1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
import torch
from ._common_operator_config_utils import (
_get_binary_op_configs,
_get_bn_configs,
_get_cat_config,
_get_conv_configs,
_get_default_op_configs,
_get_embedding_op_configs,
_get_fixed_qparams_op_configs,
_get_linear_configs,
_get_ln_configs,
_get_rnn_op_configs,
_get_share_qparams_op_configs,
)
from .backend_config import BackendConfig, DTypeConfig
# ===================
# | DTYPE CONFIGS |
# ===================
# weighted op int8 dtype config
# this is config for ops that has quantized weights, like linear, conv
weighted_op_int8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
weight_dtype=torch.qint8,
bias_dtype=torch.float,
)
default_op_quint8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
)
default_op_fp16_dtype_config = DTypeConfig(
input_dtype=torch.float16,
output_dtype=torch.float16,
weight_dtype=torch.float16,
bias_dtype=torch.float16,
)
default_dynamic_int8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.float,
weight_dtype=torch.qint8,
bias_dtype=torch.float,
# currently the dtype check is not yet enabled, so we provided the dtype_configs but
# it is not really used yet,
# we will enable it a bit later after we moved everything to backend_config_dict
is_dynamic=True,
)
default_dynamic_float16_dtype_config = DTypeConfig(
input_dtype=torch.float16,
output_dtype=torch.float,
weight_dtype=torch.float16,
bias_dtype=torch.float,
# currently the dtype check is not yet enabled, so we provided the dtype_configs but
# it is not really used yet,
# we will enable it a bit later after we moved everything to backend_config_dict
is_dynamic=True,
)
# Needed for LayerNorm and f.layer_norm, since currently the kernel only supports float weights
input_output_only_quint8_dtype_config = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
weight_dtype=torch.float,
bias_dtype=torch.float,
)
weight_only_quint8_dtype_config = DTypeConfig(
input_dtype=torch.float,
output_dtype=torch.float,
weight_dtype=torch.quint8,
)
weight_only_quint4x2_dtype_config = DTypeConfig(
input_dtype=torch.float,
output_dtype=torch.float,
weight_dtype=torch.quint4x2,
)
# =====================
# | BACKEND CONFIGS |
# =====================
def get_test_only_legacy_native_backend_config() -> BackendConfig:
"""
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional fp16 ops.
"""
conv_dtype_configs = [weighted_op_int8_dtype_config]
linear_dtype_configs = [
weighted_op_int8_dtype_config,
default_dynamic_int8_dtype_config,
default_dynamic_float16_dtype_config,
default_op_fp16_dtype_config,
]
binary_op_dtype_configs = [
weighted_op_int8_dtype_config,
default_op_fp16_dtype_config,
]
default_op_dtype_configs = [default_op_quint8_dtype_config]
fixed_qparams_op_dtype_configs = [
weighted_op_int8_dtype_config,
default_op_fp16_dtype_config,
]
share_qparams_op_dtype_configs = [
default_op_quint8_dtype_config,
default_op_fp16_dtype_config
]
rnn_op_dtype_configs = [
default_dynamic_int8_dtype_config,
default_dynamic_float16_dtype_config,
]
embedding_op_dtype_configs = [
weight_only_quint8_dtype_config,
weight_only_quint4x2_dtype_config,
]
layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
return BackendConfig("_native_and_fp16") \
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
def get_native_backend_config() -> BackendConfig:
"""
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack).
"""
# TODO: express this BackendConfig as a union of the FBGEMM and QNNPACK BackendConfigs
conv_dtype_configs = [weighted_op_int8_dtype_config]
linear_dtype_configs = [
weighted_op_int8_dtype_config,
default_dynamic_int8_dtype_config,
default_dynamic_float16_dtype_config,
]
binary_op_dtype_configs = [weighted_op_int8_dtype_config]
default_op_dtype_configs = [default_op_quint8_dtype_config]
fixed_qparams_op_dtype_configs = [weighted_op_int8_dtype_config]
share_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
rnn_op_dtype_configs = [
default_dynamic_int8_dtype_config,
default_dynamic_float16_dtype_config,
]
embedding_op_dtype_configs = [
weight_only_quint8_dtype_config,
weight_only_quint4x2_dtype_config,
]
layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
return BackendConfig("native") \
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
.set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
def get_native_backend_config_dict():
"""
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) in dictionary form.
"""
return get_native_backend_config().to_dict()
def get_test_only_legacy_native_backend_config_dict():
"""
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional
fp16 ops in dictionary form.
"""
return get_test_only_legacy_native_backend_config().to_dict()
__all__ = [
"get_test_only_legacy_native_backend_config",
"get_test_only_legacy_native_backend_config_dict",
"get_native_backend_config",
"get_native_backend_config_dict",
]
|