1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
import sys
import torch
import functools
import inspect
from typing import Any, Callable, TypeVar, cast
__all__ = ['no_grad', 'enable_grad', 'set_grad_enabled',
'inference_mode']
# Used for annotating the decorator usage of 'no_grad' and 'enable_grad'.
# See https://mypy.readthedocs.io/en/latest/generics.html#declaring-decorators
FuncType = Callable[..., Any]
F = TypeVar('F', bound=FuncType)
class _DecoratorContextManager:
"""Allow a context manager to be used as a decorator"""
def __call__(self, func: F) -> F:
if inspect.isgeneratorfunction(func):
return self._wrap_generator(func)
@functools.wraps(func)
def decorate_context(*args, **kwargs):
with self.clone():
return func(*args, **kwargs)
return cast(F, decorate_context)
def _wrap_generator(self, func):
"""Wrap each generator invocation with the context manager"""
@functools.wraps(func)
def generator_context(*args, **kwargs):
gen = func(*args, **kwargs)
# Generators are suspended and unsuspended at `yield`, hence we
# make sure the grad mode is properly set every time the execution
# flow returns into the wrapped generator and restored when it
# returns through our `yield` to our caller (see PR #49017).
try:
# Issuing `None` to a generator fires it up
with self.clone():
response = gen.send(None)
while True:
try:
# Forward the response to our caller and get its next request
request = yield response
except GeneratorExit:
# Inform the still active generator about its imminent closure
with self.clone():
gen.close()
raise
except BaseException:
# Propagate the exception thrown at us by the caller
with self.clone():
response = gen.throw(*sys.exc_info())
else:
# Pass the last request to the generator and get its response
with self.clone():
response = gen.send(request)
# We let the exceptions raised above by the generator's `.throw` or
# `.send` methods bubble up to our caller, except for StopIteration
except StopIteration as e:
# The generator informed us that it is done: take whatever its
# returned value (if any) was and indicate that we're done too
# by returning it (see docs for python's return-statement).
return e.value
return generator_context
def __enter__(self) -> None:
raise NotImplementedError
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
raise NotImplementedError
def clone(self):
# override this method if your children class takes __init__ parameters
return self.__class__()
class no_grad(_DecoratorContextManager):
r"""Context-manager that disabled gradient calculation.
Disabling gradient calculation is useful for inference, when you are sure
that you will not call :meth:`Tensor.backward()`. It will reduce memory
consumption for computations that would otherwise have `requires_grad=True`.
In this mode, the result of every computation will have
`requires_grad=False`, even when the inputs have `requires_grad=True`.
This context manager is thread local; it will not affect computation
in other threads.
Also functions as a decorator. (Make sure to instantiate with parenthesis.)
.. note::
No-grad is one of several mechanisms that can enable or
disable gradients locally see :ref:`locally-disable-grad-doc` for
more information on how they compare.
.. note::
This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.
If you want to disable forward AD for a computation, you can unpack
your dual tensors.
Example::
>>> # xdoctest: +SKIP
>>> x = torch.tensor([1.], requires_grad=True)
>>> with torch.no_grad():
... y = x * 2
>>> y.requires_grad
False
>>> @torch.no_grad()
... def doubler(x):
... return x * 2
>>> z = doubler(x)
>>> z.requires_grad
False
"""
def __init__(self) -> None:
if not torch._jit_internal.is_scripting():
super().__init__()
self.prev = False
def __enter__(self) -> None:
self.prev = torch.is_grad_enabled()
torch.set_grad_enabled(False)
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
torch.set_grad_enabled(self.prev)
class enable_grad(_DecoratorContextManager):
r"""Context-manager that enables gradient calculation.
Enables gradient calculation, if it has been disabled via :class:`~no_grad`
or :class:`~set_grad_enabled`.
This context manager is thread local; it will not affect computation
in other threads.
Also functions as a decorator. (Make sure to instantiate with parenthesis.)
.. note::
enable_grad is one of several mechanisms that can enable or
disable gradients locally see :ref:`locally-disable-grad-doc` for
more information on how they compare.
.. note::
This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.
Example::
>>> # xdoctest: +SKIP
>>> x = torch.tensor([1.], requires_grad=True)
>>> with torch.no_grad():
... with torch.enable_grad():
... y = x * 2
>>> y.requires_grad
True
>>> y.backward()
>>> x.grad
tensor([2.])
>>> @torch.enable_grad()
... def doubler(x):
... return x * 2
>>> with torch.no_grad():
... z = doubler(x)
>>> z.requires_grad
True
"""
def __enter__(self) -> None:
self.prev = torch.is_grad_enabled()
torch._C._set_grad_enabled(True)
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
torch._C._set_grad_enabled(self.prev)
class set_grad_enabled(_DecoratorContextManager):
r"""Context-manager that sets gradient calculation to on or off.
``set_grad_enabled`` will enable or disable grads based on its argument :attr:`mode`.
It can be used as a context-manager or as a function.
This context manager is thread local; it will not affect computation
in other threads.
Args:
mode (bool): Flag whether to enable grad (``True``), or disable
(``False``). This can be used to conditionally enable
gradients.
.. note::
set_grad_enabled is one of several mechanisms that can enable or
disable gradients locally see :ref:`locally-disable-grad-doc` for
more information on how they compare.
.. note::
This API does not apply to :ref:`forward-mode AD <forward-mode-ad>`.
Example::
>>> # xdoctest: +SKIP
>>> x = torch.tensor([1.], requires_grad=True)
>>> is_train = False
>>> with torch.set_grad_enabled(is_train):
... y = x * 2
>>> y.requires_grad
False
>>> _ = torch.set_grad_enabled(True)
>>> y = x * 2
>>> y.requires_grad
True
>>> _ = torch.set_grad_enabled(False)
>>> y = x * 2
>>> y.requires_grad
False
"""
def __init__(self, mode: bool) -> None:
self.prev = torch.is_grad_enabled()
torch._C._set_grad_enabled(mode)
self.mode = mode
def __enter__(self) -> None:
pass
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
torch._C._set_grad_enabled(self.prev)
def clone(self):
return self.__class__(self.mode)
class inference_mode(_DecoratorContextManager):
r"""Context-manager that enables or disables inference mode
InferenceMode is a new context manager analogous to :class:`~no_grad`
to be used when you are certain your operations will have no interactions
with autograd (e.g., model training). Code run under this mode gets better
performance by disabling view tracking and version counter bumps. Note that
unlike some other mechanisms that locally enable or disable grad,
entering inference_mode also disables to :ref:`forward-mode AD <forward-mode-ad>`.
This context manager is thread local; it will not affect computation
in other threads.
Also functions as a decorator. (Make sure to instantiate with parenthesis.)
.. note::
Inference mode is one of several mechanisms that can enable or
disable gradients locally see :ref:`locally-disable-grad-doc` for
more information on how they compare.
Args:
mode (bool): Flag whether to enable or disable inference mode
Example::
>>> import torch
>>> x = torch.ones(1, 2, 3, requires_grad=True)
>>> with torch.inference_mode():
... y = x * x
>>> y.requires_grad
False
>>> # xdoctest: +SKIP("want string isnt quite right")
>>> y._version
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Inference tensors do not track version counter.
>>> @torch.inference_mode()
... def func(x):
... return x * x
>>> out = func(x)
>>> out.requires_grad
False
"""
def __init__(self, mode=True):
if not torch._jit_internal.is_scripting():
super().__init__()
# Holds a python binding to a RAII guard that can enable or disable
# inference mode
self._inference_mode_raii_guard = None
self.mode = mode
def __enter__(self):
self._inference_mode_raii_guard = torch._C._InferenceMode(self.mode)
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
del self._inference_mode_raii_guard
def clone(self):
return self.__class__(self.mode)
|