File: base_pruner.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (247 lines) | stat: -rw-r--r-- 11,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

import copy
import warnings
import abc

import torch
from torch import nn
from torch.nn.utils import parametrize

from torch.nn.modules.container import ModuleDict, ModuleList

from .parametrization import PruningParametrization, ZeroesParametrization, ActivationReconstruction, BiasHook

from torch.ao.sparsity import BaseSparsifier, module_to_fqn, fqn_to_module
from torch.ao.sparsity.sparsifier.utils import get_arg_info_from_tensor_fqn

__all__ = ["BasePruner"]

SUPPORTED_MODULES = {  # added to config if None given
    nn.Linear,
    nn.Conv2d,
    nn.BatchNorm2d,  # will need manual update to match conv2d
}

NEEDS_ZEROS = {  # these layers should have pruned indices zero-ed, not removed
    nn.BatchNorm2d
}

class BasePruner(BaseSparsifier):
    r"""Base class for all pruners.

    Abstract methods that need to be implemented:

    - update_mask: Function to compute a new mask for all keys in the
        `groups` attribute.

    Args:
        - defaults [dict]: default configurations will be attached to the
            configuration. Only the keys that don't exist in the `config` will
            be updated.
        - also_prune_bias [bool]: whether to prune bias in addition to weights (to prune full output channel)
            or not; default=True.

    """
    def __init__(self, defaults, also_prune_bias=True):
        super().__init__(defaults)
        self.prune_bias = also_prune_bias

    def _get_modules_and_tensor_names(self, config, use_path):
        modules = []
        tensor_names = []
        if use_path:
            if type(config['module']) is tuple:  # (Conv2d, BN)
                for module_fqn, tensor_name in zip(config['module_fqn'], config['tensor_name']):
                    module = fqn_to_module(self.model, module_fqn)
                    modules.append(module)
                    tensor_names.append(tensor_name)
            else:
                module = fqn_to_module(self.model, config['module_fqn'])
                modules.append(module)
                tensor_name = config['tensor_name']
                tensor_names.append(tensor_name)

        else:
            if type(config['module']) is tuple:
                for module, tensor_name in zip(config['module'], config['tensor_name']):
                    modules.append(module)
                    tensor_names.append(tensor_name)
            else:
                module = config['module']
                modules.append(module)
                tensor_name = config['tensor_name']
                tensor_names.append(tensor_name)
        return modules, tensor_names

    def _prepare(self, use_path=False, *args, **kwargs):
        r"""Adds mask parametrization to the layer weight
        """
        self.activation_handles = []  # store removable hook handles
        self.bias_handles = []

        for config in self.groups:
            modules, tensor_names = self._get_modules_and_tensor_names(config, use_path)

            for module, tensor_name in zip(modules, tensor_names):
                if not isinstance(module, tuple(NEEDS_ZEROS)):
                    # add pruning parametrization and forward hooks
                    if getattr(module, 'mask', None) is None:
                        module.register_buffer('mask', torch.tensor(getattr(module, tensor_name).shape[0]))
                    param = config.get('parametrization', PruningParametrization)
                    parametrize.register_parametrization(module, tensor_name, param(module.mask), unsafe=True)

                    assert isinstance(module.parametrizations, ModuleDict)  # make mypy happy
                    assert isinstance(module.parametrizations.weight, ModuleList)
                    if isinstance(module, tuple(SUPPORTED_MODULES)):
                        self.activation_handles.append(module.register_forward_hook(
                            ActivationReconstruction(getattr(module.parametrizations, tensor_name)[0])
                        ))
                    else:
                        raise NotImplementedError("This module type is not supported yet.")

                else:  # needs zeros
                    if getattr(module, 'mask', None) is None:
                        module.register_buffer('mask', torch.tensor(getattr(module, tensor_name).shape[0]))
                    param = config.get('parametrization', ZeroesParametrization)
                    parametrize.register_parametrization(module, tensor_name, param(module.mask), unsafe=True)

                if module.bias is not None:
                    module.register_parameter('_bias', nn.Parameter(module.bias.detach()))
                    module.bias = None
                self.bias_handles.append(module.register_forward_hook(BiasHook(module.parametrizations.weight[0], self.prune_bias)))

            if len(modules) == 2:  # (Conv2d, BN)
                # should have the same set of pruned outputs
                modules[1].parametrizations.weight[0].pruned_outputs = modules[0].parametrizations.weight[0].pruned_outputs

    def make_config_from_model(self, model, SUPPORTED_MODULES=SUPPORTED_MODULES, NEEDS_ZEROS=NEEDS_ZEROS):
        self.config = []
        stack = [model]
        while stack:
            module = stack.pop()
            for name, child in module.named_children():
                if type(child) in SUPPORTED_MODULES:
                    child_fqn = module_to_fqn(model, child)
                    assert isinstance(child_fqn, str)  # for mypy
                    self.config.append({'tensor_fqn': child_fqn + '.weight'})
                else:
                    if NEEDS_ZEROS is not None and type(child) in NEEDS_ZEROS and hasattr(self, "prune_bias") and self.prune_bias:
                        # only useful for Pruner
                        warnings.warn(f"Models with {type(child)} layers have config provided by user.")
                    stack.append(child)

    def prepare(self, model, config):
        r"""Prepares a model, by adding the parametrizations and forward post-hooks.
        Note::
            The model is modified inplace. If you need to preserve the original
            model, use copy.deepcopy.

        Args:
        - model [nn.Module]: model to configure. The model itself is not saved
            but used for the state_dict saving / loading.
        - config [list]: configuration elements could either be instances of
            tuples of dict maps or dict maps. The dicts must have a key 'tensor_fqn' with the
            value being the fqn of the tensor to be pruned.
        """
        self.model = model  # TODO: Need to figure out how to load without this.
        self.config = config

        # If no config -- try getting all the supported layers
        if self.config is None:
            # Add all models to the config
            self.make_config_from_model(self.model)

        for module_config in self.config:
            if type(module_config) is tuple:
                first_layer, next_layer = module_config
                assert isinstance(first_layer, nn.Conv2d) and isinstance(next_layer, nn.BatchNorm2d)
                assert isinstance(module_config, tuple)  # for mypy
                module_config = {'module': module_config}
                local_args = copy.deepcopy(self.defaults)
                local_args.update(module_config)
                module_fqn_list = []
                tensor_fqn_list = []
                tensor_name_list = []
                for module in local_args['module']:
                    module_fqn = module_to_fqn(model, module)
                    if module_fqn is None:
                        module_fqn = ''
                    if module_fqn and module_fqn[0] == '.':
                        module_fqn = module_fqn[1:]
                    module_fqn_list.append(module_fqn)
                    tensor_fqn_list.append(module_fqn + '.weight')
                    tensor_name_list.append('weight')

                local_args['module_fqn'] = module_fqn_list
                local_args['tensor_fqn'] = tensor_fqn_list
                local_args['tensor_name'] = tensor_name_list
            else:
                if isinstance(module_config, nn.Module):
                    module_config = {'module': module_config}  # type: ignore[dict-item]

                local_args = copy.deepcopy(self.defaults)
                local_args.update(module_config)

                # now that we're working with a dict, does it have the new format?
                if local_args.get('tensor_fqn', None) is not None:
                    tensor_fqn = local_args.get('tensor_fqn')
                    assert isinstance(tensor_fqn, str)  # for mypy
                    info_from_tensor_fqn = get_arg_info_from_tensor_fqn(model, tensor_fqn)

                    for key in info_from_tensor_fqn.keys():
                        if key in local_args:
                            # info_from_tensor_fqn will chop leading '.' from tensor_fqn so ignore that
                            assert key == 'tensor_fqn' or info_from_tensor_fqn[key] == local_args[key], (
                                "Given both `{}` and `tensor_fqn`, it is expected them to "
                                "agree!".format(key)
                            )
                    local_args.update(info_from_tensor_fqn)
                else:
                    module = local_args['module']
                    module_fqn = module_to_fqn(model, module)
                    if module_fqn and module_fqn[0] == '.':
                        module_fqn = module_fqn[1:]
                    local_args['module_fqn'] = module_fqn
                    local_args['tensor_name'] = "weight"
                    assert isinstance(module_fqn, str)  # for mypy
                    local_args['tensor_fqn'] = module_fqn + ".weight"
            self.groups.append(local_args)

        self._prepare()

    def squash_mask(self, use_path=False, *args, **kwargs):
        for config in self.groups:
            modules, tensor_names = self._get_modules_and_tensor_names(config, use_path)

            for module, tensor_name in zip(modules, tensor_names):
                parametrize.remove_parametrizations(module, tensor_name,
                                                    leave_parametrized=True)
                if getattr(module._parameters, 'mask', None):
                    del module._parameters['mask']
                elif getattr(module._buffers, 'mask', None):
                    del module._buffers['mask']
                delattr(module, 'mask')

    def get_module_pruned_outputs(self, module, tensor_name='weight'):
        r"""Returns the set of pruned indices of module"""
        assert parametrize.is_parametrized(module)  # can only get pruned indices of pruned module
        return getattr(module.parametrizations, tensor_name)[0].pruned_outputs  # assume only one parametrization attached

    def step(self, use_path=False):
        if not self.enable_mask_update:
            return
        with torch.no_grad():
            for config in self.groups:
                modules, tensor_names = self._get_modules_and_tensor_names(config, use_path)

                untupled_args: dict = {}
                untupled_args.update()
                # only need to update the first module in modules if len(modules) > 1
                # since they should share the same set of pruned outputs
                untupled_args['module'] = modules[0]
                untupled_args['tensor_name'] = tensor_names[0]
                self.update_mask(**config)

    @abc.abstractmethod
    def update_mask(self, module, tensor_name, **kwargs):
        pass