File: profiler.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (794 lines) | stat: -rw-r--r-- 33,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
from typing import Any, Dict, List, Optional
from warnings import warn

import torch
import torch.cuda
from torch._C._profiler import _ExperimentalConfig

from torch.autograd import (
    _disable_profiler,
    _enable_profiler,
    _kineto_step,
    _prepare_profiler,
    _ProfilerResult,
    _supported_activities,
    DeviceType,
    kineto_available,
    ProfilerActivity,
    ProfilerConfig,
    ProfilerState,
)
from torch.autograd.profiler_util import (
    _filter_name,
    _filter_stack_entry,
    _rewrite_name,
    EventList,
    FunctionEvent,
    MEMORY_EVENT_NAME,
    MemRecordsAcc,
    OUT_OF_MEMORY_EVENT_NAME,
)
from torch.futures import Future


try:
    # Available in Python >= 3.2
    from contextlib import ContextDecorator
except ImportError:
    import functools

    class ContextDecorator(object):  # type: ignore[no-redef]

        def __enter__(self):
            raise NotImplementedError

        def __exit__(self, exc_type, exc_val, exc_tb):
            raise NotImplementedError

        def __call__(self, func):
            @functools.wraps(func)
            def wrapped(*args, **kwargs):
                with self:
                    return func(*args, **kwargs)

            return wrapped


class profile(object):
    """Context manager that manages autograd profiler state and holds a summary of results.
    Under the hood it just records events of functions being executed in C++ and
    exposes those events to Python. You can wrap any code into it and it will
    only report runtime of PyTorch functions.
    Note: profiler is thread local and is automatically propagated into the async tasks

    Args:
        enabled (bool, optional): Setting this to False makes this context manager a no-op.

        use_cuda (bool, optional): Enables timing of CUDA events as well using the cudaEvent API.
            Adds approximately 4us of overhead to each tensor operation.

        record_shapes (bool, optional): If shapes recording is set, information
            about input dimensions will be collected. This allows one to see which
            dimensions have been used under the hood and further group by them
            using prof.key_averages(group_by_input_shape=True). Please note that
            shape recording might skew your profiling data. It is recommended to
            use separate runs with and without shape recording to validate the timing.
            Most likely the skew will be negligible for bottom most events (in a case
            of nested function calls). But for higher level functions the total
            self cpu time might be artificially increased because of the shape
            collection.

        with_flops (bool, optional): If with_flops is set, the profiler will estimate
            the FLOPs (floating point operations) value using the operator's input shape.
            This allows one to estimate the hardware performance. Currently,
            this option only works for the matrix multiplication and 2D convolution operators.

        profile_memory (bool, optional): track tensor memory allocation/deallocation.

        with_stack (bool, optional): record source information (file and line number) for the ops.

        with_modules (bool): record module hierarchy (including function names)
            corresponding to the callstack of the op. e.g. If module A's forward call's
            module B's forward which contains an aten::add op,
            then aten::add's module hierarchy is A.B
            Note that this support exist, at the moment, only for TorchScript models
            and not eager mode models.

        use_kineto (bool, optional): experimental, enable profiling with Kineto profiler.

        use_cpu (bool, optional): profile CPU events; setting to ``False`` requires
            ``use_kineto=True`` and can be used to lower the overhead for GPU-only profiling.

        experimental_config (_ExperimentalConfig) : A set of experimental options
            used by profiler libraries like Kineto. Note, backward compatibility is not guaranteed.


    .. warning:
        Enabling memory profiling or source attribution incurs additional profiler
        overhead

    .. warning:
        This context managers should not be called recursively, i.e. no nested
        instances are allowed

    .. warning:
        Due to some CUDA multiprocessing limitations (multiprocessing-cuda-note_),
        one cannot use the profiler with ``use_cuda = True`` to benchmark
        DataLoaders with ``num_workers > 0``. If you wish to benchmark data loading,
        please use ``use_cuda = False`` or ``num_workers = 0``.

    Example:
        >>> # xdoctest: +SKIP
        >>> x = torch.randn((1, 1), requires_grad=True)
        >>> with torch.autograd.profiler.profile() as prof:
        >>>     for _ in range(100):  # any normal python code, really!
        >>>         y = x ** 2
        >>>         y.backward()
        >>> # NOTE: some columns were removed for brevity
        >>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
        -----------------------------------  ---------------  ---------------  ---------------
        Name                                 Self CPU total   CPU time avg     Number of Calls
        -----------------------------------  ---------------  ---------------  ---------------
        mul                                  32.048ms         32.048ms         200
        pow                                  27.041ms         27.041ms         200
        PowBackward0                         9.727ms          55.483ms         100
        torch::autograd::AccumulateGrad      9.148ms          9.148ms          100
        torch::autograd::GraphRoot           691.816us        691.816us        100
        -----------------------------------  ---------------  ---------------  ---------------

    """
    def __init__(
            self,
            enabled=True,
            *,
            use_cuda=False,
            record_shapes=False,
            with_flops=False,
            profile_memory=False,
            with_stack=False,
            with_modules=False,
            use_kineto=False,
            use_cpu=True,
            experimental_config=None):
        self.enabled: bool = enabled
        if not self.enabled:
            return
        self.use_cuda = use_cuda
        self.function_events: Optional[EventList] = None
        self.entered = False
        self.record_shapes = record_shapes
        self.with_flops = with_flops
        self.record_shapes |= self.with_flops
        self.profile_memory = profile_memory
        self.with_stack = with_stack
        self.with_modules = with_modules
        self.use_cpu = use_cpu
        if experimental_config is None:
            experimental_config = _ExperimentalConfig()
        self.experimental_config = experimental_config
        self.kineto_results: Optional[_ProfilerResult] = None

        if not self.use_cpu:
            assert use_kineto, \
                "Device-only events supported only with Kineto (use_kineto=True)"

        if self.use_cuda and not torch.cuda.is_available():
            warn("CUDA is not available, disabling CUDA profiling")
            self.use_cuda = False

        self.kineto_activities = set()
        if self.use_cpu:
            self.kineto_activities.add(ProfilerActivity.CPU)

        self.profiler_kind = ProfilerState.KINETO
        if self.use_cuda:
            if (not use_kineto or ProfilerActivity.CUDA not in
                    _supported_activities()):
                assert self.use_cpu, "Legacy CUDA profiling requires use_cpu=True"
                self.profiler_kind = ProfilerState.KINETO_GPU_FALLBACK
            else:
                self.kineto_activities.add(ProfilerActivity.CUDA)

        assert len(self.kineto_activities) > 0, \
            "No activities specified for the profiler"


    def config(self):
        return ProfilerConfig(
            self.profiler_kind,
            self.record_shapes,
            self.profile_memory,
            self.with_stack,
            self.with_flops,
            self.with_modules,
            self.experimental_config)

    def __enter__(self):
        if not self.enabled:
            return
        if self.entered:
            raise RuntimeError("Profiler context manager is not reentrant")
        self._prepare_trace()
        self._start_trace()
        return self

    def _prepare_trace(self):
        self.entered = True
        _prepare_profiler(self.config(), self.kineto_activities)

    def _start_trace(self):
        self.entered = True
        _enable_profiler(self.config(), self.kineto_activities)

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        if self.use_cuda:
            torch.cuda.synchronize()
        self.kineto_results = _disable_profiler()
        parsed_results = self._parse_kineto_results(self.kineto_results)
        self.function_events = EventList(
            parsed_results,
            use_cuda=self.use_cuda,
            profile_memory=self.profile_memory,
            with_flops=self.with_flops)
        self.function_events._build_tree()
        return False

    def __repr__(self):
        if self.function_events is None:
            return '<unfinished torch.autograd.profile>'
        return repr(self.function_events)

    def __str__(self):
        if self.function_events is None:
            return '<unfinished torch.autograd.profile>'
        return str(self.function_events)

    def _check_finish(self):
        if self.function_events is None:
            raise RuntimeError("Profiler didn't finish running")

    def table(
            self,
            sort_by=None,
            row_limit=100,
            max_src_column_width=75,
            max_name_column_width=55,
            max_shapes_column_width=80,
            header=None,
            top_level_events_only=False
    ):
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.table(
            sort_by=sort_by,
            row_limit=row_limit,
            max_src_column_width=max_src_column_width,
            max_name_column_width=max_name_column_width,
            max_shapes_column_width=max_shapes_column_width,
            header=header,
            top_level_events_only=top_level_events_only
        )
    table.__doc__ = EventList.table.__doc__

    def export_chrome_trace(self, path):
        self._check_finish()
        if kineto_available():
            self.kineto_results.save(path)  # type: ignore[union-attr]
        else:
            return self.function_events.export_chrome_trace(path)  # type: ignore[union-attr]
    export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__

    def export_stacks(self, path: str, metric: str = "self_cpu_time_total"):
        self._check_finish()
        assert self.function_events is not None, "Expected profiling results"
        assert self.with_stack, "export_stacks() requires with_stack=True"
        return self.function_events.export_stacks(path, metric)

    def key_averages(self, group_by_input_shape=False, group_by_stack_n=0):
        self._check_finish()
        assert self.function_events is not None, "Expected profiling results"
        return self.function_events.key_averages(group_by_input_shape, group_by_stack_n)
    key_averages.__doc__ = EventList.key_averages.__doc__

    def total_average(self):
        self._check_finish()
        assert self.function_events is not None, "Expected profiling results"
        return self.function_events.total_average()
    total_average.__doc__ = EventList.total_average.__doc__

    @property
    def self_cpu_time_total(self):
        """ Returns total time spent on CPU obtained as a sum of
        all self times across all the events.
        """
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.self_cpu_time_total

    def _parse_kineto_results(self, result):
        # result.events() has most of the events - PyTorch op-level and device-level events

        trace_start_us = result.trace_start_us()
        mem_records = [[evt, False] for evt in result.events() if evt.name() == MEMORY_EVENT_NAME]
        oom_records = [evt for evt in result.events() if evt.name() == OUT_OF_MEMORY_EVENT_NAME]
        mem_records_acc = MemRecordsAcc(mem_records)

        def _cpu_memory_usage(mem_record):
            return mem_record.nbytes() if \
                mem_record.device_type() in [DeviceType.CPU, DeviceType.MKLDNN, DeviceType.IDEEP] \
                else 0

        def _cuda_memory_usage(mem_record):
            return mem_record.nbytes() if \
                mem_record.device_type() in [DeviceType.CUDA, DeviceType.HIP] \
                else 0

        # Create and return FunctionEvent list
        function_events = []
        cuda_corr_map: Dict[int, List[FunctionEvent]] = {}
        max_evt_id = 0
        for kineto_event in result.events():
            if _filter_name(kineto_event.name()):
                continue
            rel_start_us = kineto_event.start_us() - trace_start_us
            rel_end_us = rel_start_us + kineto_event.duration_us()
            abs_end_us = kineto_event.start_us() + kineto_event.duration_us()

            cpu_memory_usage = 0
            cuda_memory_usage = 0
            if kineto_event.device_type() == DeviceType.CPU:
                # find the corresponding memory allocation events
                for mem_record in mem_records_acc.in_interval(kineto_event.start_us(), abs_end_us):
                    cpu_memory_usage += _cpu_memory_usage(mem_record[0])
                    cuda_memory_usage += _cuda_memory_usage(mem_record[0])
                    mem_record[1] = True

            is_async = kineto_event.is_async() or (
                kineto_event.start_thread_id() != kineto_event.end_thread_id()
            )

            fe = FunctionEvent(
                id=kineto_event.correlation_id(),
                name=_rewrite_name(name=kineto_event.name(), with_wildcard=True),
                trace_name=_rewrite_name(name=kineto_event.name(), with_wildcard=False),
                thread=kineto_event.start_thread_id(),
                start_us=rel_start_us,
                end_us=rel_end_us,
                fwd_thread=kineto_event.fwd_thread_id(),
                input_shapes=kineto_event.shapes(),
                stack=[entry for entry in kineto_event.stack() if _filter_stack_entry(entry)],
                scope=kineto_event.scope(),
                cpu_memory_usage=cpu_memory_usage,
                cuda_memory_usage=cuda_memory_usage,
                is_async=is_async,
                sequence_nr=kineto_event.sequence_nr(),
                device_type=kineto_event.device_type(),
                device_index=kineto_event.device_index(),
                flops=kineto_event.flops(),
            )
            max_evt_id = fe.id if fe.id > max_evt_id else max_evt_id
            if fe.device_type == DeviceType.CPU and not fe.is_async:
                # Check if we have CUDA time as a fallback
                cuda_time = kineto_event.cuda_elapsed_us()
                if cuda_time > 0:
                    fe.append_kernel(
                        fe.name,
                        fe.device_index,
                        cuda_time)
                    fe.is_legacy = True
            function_events.append(fe)
            corr_id = kineto_event.linked_correlation_id()
            if corr_id > 0:
                if corr_id not in cuda_corr_map:
                    cuda_corr_map[corr_id] = []
                cuda_corr_map[corr_id].append(fe)

        # associate CUDA kernels and CUDA runtime (CPU) with CPU events
        for fe in function_events:
            if (fe.device_type == DeviceType.CPU and not fe.is_async and
                    fe.id in cuda_corr_map):
                for f_evt in cuda_corr_map[fe.id]:
                    if f_evt.device_type == DeviceType.CUDA:
                        fe.append_kernel(
                            f_evt.name,
                            f_evt.device_index,
                            f_evt.time_range.end - f_evt.time_range.start)
                    elif f_evt.device_type == DeviceType.CPU:
                        # make sure that 'thread' of a CPU Kineto (e.g. CUDA Runtime) event is associated
                        # with the 'thread' of the corresponding linked PyTorch event to properly track
                        # parents and children
                        f_evt.thread = fe.thread


        def createFunctionEventForMemoryEvents(evt):
            rel_start_us = evt.start_us() - trace_start_us
            fe = FunctionEvent(
                id=max_evt_id,
                name=evt.name(),
                trace_name=None,  # not outputting in the trace
                thread=evt.start_thread_id(),
                start_us=rel_start_us,
                end_us=rel_start_us,  # no duration
                fwd_thread=evt.start_thread_id(),
                input_shapes=[],
                stack=[],
                scope=0,  # RecordScope::FUNCTION
                cpu_memory_usage=_cpu_memory_usage(evt),
                cuda_memory_usage=_cuda_memory_usage(evt),
                is_async=False,
                sequence_nr=-1,
                device_type=DeviceType.CPU,
                device_index=0,
            )
            return fe

        # output top-level memory events
        for mem_record in mem_records:
            if not mem_record[1]:
                max_evt_id += 1
                fe = createFunctionEventForMemoryEvents(mem_record[0])
                function_events.append(fe)

        for oom_record in oom_records:
            max_evt_id += 1
            fe = createFunctionEventForMemoryEvents(oom_record)
            function_events.append(fe)

        function_events.sort(key=lambda evt: [evt.time_range.start, -evt.time_range.end])
        return function_events


class record_function(ContextDecorator):
    """Context manager/function decorator that adds a label to a block of
    Python code (or function) when running autograd profiler. It is
    useful when tracing the code profile.

    Args:
        name (str): Label assigned to the block of code.
        node_id (int): ID of node, for distributed profiling. Unset in
        non-distributed cases.

    Example:
        >>> x = torch.randn((1, 1), requires_grad=True)
        >>> with torch.autograd.profiler.profile() as prof:
        ...     y = x ** 2
        ...     with torch.autograd.profiler.record_function("label-z"): # label the block
        ...         z = y ** 3
        ...     y.backward()
        ...
        >>> # xdoctest: +IGNORE_WANT
        >>> # NOTE: some columns were removed for brevity
        >>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
        -----------------------------------  ---------------  ---------------  ---------------
        Name                                 Self CPU total %  CPU time avg     Number of Calls
        -----------------------------------  ---------------  ---------------  ---------------
        pow                                  60.77%           47.470us         3
        mul                                  21.73%           25.465us         2
        PowBackward0                         12.03%           121.891us        1
        torch::autograd::AccumulateGrad      2.70%            6.324us          1
        label-z                              2.13%            12.421us         1
        torch::autograd::GraphRoot           0.64%            1.503us          1
        -----------------------------------  ---------------  ---------------  ---------------
        Self CPU time total: 234.344us
        CUDA time total: 0.000us

    """
    def __init__(self, name: str, args: Optional[str] = None):
        self.name: str = name
        self.args: Optional[str] = args
        # Whether or not we should run record function's end callbacks when exiting.
        self.run_callbacks_on_exit: bool = True
        # Stores underlying RecordFunction as a tensor. TODO: move to custom
        # class (https://github.com/pytorch/pytorch/issues/35026).
        self.handle: torch.Tensor = torch.zeros(1)

    def __enter__(self):
        self.handle = torch.ops.profiler._record_function_enter(self.name, self.args)
        return self

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any):
        if self.run_callbacks_on_exit:
            torch.ops.profiler._record_function_exit(self.handle)

    def _call_end_callbacks_on_future(self, fut: Future[Any]) -> Future[Any]:
        """
        _call_end_callbacks_on_future is meant to be used for profiling async
        calls that return a future. Calling this function will extend recording
        beyond this scope, until the future is satisfied. It is useful for profiling
        the end to end time of asynchronous calls. This function should only be called
        once to attach the callback onto the future, and will throw if called multiple
        times.

        Args:
            fut: (torch._C.Future): future for which to schedule
            callback for.

        Returns:
            A future that completes with the value of the passed in future when
            the profiling callbacks have ran.

        """
        # Throw if we have already attached a callback onto the future.
        if not self.run_callbacks_on_exit:
            raise RuntimeError("_call_end_callbacks_on_future can only be called once.")

        # We are scheduling to run this RecordFunction's end callbacks when the
        # passed in future completes, so don't run end callbacks on exit.
        self.run_callbacks_on_exit = False
        profiled_future = torch.ops.profiler._call_end_callbacks_on_jit_fut(self.handle, fut)
        return profiled_future


class emit_itt(object):
    """Context manager that makes every autograd operation emit an ITT range.

    It is useful when running the program under Intel(R) VTune Profiler::

        vtune <--vtune_flags> <regular command here>

    The Instrumentation and Tracing Technology (ITT) API enables your application to generate and
    control the collection of trace data during its execution across different Intel tools.
    This context manager is to annotate Intel(R) VTune Profiling trace. With help of this context manager,
    you will be able to see labled ranges in Intel(R) VTune Profiler GUI.

    .. warning:
        This context manager should not be called recursively, i.e. at most one
        instance should be enabled at any given time.

    Args:
        enabled (bool, optional): Setting ``enabled=False`` makes this context manager a no-op.
            Default: ``True``.
        record_shapes (bool, optional): If ``record_shapes=True``, the itt range wrapping
            each autograd op will append information about the sizes of Tensor arguments received
            by that op, in the following format:
            ``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
            Non-tensor arguments will be represented by ``[]``.
            Arguments will be listed in the order they are received by the backend op.
            Please note that this order may not match the order in which those arguments were passed
            on the Python side.  Also note that shape recording may increase the overhead of itt range creation.
            Default: ``False``

    Example:
        >>> # xdoctest: +SKIP("Undefined variables")
        >>> with torch.autograd.profiler.emit_itt():
        ...     model(x)

    """
    def __init__(self, enabled=True, record_shapes=False):
        self.enabled = enabled
        self.entered = False
        self.record_shapes = record_shapes

    def __enter__(self):
        if not self.enabled:
            return
        if self.entered:
            raise RuntimeError("ITT annotation context manager is not reentrant")
        self.entered = True
        _enable_profiler(
            ProfilerConfig(
                ProfilerState.ITT,
                self.record_shapes,
                False,
                False,
                False,
                False,
                _ExperimentalConfig()),
            set()
        )
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        _disable_profiler()
        return False


class emit_nvtx(object):
    """Context manager that makes every autograd operation emit an NVTX range.

    It is useful when running the program under nvprof::

        nvprof --profile-from-start off -o trace_name.prof -- <regular command here>

    Unfortunately, there's no way to force nvprof to flush the data it collected
    to disk, so for CUDA profiling one has to use this context manager to annotate
    nvprof traces and wait for the process to exit before inspecting them.
    Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or
    :func:`torch.autograd.profiler.load_nvprof` can load the results for inspection
    e.g. in Python REPL.

    .. warning:
        This context manager should not be called recursively, i.e. at most one
        instance should be enabled at any given time.

    Args:
        enabled (bool, optional): Setting ``enabled=False`` makes this context manager a no-op.
            Default: ``True``.
        record_shapes (bool, optional): If ``record_shapes=True``, the nvtx range wrapping
            each autograd op will append information about the sizes of Tensor arguments received
            by that op, in the following format:
            ``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
            Non-tensor arguments will be represented by ``[]``.
            Arguments will be listed in the order they are received by the backend op.
            Please note that this order may not match the order in which those arguments were passed
            on the Python side.  Also note that shape recording may increase the overhead of nvtx range creation.
            Default: ``False``

    Example:
        >>> # xdoctest: +SKIP("undefined variables")
        >>> with torch.cuda.profiler.profile():
        ...     model(x) # Warmup CUDA memory allocator and profiler
        ...     with torch.autograd.profiler.emit_nvtx():
        ...         model(x)

    **Forward-backward correlation**

    When viewing a profile created using :class:`emit_nvtx` in the Nvidia Visual Profiler,
    correlating each backward-pass op with the corresponding forward-pass op can be difficult.
    To ease this task, :class:`emit_nvtx` appends sequence number information to the ranges it
    generates.

    During the forward pass, each function range is decorated with ``seq=<N>``.  ``seq`` is a running
    counter, incremented each time a new backward Function object is created and stashed for backward.
    Thus, the ``seq=<N>`` annotation associated with each forward function range tells you that
    if a backward Function object is created by this forward function,
    the backward object will receive sequence number N.
    During the backward pass, the top-level range wrapping each C++ backward Function's
    ``apply()`` call is decorated with ``stashed seq=<M>``.  ``M`` is the sequence number that
    the backward object was created with.  By comparing ``stashed seq`` numbers in backward with ``seq``
    numbers in forward, you can track down which forward op created each backward Function.

    Any functions executed during the backward pass are also decorated with ``seq=<N>``.  During
    default backward (with ``create_graph=False``) this information is irrelevant, and in fact,
    ``N`` may simply be 0 for all such functions.  Only the top-level ranges associated with
    backward Function objects' ``apply()`` methods are useful, as a way to correlate these Function
    objects with the earlier forward pass.

    **Double-backward**

    If, on the other hand, a backward pass with ``create_graph=True`` is underway (in other words,
    if you are setting up for a double-backward), each function's execution during backward
    is given a nonzero, useful ``seq=<N>``.  Those functions may themselves create Function objects
    to be executed later during double-backward, just as the original functions in the forward pass did.
    The relationship between backward and double-backward is conceptually the same as the relationship
    between forward and backward: The functions still emit current-sequence-number-tagged ranges,
    the Function objects they create still stash those sequence numbers, and during the eventual
    double-backward, the Function objects' ``apply()`` ranges are still tagged with ``stashed seq``
    numbers, which can be compared to `seq` numbers from the backward pass.

    .. warning:
        The sequence number is thread-local, and some forward functions don't create an associated
        backward Function object (instead delegating that to sub-functions further down the call chain).
        For these reasons, the correspondence of stashed sequence numbers in
        backward Function ``apply()`` ranges with `seq` numbers in forward-pass ranges is
        not guaranteed to be 1 to 1.  The sequence numbers alone may not be enough to fully
        disambiguate which forward function created which
        backward Function object.  You may need to make a judgment based on analytic knowledge of what
        the expected correspondence should be.
    """
    def __init__(self, enabled=True, record_shapes=False):
        self.enabled = enabled
        self.entered = False
        self.record_shapes = record_shapes

    def __enter__(self):
        if not self.enabled:
            return
        if self.entered:
            raise RuntimeError("NVTX annotation context manager is not reentrant")
        self.entered = True
        torch.cuda.synchronize()
        _enable_profiler(
            ProfilerConfig(
                ProfilerState.NVTX,
                self.record_shapes,
                False,
                False,
                False,
                False,
                _ExperimentalConfig()),
            set()
        )
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        torch.cuda.synchronize()
        _disable_profiler()
        return False


def load_nvprof(path):
    """Opens an nvprof trace file and parses autograd annotations.

    Args:
        path (str): path to nvprof trace
    """
    return EventList(parse_nvprof_trace(path))


class EnforceUnique(object):
    """Raises an error if a key is seen more than once."""
    def __init__(self):
        self.seen = set()

    def see(self, *key):
        if key in self.seen:
            raise RuntimeError('duplicate key: ' + str(key))
        self.seen.add(key)


def parse_nvprof_trace(path):
    import sqlite3
    conn = sqlite3.connect(path)
    conn.row_factory = sqlite3.Row

    # Parse strings table
    strings = {}
    for r in conn.execute("SELECT _id_ as id, value FROM StringTable"):
        strings[r["id"]] = torch._C._demangle(r["value"])

    # First, find all functions and create FunctionEvents for them
    marker_query = """
    SELECT
        start.id AS marker_id, start.name, start.timestamp AS start_time, end.timestamp AS end_time
    FROM
        CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
        ON start.id = end.id
    WHERE
        start.name != 0 AND end.name = 0
    """
    functions = []
    functions_map = {}
    unique = EnforceUnique()
    for row in conn.execute(marker_query):
        unique.see(row['marker_id'])
        evt = FunctionEvent(id=row['marker_id'],
                            node_id=0,  # missing a node_id when calling FunctionEvent. This is just to ensure
                                        # that pytorch doesn't crash when creating a FunctionEvent() object
                            name=strings[row['name']],
                            start_us=row['start_time'],
                            end_us=row['end_time'],
                            thread=0)  # TODO: find in sqlite database
        functions.append(evt)
        functions_map[evt.id] = evt

    # Now, correlate all kernels with FunctionEvents
    kernel_query = """
    SELECT
        start.id AS marker_id, start.name, start.timestamp, end.timestamp,
        runtime._id_ AS runtime_id, runtime.cbid, runtime.start AS runtime_start, runtime.end AS runtime_end,
        kernel.start AS kernel_start, kernel.end AS kernel_end, kernel.name AS kernel_name
    FROM
        CUPTI_ACTIVITY_KIND_MARKER AS start
        INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
            ON start.id = end.id
        INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as runtime
            ON (start.timestamp < runtime.start AND runtime.end < end.timestamp)
        INNER JOIN CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL AS kernel
            ON kernel.correlationId = runtime.correlationId
    """
    unique = EnforceUnique()
    for row in conn.execute(kernel_query):
        unique.see(row['marker_id'], row['runtime_id'])
        # 211 is cudaKernelLaunch for cuda >= 9.2
        assert (row['cbid'] == 211)
        evt = functions_map[row['marker_id']]
        evt.append_kernel(row['kernel_name'],
                          0,
                          row['kernel_end'] - row['kernel_start'])

    functions.sort(key=lambda evt: evt.time_range.start)
    return functions


def kineto_step():
    """ Notify kineto so it is aware of iteration boundaries for asynchronous
        trace requests.
    """
    _kineto_step()