File: fake_quantize_function.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (27 lines) | stat: -rw-r--r-- 909 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
from torch import Tensor
from torch.ao.quantization.experimental.quantizer import quantize_APoT, dequantize_APoT

class fake_quantize_function(torch.autograd.Function):
    @staticmethod
    def forward(ctx,  # type: ignore[override]
                x: Tensor,
                alpha: Tensor,
                gamma: Tensor,
                quantization_levels: Tensor,
                level_indices: Tensor) -> Tensor:
        quantized_result = quantize_APoT(x, alpha, gamma, quantization_levels, level_indices)

        # calculate mask tensor
        mask = x.detach().apply_(lambda x: (x <= alpha and x >= -alpha))

        result = dequantize_APoT(quantized_result)

        ctx.save_for_backward(mask)

        return result

    @staticmethod
    def backward(ctx, grad_output: Tensor) -> Tensor:  # type: ignore[override]
        mask = ctx.saved_tensors
        return grad_output * mask