File: prepare.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1656 lines) | stat: -rw-r--r-- 70,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
import copy
import torch
import operator
import warnings
from torch.fx import (
    GraphModule,
)
from torch.fx.graph import (
    Graph,
    Node,
)
from torch.fx.node import Argument

from ..quantize import (
    propagate_qconfig_,
)
from ..observer import (
    ObserverBase,
)
from ..qconfig import (
    obs_or_fq_ctr_equals,
    float16_dynamic_qconfig,
    float16_static_qconfig,
    is_reuse_input_qconfig,
    QConfigAny,
)
from ..qconfig_mapping import (
    _FIXED_QPARAMS_OP_TO_OBSERVER,
    QConfigMapping,
)
from ..qconfig_mapping_utils import (
    get_flattened_qconfig_dict,
    update_qconfig_for_qat,
)
from .qconfig_mapping_utils import (
    generate_qconfig_map,
    update_qconfig_for_fusion,
)

from .quantization_patterns import (
    QuantizeHandler,
)

from torch.ao.quantization.quantization_types import (
    Pattern,
    NodePattern,
)

from torch.ao.quantization import FixedQParamsFakeQuantize

from ._equalize import (
    is_equalization_observer,
    node_supports_equalization,
)

from .graph_module import (
    ObservedGraphModule,
    ObservedStandaloneGraphModule,
)

from .pattern_utils import (
    sorted_patterns_dict,
)

from .match_utils import (
    _MatchResultWithQConfig,
    find_matches,
)

from ..utils import _parent_name
from .utils import (
    _insert_dequant_stubs_for_custom_module_lstm_output,
    _is_custom_module_lstm,
    _maybe_get_custom_module_lstm_from_node_arg,
    _qconfig_satisfies_dtype_config_constraints,
    get_custom_module_class_keys,
    all_node_args_have_no_tensors,
    assert_and_get_unique_device,
    get_non_observable_arg_indexes_and_types,
    get_new_attr_name_with_prefix,
    node_arg_is_weight,
    node_arg_is_bias,
    NON_QUANTIZABLE_WEIGHT_OPS,
)

from torch.ao.quantization.quantize import (
    is_activation_post_process,
    convert
)

from ..utils import (
    get_qconfig_dtypes,
    get_swapped_custom_module_class,
    activation_is_statically_quantized,
    activation_is_int8_quantized,
)

from ..backend_config.utils import (
    get_pattern_to_dtype_configs,
    get_module_to_qat_module,
    get_fusion_pattern_to_root_node_getter,
)
from ..backend_config import (
    BackendConfig,
    DTypeConfig,
    get_native_backend_config,
)
from .backend_config_utils import (
    get_pattern_to_quantize_handlers,
)

from .custom_config import (
    PrepareCustomConfig,
    StandaloneModuleConfigEntry,
)

from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
from collections import defaultdict


# TODO: revisit this list. Many helper methods shouldn't be public
__all__ = [
    "DO_NOT_OBS_DTYPE_LIST",
    "add_matched_node_name_to_set",
    "get_arg_target_is_dynamic_as_input_to_node",
    "get_arg_target_dtype_as_input_to_node",
    "get_arg_target_dtype_as_output",
    "get_target_activation_dtype_for_node",
    "get_standalone_module_configs",
    "insert_observer",
    "insert_observers_for_model",
    "is_activation_post_process_node",
    "is_input_arg_dtype_supported_by_backend",
    "is_observer_in_same_graph",
    "is_output_dtype_supported_by_backend",
    "maybe_insert_input_equalization_observers_for_node",
    "maybe_insert_input_observer_for_arg_or_kwarg",
    "maybe_insert_input_observers_for_node",
    "maybe_insert_observers_before_graph_output",
    "maybe_insert_output_observer_for_node",
    "maybe_make_input_output_share_observers",
    "maybe_propagate_dtype_for_node",
    "prepare",
    "propagate_dtypes_for_known_nodes",
    "qat_swap_modules",
    "remove_output_observer",
    "run_prepare_fx_on_standalone_modules",
    "save_state",
    "swap_custom_module_to_observed",
]


# list of dtypes to not add observers to
DO_NOT_OBS_DTYPE_LIST = [int, float, torch.bool, None]

def is_activation_post_process_node(node: Node, modules: Dict[str, torch.nn.Module]) -> bool:
    return isinstance(node, torch.fx.Node) and node.op == "call_module" and \
        is_activation_post_process(modules[str(node.target)])

def is_input_arg_dtype_supported_by_backend(
    arg: Argument,
    node: Node,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qconfig: QConfigAny,
    dtype_config: DTypeConfig,
    backend_config: BackendConfig,
) -> bool:
    """ Check if the configured qconfig for the argument
    is supported by the backend or not
    """
    if isinstance(arg, (list, tuple)):
        return all(is_input_arg_dtype_supported_by_backend(
            a, node, node_name_to_target_dtype, qconfig,
            dtype_config, backend_config) for a in arg)
    if not isinstance(arg, Node):
        return True
    # TODO: support check for standalone module
    is_weight = node_arg_is_weight(node, arg, backend_config)
    is_bias = node_arg_is_bias(node, arg, backend_config)
    is_activation = not is_weight and not is_bias
    if is_activation:
        qconfig_info = node_name_to_target_dtype[node.name].get(
            "input_activation_dtype")
        if qconfig_info is not None:
            qconfig_dtype, qconfig_is_dynamic = qconfig_info
        else:
            qconfig_dtype, qconfig_is_dynamic = None, None
        # TODO(future PR): remove the cast to bool below after figuring
        # out why backend_config has is_dynamic set to None in some cases.
        return (dtype_config.input_dtype is None) or (
            dtype_config.input_dtype == qconfig_dtype and
            bool(dtype_config.is_dynamic) == bool(qconfig_is_dynamic) and
            _qconfig_satisfies_dtype_config_constraints(qconfig, dtype_config.input_dtype_with_constraints)
        )
    elif is_weight:
        # TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
        weight_dtype = dtype_config.weight_dtype
        dtype_matches = node_name_to_target_dtype[node.name]["weight_dtype"][0] == weight_dtype  # type: ignore[index]
        qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
            qconfig, dtype_config.weight_dtype_with_constraints, is_activation=False)
        return weight_dtype is None or (dtype_matches and qconfig_satisfies_constraints)
    else:  # bias
        bias_dtype = dtype_config.bias_dtype
        return bias_dtype is None or \
            node_name_to_target_dtype[node.name]["bias_dtype"][0] == bias_dtype  # type: ignore[index]

def is_output_dtype_supported_by_backend(
    node: Node,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qconfig: QConfigAny,
    dtype_config: DTypeConfig,
) -> bool:
    """ Check if the configured qconfig for the output
    is supported by the backend or not
    """
    output_dtype = dtype_config.output_dtype
    dtype_matches = node_name_to_target_dtype[node.name]["output_activation_dtype"][0] == output_dtype  # type: ignore[index]
    qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
        qconfig, dtype_config.output_dtype_with_constraints)
    return output_dtype is None or (dtype_matches and qconfig_satisfies_constraints)

def is_observer_in_same_graph(node, modules, node_name_to_target_dtype):
    """ Check if observer in same graph
    when the node output is not fp32 and input is 'placeholder'
    the input is assumed to be quantized, so it is observed
    in a different place rather than not observed.
    """
    node_output_dtype = get_arg_target_dtype_as_output(node, modules, node_name_to_target_dtype)
    if len(node.args) > 0 and isinstance(node.args[0], Node):
        if node_output_dtype == torch.quint8 and node.args[0].op == 'placeholder':
            return False
    return True

def _is_pattern_dtype_config_and_qconfig_supported_by_backend(
    pattern: Optional[Pattern],
    matched_node_pattern: Optional[List[Node]],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qconfig: QConfigAny,
    backend_config: BackendConfig,
) -> bool:
    """ Check if the dtype configuration of a pattern is supported by
    the backend or not, and whether the qconfig satisfies constraints
    specified in the corresponding dtype config.
    """
    if backend_config is None or pattern is None:
        return True
    assert matched_node_pattern is not None and len(matched_node_pattern) >= 1
    pattern_to_dtype_configs = get_pattern_to_dtype_configs(backend_config)
    dtype_configs: List[DTypeConfig] = pattern_to_dtype_configs.get(pattern, [])

    # TODO: this only works for one input and one output patterns, need to generalize to multiple
    # inputs/output
    root_node = _default_root_node_getter(matched_node_pattern)
    input_node = root_node
    output_node = matched_node_pattern[0]
    for dtype_config in dtype_configs:
        # check if arg dtype are supported
        supported = True
        for arg in list(input_node.args) + list(input_node.kwargs.values()):
            supported = supported and is_input_arg_dtype_supported_by_backend(
                arg, input_node, node_name_to_target_dtype, qconfig, dtype_config, backend_config)
        # check if output dtype is supported
        supported = supported and is_output_dtype_supported_by_backend(
            output_node, node_name_to_target_dtype, qconfig, dtype_config)
        if supported:
            return True
    return False

def get_standalone_module_configs(
    node: Node,
    modules: Dict[str, torch.nn.Module],
    prepare_custom_config: PrepareCustomConfig,
    parent_qconfig: QConfigAny,
    parent_backend_config: Optional[BackendConfig],
) -> Tuple[QConfigMapping, Tuple[Any, ...], PrepareCustomConfig, Optional[BackendConfig]]:
    """
    Returns the standalone module QConfigMapping and PrepareCustomConfig
    for `node`, assuming that the module pointed to by `node` is
    a standalone modules.
    """
    module_name = str(node.target)
    module_type = type(modules[module_name])  # type: ignore[index]
    # name config has precedence over type config
    config_entry = StandaloneModuleConfigEntry(None, (), None, None)
    config_entry = prepare_custom_config.standalone_module_classes.get(module_type, config_entry)
    config_entry = prepare_custom_config.standalone_module_names.get(module_name, config_entry)
    # fallback to use parent module's qconfig if user didn't specify qconfig dict
    qconfig_mapping = config_entry.qconfig_mapping or QConfigMapping().set_global(parent_qconfig)
    example_inputs = config_entry.example_inputs
    prepare_custom_config = config_entry.prepare_custom_config or PrepareCustomConfig()
    backend_config = config_entry.backend_config or parent_backend_config
    return (qconfig_mapping, example_inputs, prepare_custom_config, backend_config)

def qat_swap_modules(
        root: torch.nn.Module,
        module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]]) -> None:
    convert(root, mapping=module_to_qat_module, inplace=True, remove_qconfig=False)

def add_matched_node_name_to_set(matched_node_pattern: NodePattern, s: Set[str]):
    if isinstance(matched_node_pattern, Node):
        s.add(matched_node_pattern.name)
    elif isinstance(matched_node_pattern, (list, tuple)):
        for maybe_node in matched_node_pattern:
            add_matched_node_name_to_set(maybe_node, s)

# this is temporary, will be removed soon
def _default_root_node_getter(node_pattern):
    while not isinstance(node_pattern, Node):
        node_pattern = node_pattern[-1]
    return node_pattern

def insert_observer(
    node: Node,
    observer: ObserverBase,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
) -> Node:
    """
    Attaches `observer` to `model`, and creates a node which calls
    `observer` on the output of `node`.
    """
    model_device = assert_and_get_unique_device(model)
    if model_device:
        observer.to(model_device)
    # add observer module as attribute
    if is_equalization_observer(observer):
        prefix = node.name + '_equalization_process_'
    else:
        prefix = 'activation_post_process_'
    get_new_observer_name = get_new_attr_name_with_prefix(prefix)
    observer_name = get_new_observer_name(model)
    setattr(model, observer_name, observer)
    modules[observer_name] = observer
    with graph.inserting_after(node):
        new_obs = graph.create_node(
            'call_module', observer_name, (node,), {})
    return new_obs

def get_target_activation_dtype_for_node(
    node: Node,
    qconfig: QConfigAny,
    inputs_seen_counter: int,
    outputs_seen_counter: int,
    input_quantized_idxs: List[int],
    output_quantized_idxs: List[int],
    qhandler: Optional[QuantizeHandler],
    modules: Dict[str, torch.nn.Module],
    cache_for_no_tensor_check: Dict[Node, bool],
) -> Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]:
    """
    For each op attribute in the op's input activation, output activation,
    weight, bias - returns the settings of dtype and is_dynamic we expect
    for the `quantize` call in the reference model representation, or None
    if there is no `quantize` call needed.

    For example, if we have a node corresponding to `op0` in

      x0 -> op0 -> x1

    And we want a reference quantized representation to be

      x0 -> quant_static -> dequant -> op0 -> quant_dynamic -> dequant -> x1

    Then this function will return

      {
        'input_activation': {'dtype': torch.quint8, is_dynamic: False},
        'output_activation': {'dtype': torch.quint8, is_dynamic: True},
      }

    Note: this is for activations only, weight dtypes are not handled here.

    TODO(future PR, if needed): explicitly spell out the non-Tensor
    dtypes.
    """
    if node.op == 'placeholder':
        if inputs_seen_counter in input_quantized_idxs:
            return {
                "input_activation_dtype": (torch.quint8, False),
                "output_activation_dtype": (torch.quint8, False),
            }
        else:
            # if dtype is fp32 (default), do nothing
            # note: other dtypes are not supported
            return {
                "input_activation_dtype": (torch.float, False),
                "output_activation_dtype": (torch.float, False),
            }

    elif node.op in ('call_module', 'call_method', 'call_function'):
        args_have_no_tensors = \
            all_node_args_have_no_tensors(
                node, modules, cache_for_no_tensor_check)
        if args_have_no_tensors:
            return {
                "input_activation_dtype": None,
                "output_activation_dtype": None,
            }

        # TODO(future PR): consider stopping matching getitem
        is_getitem = node.op == 'call_function' and \
            node.target == operator.getitem
        if is_getitem:
            return {
                "input_activation_dtype": (torch.float, False),
                "output_activation_dtype": (torch.float, False),
            }

        # get qconfig to determine the eventual dtype of this node
        if qconfig is not None:
            if qhandler is not None and qhandler.input_output_observed():
                act_dtype, weight_dtype, act_compute_dtype = \
                    get_qconfig_dtypes(qconfig)
                input_act_is_dynamic = act_compute_dtype is not None

                # Currently `QConfig` only has one `activation` field.
                # For static quantization, it is reused for both input
                # and output activation. For dynamic quantization, this
                # field is currently only used for the input activation,
                # with the output activation being in fp32.
                # In the future this may change as we add more fields
                # to the `QConfig` object.
                output_act_dtype = act_dtype \
                    if input_act_is_dynamic is not True else torch.float

                bias_dtype = torch.float16 \
                    if (
                        act_dtype == torch.float16
                        and weight_dtype == torch.float16
                        and act_compute_dtype is None
                    ) else torch.float
                return {
                    "input_activation_dtype": (act_dtype, input_act_is_dynamic),
                    "weight_dtype": (weight_dtype, False),
                    "bias_dtype": (bias_dtype, False),
                    "output_activation_dtype": (output_act_dtype, False),
                }
        return {
            "input_activation_dtype": (torch.float, False),
            "output_activation_dtype": (torch.float, False),
        }

    elif node.op == 'get_attr':
        return {
            "input_activation_dtype": (torch.float, False),
            "output_activation_dtype": (torch.float, False),
        }

    elif node.op == 'output':
        if outputs_seen_counter in output_quantized_idxs:
            return {
                "input_activation_dtype": (torch.quint8, False),
                "output_activation_dtype": (torch.quint8, False),
            }
        else:
            # if dtype is fp32 (default), do nothing
            # note: other dtypes are not supported
            return {
                "input_activation_dtype": (torch.float, False),
                "output_activation_dtype": (torch.float, False),
            }

    else:
        raise AssertionError(f'need to handle {node.format_node()}')

def get_arg_target_dtype_as_output(
    arg: Node,
    modules: Dict[str, torch.nn.Module],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
) -> Optional[Union[torch.dtype, type]]:
    """ Get the target output activation dtype for
    the argument in the original graph, skipping inserted observers
    We are assuming that the observers are inserted correctly, and the dtype for
    argument in quantized graph will match what is specified by the qconfig
    """
    assert isinstance(arg, Node)
    # Custom module LSTM output is a tuple that we broke down into the internal nodes in order
    # to insert DeQuantStubs (see `_insert_dequant_stubs_for_custom_module_lstm_output`).
    # Since we modified the graph in this case, we must trace back from the args through
    # the specific nodes we added in order to reach the original LSTM node. Otherwise, we would
    # not be able to accurately detect whether this node is a consumer of custom module LSTM.
    custom_module_lstm_node = _maybe_get_custom_module_lstm_from_node_arg(arg, modules)
    if custom_module_lstm_node is not None:
        return node_name_to_target_dtype[custom_module_lstm_node.name]["output_activation_dtype"][0]  # type: ignore[index]
    elif is_activation_post_process_node(arg, modules):
        observed_arg = arg.args[0]
        assert isinstance(observed_arg, Node), "Currently we only support observing Node"
        return node_name_to_target_dtype[observed_arg.name]["output_activation_dtype"][0]  # type: ignore[index]
    else:
        target_dtype_info = \
            node_name_to_target_dtype[arg.name]["output_activation_dtype"]
        if target_dtype_info is not None:
            return target_dtype_info[0]
        else:
            return None

def get_arg_target_dtype_as_input_to_node(
    arg: Node,
    node: Node,
    modules: Dict[str, torch.nn.Module],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    backend_config: BackendConfig,
) -> Optional[Union[torch.dtype, type]]:
    """ Get the target argument dtype for the argument `arg`, as input
    to node `node`
    """
    assert isinstance(arg, Node)
    is_weight = node_arg_is_weight(node, arg, backend_config)
    is_bias = node_arg_is_bias(node, arg, backend_config)
    is_activation = not is_weight and not is_bias
    if is_activation:
        return node_name_to_target_dtype[node.name]["input_activation_dtype"][0]  # type: ignore[index]
    elif is_weight:
        if node.target in NON_QUANTIZABLE_WEIGHT_OPS:
            return None
        else:
            return node_name_to_target_dtype[node.name]["weight_dtype"][0]  # type: ignore[index]
    else:
        return node_name_to_target_dtype[node.name]["bias_dtype"][0]  # type: ignore[index]

def get_arg_target_is_dynamic_as_input_to_node(
    arg: Node,
    node: Node,
    modules: Dict[str, torch.nn.Module],
    node_name_to_target_dtype: Dict[str, Dict[str, Tuple[Union[torch.dtype, type, None], bool]]],
    backend_config: BackendConfig,
) -> bool:
    """ Get the target argument dtype for the argument `arg`, as input
    to node `node`
    """
    assert isinstance(arg, Node)
    is_weight = node_arg_is_weight(node, arg, backend_config)
    is_bias = node_arg_is_bias(node, arg, backend_config)
    is_activation = not is_weight and not is_bias
    if is_activation and \
       "input_activation_dtype" in node_name_to_target_dtype[node.name]:
        return node_name_to_target_dtype[node.name]["input_activation_dtype"][1]
    else:
        return False

def maybe_insert_input_observer_for_arg_or_kwarg(
    node: Union[Node, Any],
    arg: Argument,
    qconfig: QConfigAny,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qhandler: Optional[QuantizeHandler],
    prepare_custom_config: PrepareCustomConfig,
    backend_config: BackendConfig,
) -> Argument:
    """
    Given a `node` and an `arg`, inserts an input observer between
    `node` and `arg` if necessary.
    """
    # for ops such as torch.cat([x0, x1]),
    # traverse through the list
    if isinstance(arg, (list, tuple)):
        new_arg_to_return = []
        for inner_arg in arg:
            new_inner_arg = maybe_insert_input_observer_for_arg_or_kwarg(
                node, inner_arg, qconfig, model, modules,
                graph, node_name_to_target_dtype,
                qhandler,
                prepare_custom_config,
                backend_config)
            new_arg_to_return.append(new_inner_arg)
        return type(arg)(new_arg_to_return)

    if not isinstance(arg, Node):
        return arg
    assert isinstance(arg, Node)
    # default (no observer)
    new_arg = arg

    is_standalone_module = qhandler is not None and qhandler.is_standalone_module()
    assert qconfig is not None
    if not is_standalone_module:
        # regular flow for most nodes, except standalone modules
        is_weight = node_arg_is_weight(node, arg, backend_config)

        is_reuse_input_qconfig_ = is_reuse_input_qconfig(qconfig)

        act_post_process_ctr = qconfig.weight if is_weight else \
            qconfig.activation

        arg_as_output_target_dtype = get_arg_target_dtype_as_output(arg, modules, node_name_to_target_dtype)
        arg_as_input_target_dtype = get_arg_target_dtype_as_input_to_node(arg,
                                                                          node,
                                                                          modules,
                                                                          node_name_to_target_dtype,
                                                                          backend_config)
        arg_as_input_target_is_dynamic = \
            get_arg_target_is_dynamic_as_input_to_node(
                arg, node, modules, node_name_to_target_dtype, backend_config)  # type: ignore[arg-type]
        needs_obs = \
            (
                # the following code block is for static quantization
                (not arg_as_input_target_is_dynamic) and
                # if the dtypes are different, we need an observer
                (arg_as_output_target_dtype != arg_as_input_target_dtype) and
                # except if the second dtype is float, a dequant will be inserted
                # without an observer in convert
                # TODO(future PR): change this so a placeholder is inserted for
                # future dequants, to make the logic easier to understand
                (arg_as_input_target_dtype != torch.float) and
                # if arg output dtype is in DO_NOT_OBS_DTYPE_LIST do not insert observer
                (arg_as_output_target_dtype not in DO_NOT_OBS_DTYPE_LIST) and
                # if qconfig is reuse_input qconfig, we won't insert extra observer for input
                not is_reuse_input_qconfig_
            ) or (
                # need to add input observer for dynamic quantization
                # only add observer for first input for now, we may need to extend
                # qconfig_dict and backend_config to support more general configurations
                # of dynamic quantization, e.g. dynamically quantizing second input, third
                # input etc.
                arg_as_input_target_is_dynamic and arg is node.args[0]
            )

    else:
        # custom flow for standalone modules
        _, _, sm_prepare_custom_config, _ = \
            get_standalone_module_configs(
                node, modules, prepare_custom_config, qconfig, backend_config)
        sm_input_quantized_idxs = sm_prepare_custom_config.input_quantized_indexes

        # for args, this is set to the index of the current arg
        # for kwargs, this is left at None
        cur_input_idx = None
        for arg_idx, arg_to_check in enumerate(node.args):
            if arg_to_check is arg:
                cur_input_idx = arg_idx
                break

        if cur_input_idx is None:
            needs_obs = False
        else:
            arg_as_output_target_dtype = get_arg_target_dtype_as_output(arg, modules, node_name_to_target_dtype)
            arg_as_input_target_dtype = torch.quint8 if cur_input_idx in sm_input_quantized_idxs \
                else torch.float
            needs_obs = (
                (arg_as_output_target_dtype != arg_as_input_target_dtype) and
                (arg_as_input_target_dtype != torch.float)
            )

        act_post_process_ctr = qconfig.activation

    if needs_obs:

        new_obs_mod = act_post_process_ctr()
        existing_obs_node = None

        # Before using the new observer, check if an observer
        # of the correct type already exists. If it does, use it.
        # This prevents duplicate observer insertions if a node is
        # used by multiple nodes.
        # TODO: this is looking into how the value is used in the future
        # we should remove this
        # removing this means we insert one observer for each use, even if they
        # have the same dtype, we can have an extra pass that removes the extra observers
        for maybe_obs_node, _ in arg.users.items():
            if maybe_obs_node.op == 'call_module':
                maybe_obs_mod = modules[maybe_obs_node.target]  # type: ignore[index]
                if (
                    type(maybe_obs_mod) == type(new_obs_mod) and
                    maybe_obs_mod.dtype == arg_as_input_target_dtype
                ):
                    existing_obs_node = maybe_obs_node
                    break

        if existing_obs_node is None:
            new_obs_node = insert_observer(
                arg, new_obs_mod, model, modules, graph)
            # override this arg to be the observed arg
            new_arg = new_obs_node
        else:
            new_arg = existing_obs_node

    return new_arg


def maybe_insert_input_observers_for_node(
    node: Node,
    qconfig: QConfigAny,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qhandler: Optional[QuantizeHandler],
    prepare_custom_config: PrepareCustomConfig,
    backend_config: BackendConfig,
) -> None:
    """
    If needed, inserts observers to the input args and kwargs of `node`.
    Note: modifies `node` inplace.

    For example, if cur_node needs an observer after prev_node, we change from

      prev_node -> cur_node

    To

      prev_node -> obs -> cur_node
    """
    if qconfig is None:
        # if quantization is turned off for this node, we do not need
        # to insert input observers
        return
    assert qconfig is not None

    # Look through every input arg.  If that arg's target dtype does not
    # match the current node's target dtype, insert an observer.
    new_args = []
    for arg in node.args:
        new_arg = maybe_insert_input_observer_for_arg_or_kwarg(
            node, arg, qconfig, model, modules, graph,
            node_name_to_target_dtype,
            qhandler,
            prepare_custom_config,
            backend_config)
        new_args.append(new_arg)

    new_kwargs = {}
    for k, kwarg in node.kwargs.items():
        new_kwarg = maybe_insert_input_observer_for_arg_or_kwarg(
            node, kwarg, qconfig, model, modules, graph,
            node_name_to_target_dtype,
            qhandler,
            prepare_custom_config,
            backend_config)
        new_kwargs[k] = new_kwarg

    # assign the new args and kwargs to the node, inplace
    node.args = tuple(new_args)
    node.kwargs = new_kwargs

def maybe_insert_input_equalization_observers_for_node(
    node: Node,
    equalization_qconfig: Any,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    is_branch: bool,
    backend_config: BackendConfig,
) -> None:
    """
    If `node` needs to be equalized, find the input/weight observers it needs in
    `equalization_qconfig`, creates them, and inserts it into `graph`.

    If `node` does not need an equalization observer, returns None.
    """
    if equalization_qconfig is None or not node_supports_equalization(node, modules):
        return

    if is_branch:
        warnings.warn(
            f"Cannot equalize {node} because it is part of a branch."
        )
        return

    new_args = []
    for arg in node.args:
        if not isinstance(arg, Node) or node_arg_is_bias(node, arg, backend_config):
            new_args.append(arg)
            continue

        is_weight = node_arg_is_weight(node, arg, backend_config)

        act_eq_process_ctr = equalization_qconfig.weight if is_weight else \
            equalization_qconfig.input_activation

        new_eq_obs_mod = act_eq_process_ctr()
        new_eq_obs_node = insert_observer(
            arg, new_eq_obs_mod, model, modules, graph)

        new_args.append(new_eq_obs_node)

    # assign the new args and kwargs to the node, inplace
    node.args = tuple(new_args)

def maybe_insert_output_observer_for_node(
    node: Node,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
    matches: Dict[str, _MatchResultWithQConfig],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    matched_pattern: Any,
    qhandler: Optional[QuantizeHandler],
    is_qat: bool,
) -> Optional[Node]:
    """
    If `node` needs an output observer, creates it, inserts it into `graph`
    and returns it.

    If `node` does not need an output observer, returns None.
    """
    root_node, _, pattern, qhandler, qconfig = matches.get(
        node.name, (None, None, None, None, None))

    if qhandler is None:
        return None

    assert qconfig is not None
    assert node.op != 'output', 'observer insertion for outputs is handled elsewhere'

    is_standalone_module = qhandler is not None and qhandler.is_standalone_module()

    dtype, is_dynamic = node_name_to_target_dtype[node.name]["output_activation_dtype"]  # type: ignore[misc]
    should_insert_observer = dtype not in DO_NOT_OBS_DTYPE_LIST + [torch.float]
    # TODO(future PR): move the following logic to
    # should_insert_observer_for_output
    should_insert_observer = should_insert_observer and \
        activation_is_statically_quantized(qconfig)

    # we never insert observers to output of standalone module, we assume
    # if needed, they are inserted inside the standalone module
    should_insert_observer = should_insert_observer and \
        (not is_standalone_module)

    if should_insert_observer:
        act_post_process_ctr = qconfig.activation
        if activation_is_int8_quantized(qconfig):
            act_post_process_ctr = qhandler.get_activation_ctr(
                qconfig,
                matched_pattern,
                is_qat)
        observer = act_post_process_ctr()
        return insert_observer(node, observer, model, modules, graph)
    else:
        return None

def maybe_insert_observers_before_graph_output(
    graph_output_node: Node,
    output_quantized_idxs: List[int],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    qconfig_map: Dict[str, QConfigAny],
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
    graph: Graph,
) -> None:
    """
    If the output needs to be quantized and there are any nodes
    in the output which are not already observed, inserts observers
    for those nodes.
    """

    # TODO(future PR): update the output_quantized_idxs API to match
    # arbitrary data structures. There is always a single output, and
    # that output can have arbitrary nesting of values. List[int] is
    # not the right data type for this.
    assert output_quantized_idxs == [0] or output_quantized_idxs == [], \
        'unrecognized format of output_quantized_idxs'

    # Currently dequants are inserted in the convert step. So, we only
    # have to do anything if the output is hardcoded to be quantized
    if output_quantized_idxs == []:
        return
    # TODO(future PR): support more dtypes in model outputs, if necessary
    output_target_dtype = torch.quint8

    def _recursive_maybe_replace_node_with_obs(
        maybe_node: Argument,
        target_dtype: torch.dtype,
        node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
        qconfig_map: Dict[str, QConfigAny],
        model: torch.nn.Module,
        modules: Dict[str, torch.nn.Module],
        graph: Graph,
    ) -> Argument:
        """
        Navigate an arbitrary data structure of lists, tuples, dicts.
        For each container type, recurse on all inputs. Once any Node
        is found, insert an observer if needed and do not recurse further.

        For example, given a structure of

          {'foo1': [[bar1]], 'foo2': {'foo3': [[[bar3]]]}}

        we recurse down to bar1 and bar3, observe them if necessary,
        and if we inserted an observer then replace the original node
        with its observer.

        Returns the data structure with all nodes needing observation being
        replaced by their observers.
        """
        if isinstance(maybe_node, Node):
            # check dtype of this node
            this_node_dtype = get_arg_target_dtype_as_output(
                maybe_node, modules, node_name_to_target_dtype)
            if this_node_dtype != target_dtype:
                # insert observer
                qconfig = qconfig_map.get(maybe_node.name)
                # TODO(future PR): see if we need to allow specifying qconfig
                #   on output nodes, to remove the restriction below.
                assert qconfig is not None, \
                    'Quantizing the output node without a qconfig is not supported'
                observer_mod = qconfig.activation()
                observer_node = insert_observer(
                    maybe_node, observer_mod, model, modules, graph)
                return observer_node
            else:
                return maybe_node
        elif isinstance(maybe_node, (list, tuple)):
            results = []
            for inner_node in maybe_node:
                results.append(_recursive_maybe_replace_node_with_obs(
                    inner_node, target_dtype, node_name_to_target_dtype,
                    qconfig_map, model, modules, graph))
            if isinstance(maybe_node, list):
                return results
            else:
                return tuple(results)
        elif isinstance(maybe_node, dict):
            results_dict = {}
            for k, inner_v in maybe_node.items():
                results_dict[k] = _recursive_maybe_replace_node_with_obs(
                    inner_v, target_dtype, node_name_to_target_dtype,
                    qconfig_map, model, modules, graph)
            return results_dict
        else:
            return results

    new_args = []
    for old_arg in graph_output_node.args:
        new_args.append(
            _recursive_maybe_replace_node_with_obs(
                old_arg, output_target_dtype, node_name_to_target_dtype,
                qconfig_map, model, modules, graph))

    graph_output_node.args = tuple(new_args)  # type: ignore[assignment]


def maybe_propagate_dtype_for_node(
    node: Node,
    target_dtype: Union[torch.dtype, type],
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    matches: Dict[str, _MatchResultWithQConfig],
) -> None:
    """
    Assigns `target_dtype` to `node`, setting `is_dynamic` to False. If `node`
    is a general tensor shape op
    (see GeneralTensorShapeOpQuantizeHandler in quantization_patterns.py for more details)
    also call this function recursively on
    the first argument, to propagate the dtype to the caller.
    """
    node_name_to_target_dtype[node.name]["input_activation_dtype"] = (target_dtype, False)
    node_name_to_target_dtype[node.name]["output_activation_dtype"] = (target_dtype, False)
    # if this is a copy node, propagate to first arg
    root_node, _, pattern, qhandler, qconfig = matches.get(
        node.name, (None, None, None, None, None))
    if qhandler is not None and qhandler.is_general_tensor_value_op():
        prev_node = node.args[0]
        if isinstance(prev_node, Node):
            maybe_propagate_dtype_for_node(
                prev_node, target_dtype, node_name_to_target_dtype, matches)

def propagate_dtypes_for_known_nodes(
    graph: Graph,
    node_name_to_target_dtype: Dict[str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]],
    matches: Dict[str, _MatchResultWithQConfig],
) -> None:
    """
    Currently we assume that inputs to the graph are either `torch.float` or
    `torch.quint8`, which is not always correct. For ops such as
    `x.masked_fill(mask, value)`, we know that the dtype of  `mask` is a
    `BoolTensor`. Propagate this information throughout the graph.

    Note: not all dtypes in the graph will be correct after this pass, but a
    higher percentage of them will be correct. Hopefully in the future we can
    replace this with a better way to reason about dtypes of tensors.
    """
    for node in graph.nodes:
        non_observable_arg_dict = get_non_observable_arg_indexes_and_types(node)

        for arg_type in non_observable_arg_dict:
            non_observable_indices = non_observable_arg_dict[arg_type](node)

            for index in non_observable_indices:
                arg = node.args[index]

                # when an argument is a tuple, it does not show up as another node so we need to go through
                # all elements of the tuple manually
                if isinstance(arg, tuple) or isinstance(arg, list):
                    arg_list = list(arg)
                else:
                    arg_list = [arg]

                for cur_arg in arg_list:
                    # hard coded arguments show up but aren't `Node` typed and do not need dtype propgated
                    if isinstance(cur_arg, torch.fx.node.Node):
                        maybe_propagate_dtype_for_node(
                            cur_arg, arg_type, node_name_to_target_dtype, matches)

def maybe_make_input_output_share_observers(
    node: Node,
    model: torch.nn.Module,
    modules: Dict[str, torch.nn.Module],
) -> bool:
    """
    Ensures that we share an observer
    for all input arguments as well as the output argument. In detail, given
    a graph of

      x0 -> obs0 -> op -> x2
                  /
      x1 -> obs1 /

    where node obs0 points to observer instance observer0,
    obs1 points to observer1 and obs2 points to observer2, we make nodes obs1
    and ob2 point to observer0.
    Returns: whether the operation succeeded or not
    """
    first_arg = None
    # find the first non-Tensor arg
    for i in range(len(node.args)):
        if isinstance(node.args[i], (Node, list, tuple)):
            first_arg = node.args[i]
            break

    # if there is no non-Tensor arg, return directly
    if first_arg is None:
        return False

    if isinstance(first_arg, (list, tuple)):
        first_arg_arg = first_arg[0]
    elif isinstance(first_arg, Node):
        first_arg_arg = first_arg
    else:
        return False

    # if we have a graph such as
    #   observed_node -> non_observed_node -> cat
    # we need to navigate up to the first observer
    iteration_guard = 0
    while not is_activation_post_process_node(first_arg_arg, modules):
        if not isinstance(first_arg_arg, Node):
            return False
        # did not find an activation_post_process for the op
        if first_arg_arg.op == "placeholder":
            return False
        # trace back the args until we found the first Tensor/Node
        trace_back_node = None
        for i in range(len(first_arg_arg.args)):
            trace_back_node = first_arg_arg.args[i]
            if isinstance(trace_back_node, Node):
                break
        if trace_back_node is None:
            return False
        first_arg_arg = trace_back_node

        iteration_guard += 1
        if iteration_guard > 10000:
            raise AssertionError('Unable to find observer of previous node')

    assert isinstance(first_arg_arg, Node)
    target_to_use = first_arg_arg.target
    assert isinstance(target_to_use, str)
    obs_mod_to_use = modules[target_to_use]

    if isinstance(first_arg, (list, tuple)):
        # set all other input observer nodes to use that module
        for input_idx, input_arg in enumerate(first_arg):
            if input_idx == 0:
                continue
            iteration_guard = 0
            while not is_activation_post_process_node(input_arg, modules):
                # failed to trace back since no input arg for the current node
                if len(input_arg.args) < 1:
                    return False
                input_arg = input_arg.args[0]
                iteration_guard += 1
                if iteration_guard > 10000:
                    raise AssertionError('Unable to find observer of previous node')

            parent_name, name = _parent_name(input_arg.target)
            setattr(modules[parent_name], name, obs_mod_to_use)

    # set the output observer node to use that module
    for output_obs_node, _ in node.users.items():
        assert is_activation_post_process_node(output_obs_node, modules)
        parent_name, name = _parent_name(output_obs_node.target)
        setattr(modules[parent_name], name, obs_mod_to_use)

    # TODO(future PR): delete the orphaned observer modules
    return True

def remove_output_observer(
        node: Node,
        model: torch.nn.Module,
        modules: Dict[str, torch.nn.Module]):
    items = list(node.users.items())
    for output_obs_node, _ in items:
        assert is_activation_post_process_node(output_obs_node, modules)
        output_obs_node.replace_all_uses_with(node)
        model.graph.erase_node(output_obs_node)  # type: ignore[union-attr, operator]

def swap_custom_module_to_observed(
        node: Node,
        qconfig: QConfigAny,
        modules: Dict[str, torch.nn.Module],
        prepare_custom_config: PrepareCustomConfig):
    custom_module = modules[node.target]  # type: ignore[index]
    custom_module_class_mapping = prepare_custom_config.float_to_observed_mapping
    observed_custom_module_class = \
        get_swapped_custom_module_class(
            custom_module, custom_module_class_mapping, qconfig)
    observed_custom_module = \
        observed_custom_module_class.from_float(custom_module)
    parent_name, name = _parent_name(node.target)
    setattr(modules[parent_name], name, observed_custom_module)

def insert_observers_for_model(
    model: GraphModule,
    modules: Dict[str, torch.nn.Module],
    matches: Dict[str, _MatchResultWithQConfig],
    qconfig_map: Dict[str, QConfigAny],
    graph: Graph,
    prepare_custom_config: PrepareCustomConfig,
    equalization_config_map: Dict[str, Any],
    input_quantized_idxs: List[int],
    output_quantized_idxs: List[int],
    backend_config: BackendConfig,
    observed_node_names: Set[str],
    is_qat: bool,
) -> Optional[Node]:
    """
    Inserts observers, using the following high level algorithm:

    For each node in the graph:
      1. determine the target dtype of this node in the quantized graph, and save
           it for future steps
      2. determine the target dtype or all args and kwargs of this node
      3. if any arg or kwarg's target dtype does not match the current node's
           dtype, insert an observer
      4. if the current node needs an output observer, insert it

    For example:

    - starting graph:
        x0 -> linear -> x1

    - observed graph after processing x0:
        x0(fp32)

    - observed graph after processing linear:
        x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8)

    - observed graph after processing x1:
        x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8) -> x1

    After a node is processed, the naive observer placement is guaranteed to be
    complete for that node and all of its predecessors. There can be future
    passes which optimize the graph by deduplicating observers, etc.
    """

    # name of Node in original FX Graph to the target dtype information
    # that's derived from qconfig for the Node, for example, if we have
    # a conv2d node that has a qconfig
    # {
    #   # information for input and bias node omitted
    #   # for getattr node
    #   # weight = getattr(self, 'weight')
    #   'weight': {
    #      'output_activation_dtype': torch.float,
    #   }
    #   # for conv2d node
    #   # conv2d = call_function[target=torch.nn.functional.conv2d](
    #   #            args=(input, weight, bias))
    #   'conv2d': {
    #       'input_activation_dtype': torch.quint8,
    #       'weight_dtype': torch.qint8,
    #       'bias_dtype': torch.float,
    #       'output_activation_dtype': torch.quint8,
    #     }
    #   }
    #
    # TODO: rename this to node_name_to_target_dtype_info
    node_name_to_target_dtype: Dict[
        str, Dict[str, Optional[Tuple[Union[torch.dtype, type], bool]]]
    ] = defaultdict(dict)
    cache_for_no_tensor_check: Dict[Node, bool] = {}

    inputs_seen_counter = 0
    outputs_seen_counter = 0

    # first, populate the dtype map based only on qconfig and qhandler
    # this assumes:
    # graph inputs are fp32 by default, and int8 where overriden
    # other nodes output dtype is specified by the qconfig
    modules = dict(model.named_modules(remove_duplicate=False))
    for node in model.graph.nodes:
        root_node, _, pattern, qhandler, qconfig = matches.get(
            node.name, (None, None, None, None, None))
        node_name_to_target_dtype[node.name] = get_target_activation_dtype_for_node(
            node, qconfig, inputs_seen_counter, outputs_seen_counter,
            input_quantized_idxs, output_quantized_idxs, qhandler,
            modules, cache_for_no_tensor_check)
        if node.op == "placeholder":
            inputs_seen_counter += 1
        if node.op == "output":
            outputs_seen_counter += 1

    # Second, for nodes with known input dtypes, propagate them throughout the
    # graph. For example, if there is a call such as
    #   x1 = x0.masked_fill(mask, 1)
    # we propagate the type of mask to be torch.bool
    propagate_dtypes_for_known_nodes(
        model.graph, node_name_to_target_dtype, matches)

    # After this point, the current node and all of its arguments
    # have a dtype assigned. Now, we insert observers for inputs
    # of this node (if needed for this node), and the output of this node
    # (if needed for this node).

    # Since we are mutating the graph as we go, we iterate over the original
    # nodes before observer insertion, instead of model.graph.nodes.
    nodes_before_observation = list(model.graph.nodes)

    # reset inputs/outputs counters
    inputs_seen_counter = 0
    outputs_seen_counter = 0
    results_node = None
    for node in nodes_before_observation:

        if node.op == 'placeholder':
            # if a graph input is in fp32, it does not need observation
            # if a graph input is in int8, we assume the observation happens
            #   outside of the graph, and no additional observation is needed
            pass

        elif node.op in ('call_module', 'call_method', 'call_function', 'output'):
            # check for matches
            last_node, matched_node_pattern, pattern, qhandler, qconfig = matches.get(
                node.name, (None, None, None, None, None))
            equalization_qconfig = equalization_config_map.get(node.name, None)

            this_node_dtype_info = node_name_to_target_dtype[node.name]
            output_not_a_tensor = this_node_dtype_info is None
            # TODO(future PR): consider stopping matching getitem
            is_getitem = node.op == 'call_function' and \
                node.target == operator.getitem

            skip_inserting_observers = (
                (qconfig is None) or
                output_not_a_tensor or
                is_getitem
            ) and (
                not node.op == 'output'
            )

            is_supported_by_backend = _is_pattern_dtype_config_and_qconfig_supported_by_backend(
                pattern, matched_node_pattern, node_name_to_target_dtype, qconfig, backend_config)

            if not skip_inserting_observers and is_supported_by_backend:
                modules = dict(model.named_modules(remove_duplicate=False))
                if node.op != 'output':
                    assert matched_node_pattern is not None
                    # add matched nodes to the observed node name set
                    add_matched_node_name_to_set(matched_node_pattern, observed_node_names)

                    # This is currently only used for equalization.
                    # Checks if the current node is in a branch in which the two
                    # first layers are both being quantized.
                    #
                    # ex.       conv2
                    #         /
                    #      x -> conv1
                    #
                    # If this is the case, we will not apply equalization to the
                    # initial two layers.
                    is_quantized_branch = False
                    if (
                        len(node.args) > 0 and
                        isinstance(node.args[0], Node) and
                        len(node.args[0].users) > 1
                    ):
                        for user in node.args[0].users:
                            # Checks if there exists another user being quantized
                            is_user_quantized = (
                                qconfig_map.get(user.name, None) is not None or
                                (user.op == 'call_module' and isinstance(modules[str(user.target)], ObserverBase))
                            )
                            if user != node and is_user_quantized:
                                is_quantized_branch = True

                    # TODO: this only works for sequential fusion right now, extend it
                    # it to automatically detect all input nodes based on the pattern
                    # need to change find_matches function to return this information
                    root_node = _default_root_node_getter(matched_node_pattern)
                    is_input_node_of_the_pattern = node is root_node
                    if is_input_node_of_the_pattern:
                        # this modifies node inplace
                        maybe_insert_input_observers_for_node(
                            node, qconfig, model, modules, graph,
                            node_name_to_target_dtype,
                            qhandler,
                            prepare_custom_config,
                            backend_config)

                        # Insert equalization input observers if needed
                        maybe_insert_input_equalization_observers_for_node(
                            node, equalization_qconfig, model, modules, graph,
                            node_name_to_target_dtype, is_quantized_branch, backend_config)

                    is_last_node_of_pattern = node is last_node
                    is_general_tensor_value_op = \
                        (qhandler is not None and qhandler.is_general_tensor_value_op())
                    is_reuse_input_qconfig_ = is_reuse_input_qconfig(qconfig)

                    if is_last_node_of_pattern:
                        if _is_custom_module_lstm(node, modules, qconfig, qhandler):
                            # Currently custom module outputs are assumed to be already quantized,
                            # so we need to insert a DeQuantStub after the output. For custom module
                            # LSTM specifically, the outputs are also a nested tuple, so we must first
                            # break down the tuple to insert DeQuantStubs after the internal nodes.

                            # TODO: This currently diverges from how custom modules are handled today,
                            # where we insert observers after the output instead of DeQuantStubs, and
                            # replace these observers with "dequantize" nodes during convert. Conceptually,
                            # these output observers are the same as DeQuantStubs. In the future, we
                            # should resolve this inconsistency by inserting DeQuantStubs for all custom
                            # modules, not just for LSTM.
                            _insert_dequant_stubs_for_custom_module_lstm_output(node, model, modules, graph)
                            swap_custom_module_to_observed(node, qconfig, modules, prepare_custom_config)
                        else:
                            # this returns the new observer node if it was needed
                            maybe_output_obs_node = maybe_insert_output_observer_for_node(
                                node, model, modules, graph, matches,
                                node_name_to_target_dtype, pattern, qhandler, is_qat)

                            if maybe_output_obs_node is not None:
                                # Update users of original node to use the output observer
                                # instead. For example, change
                                #
                                #           next_node
                                #          /
                                #   cur_node -> obs
                                #
                                # to
                                #
                                #                 next_node
                                #                 /
                                #   cur_node -> obs
                                #
                                # We need to save orig users before updating uses because
                                # the list of users will change as we update uses
                                orig_users = list(node.users.keys())
                                for user_node in orig_users:
                                    if user_node is maybe_output_obs_node:
                                        continue
                                    user_node.replace_input_with(node, maybe_output_obs_node)

                                is_observer_in_same_graph_ = is_observer_in_same_graph(node, modules, node_name_to_target_dtype)

                                # for general tensor value ops, we modify the graph
                                # to make all inputs and outputs use the first input's
                                # observer
                                if (is_general_tensor_value_op and is_observer_in_same_graph_) or \
                                        is_reuse_input_qconfig_:
                                    if not maybe_make_input_output_share_observers(node, model, modules):
                                        remove_output_observer(node, model, modules)

                                if qhandler is not None and qhandler.is_custom_module():
                                    swap_custom_module_to_observed(node, qconfig, modules, prepare_custom_config)

                else:  # output
                    maybe_insert_observers_before_graph_output(
                        node, output_quantized_idxs,
                        node_name_to_target_dtype, qconfig_map,
                        model, modules, graph)

        #
        # After this point, the current node has input and output observers
        # that it needs for itself inserted.
        #

        # increment the counters, so future inputs and outputs are assigned
        # correct dtypes
        if node.op == 'placeholder':
            inputs_seen_counter += 1
        elif node.op == 'output':
            outputs_seen_counter += 1
            results_node = node

    return results_node

def _validate_fixed_qparams_qconfigs(model: GraphModule, qconfig_map: Dict[str, QConfigAny]):
    """
    Validate whether the correct observers are configured for fixed qparams ops in the model, if any.
    """
    # TODO: handle fp16 qconfigs properly
    allowed_observer_ctrs = [
        float16_dynamic_qconfig.activation,
        float16_static_qconfig.activation,
    ]
    named_modules = dict(model.named_modules(remove_duplicate=False))
    for node in model.graph.nodes:
        if node.op == "call_function":
            module_type_or_function_or_method = node.target
        elif node.op == "call_module":
            module_type_or_function_or_method = type(named_modules[node.target])
        else:
            module_type_or_function_or_method = None

        if module_type_or_function_or_method in _FIXED_QPARAMS_OP_TO_OBSERVER:
            bad_observer = True
            qconfig = qconfig_map.get(node.name, None)
            if qconfig is None:
                bad_observer = False
            else:
                for observer_ctr in allowed_observer_ctrs + [_FIXED_QPARAMS_OP_TO_OBSERVER[module_type_or_function_or_method]]:
                    if obs_or_fq_ctr_equals(
                            qconfig.activation,
                            FixedQParamsFakeQuantize.with_args(observer=observer_ctr)) or \
                            obs_or_fq_ctr_equals(qconfig.activation, observer_ctr):
                        bad_observer = False
            if bad_observer:
                raise ValueError("QConfigMapping must specify fixed qparams observer for fixed qparams op "
                                 "'%s' type: '%s'. Please use torch.ao.quantization.get_default_qconfig_mapping or "
                                 "torch.ao.quantization.get_default_qat_qconfig_mapping"
                                 " instead. Example: \n"
                                 "    qconfig_mapping = get_default_qconfig_mapping(\"fbgemm\") \n"
                                 "    model = prepare_fx(model, qconfig_mapping, example_inputs)"
                                 "" % (node.format_node(), module_type_or_function_or_method))

def run_prepare_fx_on_standalone_modules(
    model: torch.nn.Module,
    is_qat: bool,
    modules: Dict[str, torch.nn.Module],
    matches: Any,
    prepare_custom_config: PrepareCustomConfig,
    backend_config: BackendConfig,
) -> None:
    """
    Runs prepare_fx on each standalone module. Note: this does
    not modify the graph, it just replaces the unobserved modules with
    their observed versions.
    """
    for (
        node_name,
        (root_node, _, pattern, qhandler, qconfig),
    ) in matches.items():
        if qhandler is None:
            continue
        elif not qhandler.is_standalone_module():
            continue

        sm_qconfig_mapping, sm_example_inputs, sm_prepare_custom_config, \
            sm_backend_config = get_standalone_module_configs(
                root_node, modules, prepare_custom_config, qconfig, backend_config)

        standalone_module = modules[root_node.target]
        prepare = \
            torch.ao.quantization.quantize_fx._prepare_standalone_module_fx  # type: ignore[attr-defined]
        observed_standalone_module = \
            prepare(
                standalone_module,
                sm_qconfig_mapping,
                is_qat,
                example_inputs=sm_example_inputs,
                prepare_custom_config=sm_prepare_custom_config,
                backend_config=sm_backend_config)
        preserved_attributes = set(sm_prepare_custom_config.preserved_attributes)
        observed_standalone_module = ObservedStandaloneGraphModule(
            observed_standalone_module, observed_standalone_module.graph,
            preserved_attributes)
        parent_name, name = _parent_name(root_node.target)
        setattr(modules[parent_name], name,
                observed_standalone_module)
        modules[root_node.target] = observed_standalone_module

def save_state(
    observed: GraphModule,
    qconfig_map: Dict[str, QConfigAny],
    node_name_to_scope: Dict[str, Tuple[str, type]],
    prepare_custom_config: PrepareCustomConfig,
    equalization_qconfig_map: Dict[str, Any],
    qconfig_mapping: QConfigMapping,
    is_qat: bool,
    observed_node_names: Set[str],
) -> None:
    observed._qconfig_map = qconfig_map  # type: ignore[assignment]
    observed._prepare_custom_config = prepare_custom_config  # type: ignore[assignment]
    observed._node_name_to_scope = node_name_to_scope  # type: ignore[assignment]
    observed._equalization_qconfig_map = equalization_qconfig_map  # type: ignore[assignment]
    observed._qconfig_mapping = qconfig_mapping  # type: ignore[assignment]
    observed._is_qat = is_qat  # type: ignore[assignment]
    observed._observed_node_names = observed_node_names  # type: ignore[assignment]

def prepare(
        model: GraphModule,
        qconfig_mapping: Union[QConfigMapping, Dict[str, Any]],
        is_qat: bool,
        node_name_to_scope: Dict[str, Tuple[str, type]],
        example_inputs: Tuple[Any, ...],
        prepare_custom_config: Union[PrepareCustomConfig, Dict[str, Any], None] = None,
        _equalization_config: Union[QConfigMapping, Dict[str, Any], None] = None,
        backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
        is_standalone_module: bool = False) -> ObservedGraphModule:
    """ standalone_module means it a submodule that is not inlined in
    parent module, and will be quantized separately as one unit.

    How the standalone module is observed is specified by `input_quantized_idxs` and
    `output_quantized_idxs` in the prepare_custom_config for the standalone module
    Args:
        node_name_to_scope: mapping from node name to the scope of the module which contains the node.
        The scope is a tuple of fully qualified path of the module and the type of the module
    Returns:
        model(GraphModule): prepared standalone module
        attributes:
            _standalone_module_input_quantized_idxs(List[Int]): a list of
                indexes for the graph input that is expected to be quantized,
                same as input_quantized_idxs configuration provided
                for the standalone module
            _standalone_module_output_quantized_idxs(List[Int]): a list of
                indexs for the graph output that is quantized
                same as input_quantized_idxs configuration provided
                for the standalone module
    """
    if prepare_custom_config is None:
        prepare_custom_config = PrepareCustomConfig()
    if _equalization_config is None:
        _equalization_config = QConfigMapping()

    if isinstance(qconfig_mapping, Dict):
        warnings.warn(
            "Passing a QConfig dictionary to prepare is deprecated and will not be supported "
            "in a future version. Please pass in a QConfigMapping instead.")
        qconfig_mapping = QConfigMapping.from_dict(qconfig_mapping)

    if isinstance(_equalization_config, Dict):
        warnings.warn(
            "Passing a QConfig dictionary to prepare for equalization is deprecated and will not "
            "be supported in a future version. Please pass in a QConfigMapping instead.")
        _equalization_config = QConfigMapping.from_dict(_equalization_config)

    if isinstance(prepare_custom_config, Dict):
        warnings.warn(
            "Passing a prepare_custom_config_dict to prepare is deprecated and will not be supported "
            "in a future version. Please pass in a PrepareCustomConfig instead.")
        prepare_custom_config = PrepareCustomConfig.from_dict(prepare_custom_config)

    if isinstance(backend_config, Dict):
        warnings.warn(
            "Passing a backend_config_dict to prepare is deprecated and will not be supported "
            "in a future version. Please pass in a BackendConfig instead.")
        backend_config = BackendConfig.from_dict(backend_config)

    assert(isinstance(qconfig_mapping, QConfigMapping))
    assert(isinstance(_equalization_config, QConfigMapping))
    qconfig_mapping = copy.deepcopy(qconfig_mapping)
    _equalization_config = copy.deepcopy(_equalization_config)

    # mapping from a tuple of nodes in reverse order to uninitialized
    #   QuantizeHandler subclass. For example,
    # {
    #   # match a single node
    #   (<class 'torch.nn.modules.conv.Conv3d'>:
    #     <class 'torch.ao.quantization.fx.quantize.ConvRelu'>),
    #   # match multiple nodes in reverse order
    #   ((<function relu at 0x7f766a7360d0>, <built-in function add>):
    #     <class 'torch.ao.quantization.fx.quantize.Add'>),
    # }

    pattern_to_quantize_handler: Dict[Pattern, QuantizeHandler] = {}
    if backend_config is None:
        backend_config = get_native_backend_config()
    pattern_to_quantize_handler = get_pattern_to_quantize_handlers(backend_config)
    pattern_to_quantize_handler = sorted_patterns_dict(pattern_to_quantize_handler)

    root_node_getter_mapping = \
        get_fusion_pattern_to_root_node_getter(backend_config)

    update_qconfig_for_fusion(model, qconfig_mapping)
    update_qconfig_for_fusion(model, _equalization_config)
    flattened_qconfig_dict = get_flattened_qconfig_dict(qconfig_mapping)
    # TODO: support regex as well
    propagate_qconfig_(model, flattened_qconfig_dict, prepare_custom_config.to_dict())

    if is_qat:
        module_to_qat_module = get_module_to_qat_module(backend_config)
        qat_swap_modules(model, module_to_qat_module)
        update_qconfig_for_qat(qconfig_mapping, {})

    # mapping from fully qualified module name to module instance
    # for example,
    # {
    #   '': Model(...),
    #   'linear': Linear(...),
    #   'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
    # }
    modules = dict(model.named_modules(remove_duplicate=False))

    # fill qconfig_map, a map from node name to qconfig, used in find_matches
    equalization_qconfig_map = generate_qconfig_map(
        model, modules, model.graph, _equalization_config, node_name_to_scope)
    qconfig_map = generate_qconfig_map(model, modules, model.graph, qconfig_mapping, node_name_to_scope)
    _validate_fixed_qparams_qconfigs(model, qconfig_map)

    # match the patterns that will get quantized
    standalone_module_names = list(prepare_custom_config.standalone_module_names.keys())
    standalone_module_classes = list(prepare_custom_config.standalone_module_classes.keys())

    custom_module_classes = get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping)
    matches_without_qconfig = find_matches(
        model.graph, modules, pattern_to_quantize_handler, root_node_getter_mapping,
        standalone_module_names, standalone_module_classes, custom_module_classes)

    # map qconfig instances to matches
    matches = {}
    for node_name, match_without_qconfig in matches_without_qconfig.items():
        match_with_qconfig = (*match_without_qconfig, qconfig_map[node_name])
        matches[node_name] = match_with_qconfig

    input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
    output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes

    run_prepare_fx_on_standalone_modules(
        model, is_qat, modules, matches, prepare_custom_config, backend_config)

    # record names for the set of observed node, so that in convert step
    # we know whether we need to convert a floating point module to reference
    # quantized module or not
    observed_node_names: Set[str] = set()

    result_node = insert_observers_for_model(
        model, modules, matches, qconfig_map,
        model.graph, prepare_custom_config,
        equalization_qconfig_map,
        input_quantized_idxs,
        output_quantized_idxs,
        backend_config,
        observed_node_names,
        is_qat)

    save_state(model, qconfig_map, node_name_to_scope,
               prepare_custom_config, equalization_qconfig_map, qconfig_mapping, is_qat, observed_node_names)

    preserved_attributes = set(prepare_custom_config.preserved_attributes)
    model = ObservedGraphModule(model, model.graph, preserved_attributes)
    if is_standalone_module:
        assert result_node is not None
        assert isinstance(result_node.args[0], Node), \
            "standalone module only supports returning simple value currently"\
            "(not tuple, dict etc.)"
        # these inputs are observed in parent
        # converting List[int] to Tensor since module attribute is
        # Union[Tensor, Module]
        model._standalone_module_input_quantized_idxs = \
            torch.tensor(input_quantized_idxs)
        model._standalone_module_output_quantized_idxs = torch.tensor(output_quantized_idxs)
    return model