pattern ending with `end_node` matches
    the fusion pattern.
    """
    cur_node = end_node
    for fusion_idx in range(len(reversed_fusion)):
        # each node can only belong to one matched pattern
        if cur_node in seen_nodes:
            return False

        cur_fusion_el = reversed_fusion[fusion_idx]

        if cur_node.op == 'call_function':
            fusion_el_is_fun = (not isinstance(cur_fusion_el, str)) and \
                (not isinstance(cur_fusion_el, type))
            if fusion_el_is_fun:
                if cur_node.target != cur_fusion_el:
                    return False
                if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
                    cur_node = cur_node.args[0]
                else:
                    return False
            else:
                return False

        elif cur_node.op == 'call_module':
            fusion_el_is_mod = isinstance(cur_fusion_el, type)
            if fusion_el_is_mod:
                assert isinstance(cur_node.target, str)
                target_mod = getattr_from_fqn(gm, cur_node.target)
                if not isinstance(cur_fusion_el, type):
                    return False
                if not isinstance(target_mod, cur_fusion_el):
                    return False
                if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
                    cur_node = cur_node.args[0]
                else:
                    return False
            else:
                return False

        elif cur_node.op == 'call_method':
            fusion_el_is_meth_with_second_arg = \
                isinstance(cur_fusion_el, tuple) and len(cur_fusion_el) == 2
            fusion_el_is_meth_without_args = isinstance(cur_fusion_el, str)
            if fusion_el_is_meth_without_args or fusion_el_is_meth_with_second_arg:
                if fusion_el_is_meth_without_args:
                    if cur_node.target != cur_fusion_el:
                        return False
                else:
                    assert isinstance(cur_fusion_el, tuple)
                    if cur_node.target != cur_fusion_el[0]:
                        return False
                    elif len(cur_node.args) < 2:
                        return False
                    elif cur_node.args[1] != cur_fusion_el[1]:
                        return False

                if len(cur_node.args) > 0 and isinstance(cur_node.args[0], Node):
                    cur_node = cur_node.args[0]
                else:
                    return False
            else:
                return False
        else:
            return False

    return True