1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Type, Union
import torch
from torch.ao.quantization.observer import _PartialWrapper
from torch.ao.quantization.utils import Pattern
from enum import Enum
__all__ = [
"BackendConfig",
"BackendPatternConfig",
"DTypeConfig",
"DTypeWithConstraints",
"ObservationType",
]
# DTypeConfig dict keys
INPUT_DTYPE_DICT_KEY = "input_dtype"
OUTPUT_DTYPE_DICT_KEY = "output_dtype"
WEIGHT_DTYPE_DICT_KEY = "weight_dtype"
BIAS_DTYPE_DICT_KEY = "bias_dtype"
IS_DYNAMIC_DICT_KEY = "is_dynamic"
# BackendConfig dict keys
NAME_DICT_KEY = "name"
CONFIGS_DICT_KEY = "configs"
# BackendPatternConfig dict keys
PATTERN_DICT_KEY = "pattern"
OBSERVATION_TYPE_DICT_KEY = "observation_type"
DTYPE_CONFIGS_DICT_KEY = "dtype_configs"
ROOT_MODULE_DICT_KEY = "root_module"
QAT_MODULE_DICT_KEY = "qat_module"
REFERENCE_QUANTIZED_MODULE_DICT_KEY = "reference_quantized_module_for_root"
FUSED_MODULE_DICT_KEY = "fused_module"
FUSER_METHOD_DICT_KEY = "fuser_method"
ROOT_NODE_GETTER_DICT_KEY = "root_node_getter"
EXTRA_INPUTS_GETTER_DICT_KEY = "extra_inputs_getter"
NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY = "num_tensor_args_to_observation_type"
INPUT_TYPE_TO_INDEX_DICT_KEY = "input_type_to_index"
INPUT_OUTPUT_OBSERVED_DICT_KEY = "input_output_observed"
OVERWRITE_OUTPUT_FAKE_QUANTIZE_DICT_KEY = "overwrite_output_fake_quantize"
OVERWRITE_OUTPUT_OBSERVER_DICT_KEY = "overwrite_output_observer"
# TODO: maybe rename this to something that's not related to observer
# e.g. QParamsType
class ObservationType(Enum):
""" An enum that represents different ways of how an operator/operator pattern
should be observed
"""
OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0
"""this means input and output are observed with different observers, based
on qconfig.activation
example: conv, linear, softmax
"""
OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1
"""this means the output will use the same observer instance as input, based
on qconfig.activation
example: torch.cat, maxpool
"""
@dataclass
class DTypeWithConstraints:
"""
Config for specifying additional constraints for a given dtype, such as quantization value
ranges and scale value ranges, to be used in :class:`~torch.ao.quantization.backend_config.DTypeConfig`.
"""
dtype: Optional[torch.dtype] = None
quant_min_lower_bound: Union[int, float, None] = None
quant_max_upper_bound: Union[int, float, None] = None
scale_min_lower_bound: Union[int, float, None] = None
scale_max_upper_bound: Union[int, float, None] = None
@dataclass
class DTypeConfig:
"""
Config for the set of supported input/output activation, weight, and bias data types for the
patterns defined in :class:`~torch.ao.quantization.backend_config.BackendConfig`.
Example usage::
>>> dtype_config1 = DTypeConfig(
... input_dtype=torch.quint8,
... output_dtype=torch.quint8,
... weight_dtype=torch.qint8,
... bias_dtype=torch.float)
>>> dtype_config2 = DTypeConfig(
... input_dtype=DTypeWithConstraints(
... dtype=torch.quint8,
... quant_min_lower_bound=0,
... quant_max_upper_bound=255,
... ),
... output_dtype=DTypeWithConstraints(
... dtype=torch.quint8,
... quant_min_lower_bound=0,
... quant_max_upper_bound=255,
... ),
... weight_dtype=DTypeWithConstraints(
... dtype=torch.qint8,
... quant_min_lower_bound=-128,
... quant_max_upper_bound=127,
... ),
... bias_dtype=torch.float)
>>> dtype_config1.input_dtype
torch.quint8
>>> dtype_config2.input_dtype
torch.quint8
>>> dtype_config2.input_dtype_with_constraints
DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, \
scale_min_lower_bound=None, scale_max_upper_bound=None)
"""
input_dtype_with_constraints: DTypeWithConstraints
output_dtype_with_constraints: DTypeWithConstraints
weight_dtype_with_constraints: DTypeWithConstraints
bias_dtype: Optional[torch.dtype]
is_dynamic: Optional[bool]
def __init__(
self,
input_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
output_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
weight_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
bias_dtype: Optional[torch.dtype] = None,
is_dynamic: Optional[bool] = None,
):
if isinstance(input_dtype, DTypeWithConstraints):
self.input_dtype_with_constraints = input_dtype
else:
self.input_dtype_with_constraints = DTypeWithConstraints(dtype=input_dtype)
if isinstance(output_dtype, DTypeWithConstraints):
self.output_dtype_with_constraints = output_dtype
else:
self.output_dtype_with_constraints = DTypeWithConstraints(dtype=output_dtype)
if isinstance(weight_dtype, DTypeWithConstraints):
self.weight_dtype_with_constraints = weight_dtype
else:
self.weight_dtype_with_constraints = DTypeWithConstraints(dtype=weight_dtype)
self.bias_dtype = bias_dtype
self.is_dynamic = is_dynamic
@property
def input_dtype(self) -> Optional[torch.dtype]:
return self.input_dtype_with_constraints.dtype
@property
def output_dtype(self) -> Optional[torch.dtype]:
return self.output_dtype_with_constraints.dtype
@property
def weight_dtype(self) -> Optional[torch.dtype]:
return self.weight_dtype_with_constraints.dtype
@classmethod
def from_dict(cls, dtype_config_dict: Dict[str, Any]) -> DTypeConfig:
"""
Create a ``DTypeConfig`` from a dictionary with the following items (all optional):
"input_dtype": torch.dtype or ``DTypeWithConstraints``
"output_dtype": torch.dtype or ``DTypeWithConstraints``
"weight_dtype": torch.dtype or ``DTypeWithConstraints``
"bias_type": torch.dtype
"is_dynamic": bool
"""
input_dtype = dtype_config_dict.get(INPUT_DTYPE_DICT_KEY, None)
if input_dtype is not None and not isinstance(input_dtype, (torch.dtype, DTypeWithConstraints)):
raise ValueError("Expected input_dtype to be a torch.dtype or DTypeWithConstraints")
output_dtype = dtype_config_dict.get(OUTPUT_DTYPE_DICT_KEY, None)
if output_dtype is not None and not isinstance(output_dtype, (torch.dtype, DTypeWithConstraints)):
raise ValueError("Expected output_dtype to be a torch.dtype or DTypeWithConstraints")
weight_dtype = dtype_config_dict.get(WEIGHT_DTYPE_DICT_KEY, None)
if weight_dtype is not None and not isinstance(weight_dtype, (torch.dtype, DTypeWithConstraints)):
raise ValueError("Expected weight_dtype to be a torch.dtype or DTypeWithConstraints")
bias_dtype = dtype_config_dict.get(BIAS_DTYPE_DICT_KEY, None)
is_dynamic = dtype_config_dict.get(IS_DYNAMIC_DICT_KEY, None)
return cls(input_dtype, output_dtype, weight_dtype, bias_dtype, is_dynamic)
def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``DTypeConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.backend_config.DTypeConfig.from_dict`.
"""
dtype_config_dict: Dict[str, Any] = {}
if self.input_dtype is not None:
dtype_config_dict[INPUT_DTYPE_DICT_KEY] = self.input_dtype_with_constraints
if self.output_dtype is not None:
dtype_config_dict[OUTPUT_DTYPE_DICT_KEY] = self.output_dtype_with_constraints
if self.weight_dtype is not None:
dtype_config_dict[WEIGHT_DTYPE_DICT_KEY] = self.weight_dtype_with_constraints
if self.bias_dtype is not None:
dtype_config_dict[BIAS_DTYPE_DICT_KEY] = self.bias_dtype
if self.is_dynamic is not None:
dtype_config_dict[IS_DYNAMIC_DICT_KEY] = self.is_dynamic
return dtype_config_dict
class BackendConfig:
# TODO: refer to NativeBackendConfig once that is implemented
"""Config that defines the set of patterns that can be quantized on a given backend, and how reference
quantized models can be produced from these patterns.
A pattern in this context refers to a module, a functional, an operator, or a directed acyclic graph
of the above. Each pattern supported on the target backend can be individually configured through
:class:`~torch.ao.quantization.backend_config.BackendPatternConfig` in terms of:
(1) The supported input/output activation, weight, and bias data types
(2) How observers and quant/dequant ops are inserted in order to construct the reference pattern, and
(3) (Optionally) Fusion, QAT, and reference module mappings.
The format of the patterns is described in:
https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md
Example usage::
import torch
from torch.ao.quantization.backend_config import BackendConfig, BackendPatternConfig, DTypeConfig, ObservationType
from torch.ao.quantization.fuser_method_mappings import reverse_sequential_wrapper2
weighted_int8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
weight_dtype=torch.qint8,
bias_type=torch.float)
linear_config = BackendPatternConfig(torch.nn.Linear) \
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
.add_dtype_config(weighted_int8_dtype_config) \
.set_root_module(torch.nn.Linear) \
.set_qat_module(torch.nn.qat.Linear) \
.set_reference_quantized_module(torch.nn.quantized._reference.Linear)
conv_relu_config = BackendPatternConfig((torch.nn.ReLU, torch.nn.Conv2d)) \
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
.add_dtype_config(weighted_int8_dtype_config) \
.set_fused_module(torch.nn.intrinsic.ConvReLU2d) \
.set_fuser_method(reverse_sequential_wrapper2(torch.nn.intrinsic.ConvReLU2d))
backend_config = BackendConfig("my_backend") \
.set_backend_pattern_config(linear_config) \
.set_backend_pattern_config(conv_relu_config)
"""
def __init__(self, name: str = ""):
self.name = name
self.configs: Dict[Pattern, BackendPatternConfig] = {}
def set_name(self, name: str) -> BackendConfig:
"""
Set the name of the target backend.
"""
self.name = name
return self
def set_backend_pattern_config(self, config: BackendPatternConfig) -> BackendConfig:
"""
Set the config for an pattern that can be run on the target backend.
This overrides any existing config for the given pattern.
"""
self.configs[config.pattern] = config
return self
def set_backend_pattern_configs(self, configs: List[BackendPatternConfig]) -> BackendConfig:
"""
Set the configs for patterns that can be run on the target backend.
This overrides any existing config for a given pattern if it was previously registered already.
"""
for conf in configs:
self.set_backend_pattern_config(conf)
return self
@classmethod
def from_dict(cls, backend_config_dict: Dict[str, Any]) -> BackendConfig:
"""
Create a ``BackendConfig`` from a dictionary with the following items:
"name": the name of the target backend
"configs": a list of dictionaries that each represents a `BackendPatternConfig`
"""
conf = cls(backend_config_dict.get(NAME_DICT_KEY, ""))
for d in backend_config_dict.get(CONFIGS_DICT_KEY, []):
if isinstance(d, BackendPatternConfig):
conf.set_backend_pattern_config(d)
elif isinstance(d, Dict):
conf.set_backend_pattern_config(BackendPatternConfig.from_dict(d))
else:
raise ValueError("Expected backend_config_dict['%s'] to be a dictionary" % CONFIGS_DICT_KEY)
return conf
def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``BackendConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.backend_config.BackendConfig.from_dict`.
"""
return {
NAME_DICT_KEY: self.name,
CONFIGS_DICT_KEY: [c.to_dict() for c in self.configs.values()],
}
class BackendPatternConfig:
"""
Config for ops defined in :class:`~torch.ao.quantization.backend_config.BackendConfig`.
For a detailed example usage, see :class:`~torch.ao.quantization.backend_config.BackendConfig`.
"""
def __init__(self, pattern: Pattern):
self.pattern = pattern
self.observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
self.dtype_configs: List[DTypeConfig] = []
self.root_module: Optional[Type[torch.nn.Module]] = None
self.qat_module: Optional[Type[torch.nn.Module]] = None
self.reference_quantized_module: Optional[Type[torch.nn.Module]] = None
self.fused_module: Optional[Type[torch.nn.Module]] = None
self.fuser_method: Optional[Callable] = None
# Temporary/internal configs
self._root_node_getter: Optional[Callable] = None
self._extra_inputs_getter: Optional[Callable] = None
self._num_tensor_args_to_observation_type: Dict[int, ObservationType] = {}
self._input_type_to_index: Dict[str, int] = {}
self._input_output_observed: Optional[bool] = None
self._overwrite_output_fake_quantize: Optional[_PartialWrapper] = None
self._overwrite_output_observer: Optional[_PartialWrapper] = None
def set_observation_type(self, observation_type: ObservationType) -> BackendPatternConfig:
"""
Set how observers should be inserted for this pattern.
See :class:`~torch.ao.quantization.backend_config.ObservationType` for details
"""
self.observation_type = observation_type
return self
def add_dtype_config(self, dtype_config: DTypeConfig) -> BackendPatternConfig:
"""
Add a set of supported input/output activation, weight, and bias data types for this pattern.
"""
self.dtype_configs.append(dtype_config)
return self
def set_dtype_configs(self, dtype_configs: List[DTypeConfig]) -> BackendPatternConfig:
"""
Set the supported input/output activation, weight, and bias data types for this pattern,
overriding all previously registered data types.
"""
self.dtype_configs = dtype_configs
return self
def set_root_module(self, root_module: Type[torch.nn.Module]) -> BackendPatternConfig:
"""
Set the module that represents the root for this pattern.
For example, the root module for :class:`torch.nn.intrinsic.LinearReLU` should be :class:`torch.nn.Linear`.
"""
self.root_module = root_module
return self
def set_qat_module(self, qat_module: Type[torch.nn.Module]) -> BackendPatternConfig:
"""
Set the module that represents the QAT implementation for this pattern.
"""
self.qat_module = qat_module
return self
def set_reference_quantized_module(self, reference_quantized_module: Type[torch.nn.Module]) -> BackendPatternConfig:
"""
Set the module that represents the reference quantized implementation for this pattern's root module.
"""
self.reference_quantized_module = reference_quantized_module
return self
def set_fused_module(self, fused_module: Type[torch.nn.Module]) -> BackendPatternConfig:
"""
Set the module that represents the fused implementation for this pattern.
"""
self.fused_module = fused_module
return self
def set_fuser_method(self, fuser_method: Callable) -> BackendPatternConfig:
"""
Set the function that specifies how to fuse the pattern for this pattern.
"""
self.fuser_method = fuser_method
return self
def _set_root_node_getter(self, root_node_getter: Callable) -> BackendPatternConfig:
self._root_node_getter = root_node_getter
return self
def _set_extra_inputs_getter(self, extra_inputs_getter: Callable) -> BackendPatternConfig:
self._extra_inputs_getter = extra_inputs_getter
return self
def _set_num_tensor_args_to_observation_type(
self, num_tensor_args_to_observation_type: Dict[int, ObservationType]) -> BackendPatternConfig:
self._num_tensor_args_to_observation_type = num_tensor_args_to_observation_type
return self
def _set_input_type_to_index(self, input_type_to_index: Dict[str, int]) -> BackendPatternConfig:
self._input_type_to_index = input_type_to_index
return self
def _set_input_output_observed(self, input_output_observed: bool) -> BackendPatternConfig:
self._input_output_observed = input_output_observed
return self
def _set_overwrite_output_fake_quantize(self, overwrite_output_fake_quantize: _PartialWrapper) -> BackendPatternConfig:
self._overwrite_output_fake_quantize = overwrite_output_fake_quantize
return self
def _set_overwrite_output_observer(self, overwrite_output_observer: _PartialWrapper) -> BackendPatternConfig:
self._overwrite_output_observer = overwrite_output_observer
return self
@classmethod
def from_dict(cls, backend_pattern_config_dict: Dict[str, Any]) -> BackendPatternConfig:
"""
Create a ``BackendPatternConfig`` from a dictionary with the following items:
"pattern": the pattern being configured
"observation_type": the :class:`~torch.ao.quantization.backend_config.ObservationType` that specifies how
observers should be inserted for this pattern
"dtype_configs": a list of dictionaries that represents :class:`~torch.ao.quantization.backend_config.DTypeConfig` s
"root_module": a :class:`torch.nn.Module` that represents the root for this pattern
"qat_module": a :class:`torch.nn.Module` that represents the QAT implementation for this pattern
"reference_quantized_module": a :class:`torch.nn.Module` that represents the reference quantized
implementation for this pattern's root module.
"fused_module": a :class:`torch.nn.Module` that represents the fused implementation for this pattern
"fuser_method": a function that specifies how to fuse the pattern for this pattern
"""
def _get_dtype_config(obj: Any) -> DTypeConfig:
"""
Convert the given object into a ``DTypeConfig`` if possible, else throw an exception.
"""
if isinstance(obj, DTypeConfig):
return obj
if isinstance(obj, Dict):
return DTypeConfig.from_dict(obj)
raise ValueError("Expected a list of DTypeConfigs in backend_pattern_config_dict[\"%s\"], got '%s'" %
(DTYPE_CONFIGS_DICT_KEY, type(obj)))
if PATTERN_DICT_KEY not in backend_pattern_config_dict:
raise ValueError("backend_pattern_config_dict must contain '%s'" % PATTERN_DICT_KEY)
conf = cls(backend_pattern_config_dict[PATTERN_DICT_KEY])
if OBSERVATION_TYPE_DICT_KEY in backend_pattern_config_dict:
conf.set_observation_type(backend_pattern_config_dict[OBSERVATION_TYPE_DICT_KEY])
for d in backend_pattern_config_dict.get(DTYPE_CONFIGS_DICT_KEY, []):
conf.add_dtype_config(_get_dtype_config(d))
conf.set_root_module(backend_pattern_config_dict.get(ROOT_MODULE_DICT_KEY, None))
conf.set_qat_module(backend_pattern_config_dict.get(QAT_MODULE_DICT_KEY, None))
conf.set_reference_quantized_module(backend_pattern_config_dict.get(REFERENCE_QUANTIZED_MODULE_DICT_KEY, None))
conf.set_fused_module(backend_pattern_config_dict.get(FUSED_MODULE_DICT_KEY, None))
conf.set_fuser_method(backend_pattern_config_dict.get(FUSER_METHOD_DICT_KEY, None))
conf._set_root_node_getter(backend_pattern_config_dict.get(ROOT_NODE_GETTER_DICT_KEY, None))
conf._set_extra_inputs_getter(backend_pattern_config_dict.get(EXTRA_INPUTS_GETTER_DICT_KEY, None))
conf._set_num_tensor_args_to_observation_type(
backend_pattern_config_dict.get(NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY, {}))
conf._set_input_type_to_index(backend_pattern_config_dict.get(INPUT_TYPE_TO_INDEX_DICT_KEY, {}))
conf._set_input_output_observed(backend_pattern_config_dict.get(INPUT_OUTPUT_OBSERVED_DICT_KEY, None))
conf._set_overwrite_output_fake_quantize(backend_pattern_config_dict.get(OVERWRITE_OUTPUT_FAKE_QUANTIZE_DICT_KEY, None))
conf._set_overwrite_output_observer(backend_pattern_config_dict.get(OVERWRITE_OUTPUT_OBSERVER_DICT_KEY, None))
return conf
def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``BackendPatternConfig`` to a dictionary with the items described in
:func:`~torch.ao.quantization.backend_config.BackendPatternConfig.from_dict`.
"""
backend_pattern_config_dict: Dict[str, Any] = {
PATTERN_DICT_KEY: self.pattern,
OBSERVATION_TYPE_DICT_KEY: self.observation_type,
DTYPE_CONFIGS_DICT_KEY: [c.to_dict() for c in self.dtype_configs],
}
if self.root_module is not None:
backend_pattern_config_dict[ROOT_MODULE_DICT_KEY] = self.root_module
if self.qat_module is not None:
backend_pattern_config_dict[QAT_MODULE_DICT_KEY] = self.qat_module
if self.reference_quantized_module is not None:
backend_pattern_config_dict[REFERENCE_QUANTIZED_MODULE_DICT_KEY] = self.reference_quantized_module
if self.fused_module is not None:
backend_pattern_config_dict[FUSED_MODULE_DICT_KEY] = self.fused_module
if self.fuser_method is not None:
backend_pattern_config_dict[FUSER_METHOD_DICT_KEY] = self.fuser_method
if self._root_node_getter is not None:
backend_pattern_config_dict[ROOT_NODE_GETTER_DICT_KEY] = self._root_node_getter
if self._extra_inputs_getter is not None:
backend_pattern_config_dict[EXTRA_INPUTS_GETTER_DICT_KEY] = self._extra_inputs_getter
if len(self._num_tensor_args_to_observation_type) > 0:
backend_pattern_config_dict[NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY] = self._num_tensor_args_to_observation_type
if len(self._input_type_to_index) > 0:
backend_pattern_config_dict[INPUT_TYPE_TO_INDEX_DICT_KEY] = self._input_type_to_index
if self._input_output_observed is not None:
backend_pattern_config_dict[INPUT_OUTPUT_OBSERVED_DICT_KEY] = self._input_output_observed
if self._overwrite_output_fake_quantize is not None:
backend_pattern_config_dict[OVERWRITE_OUTPUT_FAKE_QUANTIZE_DICT_KEY] = self._overwrite_output_fake_quantize
if self._overwrite_output_observer is not None:
backend_pattern_config_dict[OVERWRITE_OUTPUT_OBSERVER_DICT_KEY] = self._overwrite_output_observer
return backend_pattern_config_dict
|