1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.ao.nn.quantized.dynamic as nnqd
import torch.ao.nn.quantized as nnq
import torch.nn.intrinsic.qat as nniqat
import torch.ao.nn.qat as nnqat
import torch.nn.intrinsic as nni
import torch.nn.intrinsic.quantized as nniq
toq = torch.ops.quantized
from torch.fx import GraphModule
from torch.fx.graph import Node
from .utils import (
get_target_type_str,
getattr_from_fqn,
return_first_non_observer_node,
)
from .ns_types import (
NSSingleResultValuesType,
NSSingleResultType,
)
from typing import List, Optional, Dict, Callable
def mod_weight_detach(mod: nn.Module) -> torch.Tensor:
return mod.weight.detach() # type: ignore[operator]
def mod_0_weight_detach(mod: nn.Module) -> torch.Tensor:
return mod[0].weight.detach() # type: ignore[index]
def mod_weight_bias_0(mod: nn.Module) -> torch.Tensor:
return mod._weight_bias()[0] # type: ignore[operator]
def get_lstm_weight(mod: nn.Module) -> List[torch.Tensor]:
res = []
for idx, param_name in enumerate(mod._flat_weights_names): # type: ignore[arg-type]
if 'weight_ih_l' in param_name or 'weight_hh_l' in param_name:
param_value = mod._flat_weights[idx].detach() # type: ignore[index]
res.append(param_value)
return res
def get_qlstm_weight(mod: nn.Module) -> List[torch.Tensor]:
res = []
for weight_value in mod._all_weight_values: # type: ignore[union-attr]
res.append(weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0])
res.append(weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0])
return res
def get_conv_mod_weight(mod: nn.Module) -> torch.Tensor:
if (
isinstance(mod, nn.Conv1d) or
isinstance(mod, nn.Conv2d) or
isinstance(mod, nn.Conv3d)
):
return mod.weight.detach()
elif (
isinstance(mod, nni.ConvReLU1d) or
isinstance(mod, nni.ConvReLU2d) or
isinstance(mod, nni.ConvReLU3d)
):
return mod[0].weight.detach()
else:
return mod._weight_bias()[0] # type: ignore[operator]
def get_linear_mod_weight(mod: nn.Module) -> torch.Tensor:
if isinstance(mod, nn.Linear):
return mod.weight.detach()
elif isinstance(mod, nni.LinearReLU):
return mod[0].weight.detach()
else:
return mod._weight_bias()[0] # type: ignore[operator]
def get_lstm_mod_weights(mod: nn.Module) -> List[torch.Tensor]:
# TODO(future PR): make more generic, handle everything
if isinstance(mod, nn.LSTM):
res = []
for idx, param_name in enumerate(mod._flat_weights_names):
if 'weight_ih_l' in param_name or 'weight_hh_l' in param_name:
param_value = mod._flat_weights[idx].detach()
res.append(param_value)
return res
else:
assert isinstance(mod, nnqd.LSTM), f"type {type(res)} not handled yet"
res = []
for weight_value in mod._all_weight_values:
res.append(weight_value.param.__getstate__()[0][4][0].__getstate__()[0][0])
res.append(weight_value.param.__getstate__()[0][4][1].__getstate__()[0][0])
return res
def get_conv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# traverse backwards from the weight arg, accounting for any observers
weight_arg_node = node.args[1]
assert isinstance(weight_arg_node, Node)
weight_node = return_first_non_observer_node(weight_arg_node, gm)
assert isinstance(weight_node, Node)
assert weight_node.op == 'get_attr'
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
return weight.detach()
def get_qconv_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# qconv state is arg 1
qconv_state_node = node.args[1]
assert isinstance(qconv_state_node, Node)
assert qconv_state_node.op == 'get_attr'
qconv_state_obj = getattr_from_fqn(gm, qconv_state_node.target) # type: ignore[arg-type]
return qconv_state_obj.weight()
def get_linear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# traverse backwards from the weight arg, accounting for any observers
# supported patterns:
# weight -> obs -> linear
# weight -> to(torch.float16) -> dequantize -> linear
linear_second_arg = node.args[1]
assert isinstance(linear_second_arg, Node)
if linear_second_arg.op == 'call_module':
# weight -> obs -> linear
weight_arg_node = node.args[1]
assert isinstance(weight_arg_node, Node)
weight_node = weight_arg_node.args[0]
assert isinstance(weight_node, Node)
assert weight_node.op == 'get_attr'
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
return weight.detach()
elif linear_second_arg.op == 'call_method':
# weight -> to(torch.float16) -> dequantize -> linear
assert linear_second_arg.op == 'call_method'
dequant_node = node.args[1]
assert isinstance(dequant_node, Node)
to_fp16_node = dequant_node.args[0]
assert isinstance(to_fp16_node, Node)
# extract the dtype, so we can cast to it before returning
target_dtype = to_fp16_node.args[1]
weight_node = to_fp16_node.args[0]
assert isinstance(weight_node, Node)
assert weight_node.op == 'get_attr'
weight = getattr_from_fqn(gm, weight_node.target) # type: ignore[arg-type]
# return the weight with fp16 cast
return weight.detach().to(target_dtype)
else:
assert linear_second_arg.op == 'get_attr'
weight = getattr_from_fqn(gm, linear_second_arg.target) # type: ignore[arg-type]
return weight.detach()
def get_qlinear_fun_weight(node: Node, gm: GraphModule) -> torch.Tensor:
# packed weight is arg 1
packed_weight_node = node.args[1]
assert isinstance(packed_weight_node, Node)
assert packed_weight_node.op == 'get_attr'
packed_weight = getattr_from_fqn(gm, packed_weight_node.target) # type: ignore[arg-type]
# TODO(future PR): why does packed_weight.unpack() not work?
(weight, _bias), _name = packed_weight.__getstate__()
return weight
def get_op_to_type_to_weight_extraction_fn() -> Dict[str, Dict[Callable, Callable]]:
op_to_type_to_weight_extraction_fn: Dict[str, Dict[Callable, Callable]] = {
'call_module': {
# Conv1d
nn.Conv1d: mod_weight_detach,
nni.ConvReLU1d: mod_0_weight_detach,
nnq.Conv1d: mod_weight_bias_0,
nnqat.Conv1d: mod_weight_detach,
nniqat.ConvBn1d: mod_weight_detach,
nniqat.ConvBnReLU1d: mod_weight_detach,
nniqat.ConvReLU1d: mod_weight_detach,
nniq.ConvReLU1d: mod_weight_bias_0,
# Conv2d
nn.Conv2d: mod_weight_detach,
nni.ConvReLU2d: mod_0_weight_detach,
nnq.Conv2d: mod_weight_bias_0,
nnqat.Conv2d: mod_weight_detach,
nniqat.ConvBn2d: mod_weight_detach,
nniqat.ConvBnReLU2d: mod_weight_detach,
nniqat.ConvReLU2d: mod_weight_detach,
nniq.ConvReLU2d: mod_weight_bias_0,
# Conv3d
nn.Conv3d: mod_weight_detach,
nni.ConvReLU3d: mod_0_weight_detach,
nnq.Conv3d: mod_weight_bias_0,
nnqat.Conv3d: mod_weight_detach,
nniqat.ConvBn3d: mod_weight_detach,
nniqat.ConvBnReLU3d: mod_weight_detach,
nniqat.ConvReLU3d: mod_weight_detach,
nniq.ConvReLU3d: mod_weight_bias_0,
# Linear
nn.Linear: mod_weight_detach,
nnq.Linear: mod_weight_bias_0,
nni.LinearReLU: mod_0_weight_detach,
nniq.LinearReLU: mod_weight_bias_0,
nnqat.Linear: mod_weight_detach,
nnqd.Linear: mod_weight_bias_0,
nniqat.LinearReLU: mod_weight_detach,
nniqat.LinearBn1d: mod_weight_detach,
nn.modules.linear.NonDynamicallyQuantizableLinear: mod_weight_detach,
# LSTM
nn.LSTM: get_lstm_weight,
nnqd.LSTM: get_qlstm_weight,
},
'call_function': {
# Conv
F.conv1d: get_conv_fun_weight,
F.conv2d: get_conv_fun_weight,
F.conv3d: get_conv_fun_weight,
toq.conv1d: get_qconv_fun_weight,
toq.conv2d: get_qconv_fun_weight,
toq.conv3d: get_qconv_fun_weight,
toq.conv1d_relu: get_qconv_fun_weight,
toq.conv2d_relu: get_qconv_fun_weight,
toq.conv3d_relu: get_qconv_fun_weight,
# Linear
F.linear: get_linear_fun_weight,
toq.linear: get_qlinear_fun_weight,
toq.linear_relu: get_qlinear_fun_weight,
},
}
return op_to_type_to_weight_extraction_fn
def extract_weight_from_node(
node: Node,
gm: GraphModule,
op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None,
) -> Optional[NSSingleResultType]:
res_type = NSSingleResultValuesType.WEIGHT.value
# Not all graphmodules have _node_name_to_scope, so only fill it
# out if it exists.
fqn = None
if hasattr(gm, '_node_name_to_scope'):
fqn = gm._node_name_to_scope[node.name][0] # type: ignore[index]
if op_to_type_to_weight_extraction_fn is None:
op_to_type_to_weight_extraction_fn = get_op_to_type_to_weight_extraction_fn()
ref_node_type = get_target_type_str(node, gm)
# for extracting weights, these are always the same
prev_node_type = ref_node_type
if node.op == 'call_function':
function_mapping = op_to_type_to_weight_extraction_fn['call_function']
for target_fn_type, weight_extraction_fn in function_mapping.items():
if node.target == target_fn_type:
weight = weight_extraction_fn(node, gm)
return {
'type': res_type,
'values': [weight],
'prev_node_name': node.name,
'prev_node_target_type': prev_node_type,
'ref_node_name': node.name,
'ref_node_target_type': ref_node_type,
'index_within_arg': 0,
'index_of_arg': 0,
'fqn': fqn,
}
elif node.op == 'call_module':
# for call_module, we need to look up the modules to do the type check
assert isinstance(node.target, str)
mod = getattr_from_fqn(gm, node.target)
module_mapping = op_to_type_to_weight_extraction_fn['call_module']
for target_mod_type, weight_extraction_fn in module_mapping.items():
if type(mod) == target_mod_type:
weight = weight_extraction_fn(mod)
return {
'type': res_type,
'values': [weight],
'prev_node_name': node.name,
'prev_node_target_type': prev_node_type,
'ref_node_name': node.name,
'ref_node_target_type': ref_node_type,
'index_within_arg': 0,
'index_of_arg': 0,
'fqn': fqn,
}
return None
|