1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
import abc
import copy
from collections import defaultdict
from typing import Any, Dict, Optional, Set, Tuple, List, Type
import torch
from torch import nn
from torch.nn.utils import parametrize
from .utils import (
FakeSparsity,
get_arg_info_from_tensor_fqn,
module_to_fqn,
)
__all__ = ["BaseSparsifier"]
SUPPORTED_MODULES = {
nn.Linear
}
KEYS_NOT_IN_STATE_DICT = ["module", "module_fqn", "tensor_name"]
__all__ = ["BaseSparsifier"]
# TODO update desc with new config args
class BaseSparsifier(abc.ABC):
r"""Base class for all sparsifiers.
Abstract methods that need to be implemented:
- update_mask: Function to compute a new mask for all keys in the
`groups`.
Args:
- model [nn.Module]: model to configure. The model itself is not saved
but used for the state_dict saving / loading.
- config [list]: configuration elements should be a dict map that includes
`tensor_fqn` of tensors to sparsify
- defaults [dict]: default configurations will be attached to the
configuration. Only the keys that don't exist in the `config` will
be updated.
Example::
>>> # xdoctest: +SKIP("Can't instantiate abstract class BaseSparsifier with abstract method update_mask")
>>> config = [{'tensor_fqn': 'layer1.weight', 'tensor_fqn': 'linear2.weight2', 'sparsity_level': 0.5}]
>>> defaults = {'sparsity_level': 0.7}
>>> # model.layer1.weight will have `sparsity_level` = 0.7 (getting default)
>>> sparsifier = BaseSparsifier(config, defaults)
"""
def __init__(self, defaults: Optional[Dict[str, Any]] = None):
super().__init__()
self.defaults: Dict[str, Any] = defaults or {}
self.state: Dict[str, Dict] = defaultdict(dict)
self.groups: List[Dict[str, Any]] = []
self.enable_mask_update = True
def __getstate__(self) -> Dict[str, Any]:
return {
'defaults': self.defaults,
'state': self.state,
'groups': self.groups,
}
def __setstate__(self, state: Dict[str, Dict[str, Any]]) -> None:
self.__dict__.update(state)
def __repr__(self):
format_string = self.__class__.__name__ + ' ('
for i, sparse_args in enumerate(self.groups):
module = sparse_args['module']
format_string += '\n'
format_string += f'\tGroup {i}\n'
format_string += f'\t module: {module}\n'
for key in sorted(sparse_args.keys()):
if key == "module":
continue
format_string += f"\t {key}: {sparse_args[key]}\n"
format_string += ")"
return format_string
def state_dict(self) -> Dict[str, Any]:
r"""Returns the state of the optimizer as a :class:`dict`.
It contains:
* state - current state of the sparsification.
* groups - a list containing all sparsity configuration groups
with the key 'tensor_fqn' specifying the path to the sparsified tensor within a model
TODO: Need a clean way of loading the state of the "prepared" module
"""
groups: List[Dict[str, Any]] = [
dict(filter(lambda key_value: key_value[0] not in KEYS_NOT_IN_STATE_DICT , mg.items()))
for mg in self.groups
]
return {
'state': self.state,
'groups': groups,
}
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True):
groups = copy.deepcopy(state_dict['groups'])
states = state_dict['state']
for tensor_fqn, s in states.items():
arg_info = get_arg_info_from_tensor_fqn(self.model, tensor_fqn)
module = arg_info["module"]
tensor_name = arg_info["tensor_name"]
if strict and module is None:
raise RuntimeError(f"Error loading {tensor_fqn} into the model")
found = False
for p in module.parametrizations[tensor_name]:
if isinstance(p, FakeSparsity):
found = True
break
if not found:
p = FakeSparsity(torch.ones(getattr(module, tensor_name).shape))
parametrize.register_parametrization(module, tensor_name, p)
if s.get("mask", None) is not None:
mask = s.pop("mask")
p.mask = mask
for mg in groups:
if mg["tensor_fqn"] == tensor_fqn:
mg.update(arg_info)
self.__setstate__({"state": states, "groups": groups})
def make_config_from_model(
self,
model: nn.Module,
SUPPORTED_MODULES: Set[Type] = SUPPORTED_MODULES,
) -> None:
self.config = []
stack = [model]
while stack:
module = stack.pop()
for name, child in module.named_children():
if type(child) in SUPPORTED_MODULES:
module_fqn = module_to_fqn(model, child)
assert isinstance(module_fqn, str) # for mypy
self.config.append(
{"tensor_fqn": module_fqn + ".weight"}
)
else:
stack.append(child)
def prepare(self, model, config):
r"""Prepares a model, by adding the parametrizations.
Note::
The model is modified inplace. If you need to preserve the original
model, use copy.deepcopy.
"""
self.model = model # TODO: Need to figure out how to load without this.
self.config = config
# If no config -- try getting all the supported layers
if self.config is None:
self.make_config_from_model(model)
# TODO: Remove the configuration by reference ('module')
for module_config in self.config:
assert isinstance(module_config, dict), (
"config elements should be dicts not modules i.e.:"
"[{`tensor_fqn`: `foo.bar.weight`}, {`tensor_fqn`: ... }, ...]"
)
assert isinstance(self.defaults, Dict) # for mypy
local_args = copy.deepcopy(self.defaults)
local_args.update(module_config)
tensor_fqn = local_args.get("tensor_fqn", None)
assert tensor_fqn is not None, (
"tensor_fqn is a required argument in the sparsity config which"
"replaces previous `module` and [module]`fqn` arguments"
)
# populate all information from tensor_fqn
info_from_tensor_fqn = get_arg_info_from_tensor_fqn(model, tensor_fqn)
# check that whatever was put into local_args agrees with what was obtained
# from tensor_fqn
for key in info_from_tensor_fqn.keys():
if key in local_args:
assert (
info_from_tensor_fqn[key] == local_args[key]
or (
key == "tensor_fqn"
and "." + info_from_tensor_fqn[key] == local_args[key]
)
# info_from_tensor_fqn will chop leading '.' from tensor_fqn so ignore that
), (
"Given both `{}` and `tensor_fqn` in the config, it is expected them to "
"agree!".format(key)
)
local_args.update(info_from_tensor_fqn)
self.groups.append(local_args)
self._prepare()
def _prepare(self, *args, **kwargs):
r"""Adds mask parametrization to the layer weight
"""
for config in self.groups:
module = config['module']
tensor_name = config['tensor_name']
parametrization = config.get('parametrization', FakeSparsity)
mask = config.get('mask', torch.ones_like(getattr(module, tensor_name)))
self.state[config['tensor_fqn']]['mask'] = mask
parametrize.register_parametrization(module, tensor_name, parametrization(mask))
def squash_mask(self,
params_to_keep: Optional[Tuple[str, ...]] = None,
params_to_keep_per_layer: Optional[Dict[str, Tuple[str, ...]]] = None,
*args, **kwargs):
r"""Squashes the sparse masks into the appropriate tensors.
If either the `params_to_keep` or `params_to_keep_per_layer` is set,
the module will have a `sparse_params` dict attached to it.
Args:
params_to_keep: List of keys to save in the module or a dict
representing the modules and keys that will have
sparsity parameters saved
params_to_keep_per_layer: Dict to specify the params that should be
saved for specific layers. The keys in the dict
should be the module fqn, while the values should
be a list of strings with the names of the variables
to save in the `sparse_params`
Examples:
>>> # xdoctest: +SKIP("locals are undefined")
>>> # Don't save any sparse params
>>> sparsifier.squash_mask()
>>> hasattr(model.submodule1, 'sparse_params')
False
>>> # Keep sparse params per layer
>>> sparsifier.squash_mask(
... params_to_keep_per_layer={
... 'submodule1.linear1': ('foo', 'bar'),
... 'submodule2.linear42': ('baz',)
... })
>>> print(model.submodule1.linear1.sparse_params)
{'foo': 42, 'bar': 24}
>>> print(model.submodule2.linear42.sparse_params)
{'baz': 0.1}
>>> # Keep sparse params for all layers
>>> sparsifier.squash_mask(params_to_keep=('foo', 'bar'))
>>> print(model.submodule1.linear1.sparse_params)
{'foo': 42, 'bar': 24}
>>> print(model.submodule2.linear42.sparse_params)
{'foo': 42, 'bar': 24}
>>> # Keep some sparse params for all layers, and specific ones for
>>> # some other layers
>>> sparsifier.squash_mask(
... params_to_keep=('foo', 'bar'),
... params_to_keep_per_layer={
... 'submodule2.linear42': ('baz',)
... })
>>> print(model.submodule1.linear1.sparse_params)
{'foo': 42, 'bar': 24}
>>> print(model.submodule2.linear42.sparse_params)
{'foo': 42, 'bar': 24, 'baz': 0.1}
"""
for config in self.groups:
module = config['module']
tensor_name = config['tensor_name']
parametrize.remove_parametrizations(module, tensor_name,
leave_parametrized=True)
sparse_params = {}
if params_to_keep is not None:
global_params = {k: config[k] for k in params_to_keep}
sparse_params.update(global_params)
if params_to_keep_per_layer is not None:
params = params_to_keep_per_layer.get(config["module_fqn"], None)
if params is not None:
per_layer_params = {k: config[k] for k in params}
sparse_params.update(per_layer_params)
if sparse_params:
# TODO handle multiple tensor being quantized on a single module, where to store sparse_params?
module.sparse_params = sparse_params
def convert(self):
# TODO: Call the torch.ao.utils.convert in here
raise NotImplementedError(
"`convert` is not implemented. Please, use "
"`torch.ao.utils.convert` instead."
)
def step(self, use_path: bool = True) -> None:
if not self.enable_mask_update:
return
with torch.no_grad():
for config in self.groups:
self.update_mask(**config)
@abc.abstractmethod
def update_mask(self, module: nn.Module, tensor_name: str, **kwargs):
pass
|