File: __init__.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (223 lines) | stat: -rw-r--r-- 8,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import sys
import torch
import contextlib

from typing import Union

__all__ = ["is_built", "cuFFTPlanCacheAttrContextProp", "cuFFTPlanCache", "cuFFTPlanCacheManager",
           "cuBLASModule", "preferred_linalg_library", "cufft_plan_cache", "matmul", "enable_flash_sdp",
           "flash_sdp_enabled", "math_sdp_enabled", "enable_math_sdp", "sdp_kernel"]

def is_built():
    r"""Returns whether PyTorch is built with CUDA support.  Note that this
    doesn't necessarily mean CUDA is available; just that if this PyTorch
    binary were run a machine with working CUDA drivers and devices, we
    would be able to use it."""
    return torch._C.has_cuda


class cuFFTPlanCacheAttrContextProp(object):
    # Like regular ContextProp, but uses the `.device_index` attribute from the
    # calling object as the first argument to the getter and setter.
    def __init__(self, getter, setter):
        self.getter = getter
        self.setter = setter

    def __get__(self, obj, objtype):
        return self.getter(obj.device_index)

    def __set__(self, obj, val):
        if isinstance(self.setter, str):
            raise RuntimeError(self.setter)
        self.setter(obj.device_index, val)


class cuFFTPlanCache(object):
    r"""
    Represents a specific plan cache for a specific `device_index`. The
    attributes `size` and `max_size`, and method `clear`, can fetch and/ or
    change properties of the C++ cuFFT plan cache.
    """
    def __init__(self, device_index):
        self.device_index = device_index

    size = cuFFTPlanCacheAttrContextProp(
        torch._cufft_get_plan_cache_size,
        '.size is a read-only property showing the number of plans currently in the '
        'cache. To change the cache capacity, set cufft_plan_cache.max_size.')

    max_size = cuFFTPlanCacheAttrContextProp(torch._cufft_get_plan_cache_max_size,
                                             torch._cufft_set_plan_cache_max_size)

    def clear(self):
        return torch._cufft_clear_plan_cache(self.device_index)


class cuFFTPlanCacheManager(object):
    r"""
    Represents all cuFFT plan caches. When indexed with a device object/index,
    this object returns the `cuFFTPlanCache` corresponding to that device.

    Finally, this object, when used directly as a `cuFFTPlanCache` object (e.g.,
    setting the `.max_size`) attribute, the current device's cuFFT plan cache is
    used.
    """

    __initialized = False

    def __init__(self):
        self.caches = []
        self.__initialized = True

    def __getitem__(self, device):
        index = torch.cuda._utils._get_device_index(device)
        if index < 0 or index >= torch.cuda.device_count():
            raise RuntimeError(
                ("cufft_plan_cache: expected 0 <= device index < {}, but got "
                 "device with index {}").format(torch.cuda.device_count(), index))
        if len(self.caches) == 0:
            self.caches.extend(cuFFTPlanCache(index) for index in range(torch.cuda.device_count()))
        return self.caches[index]

    def __getattr__(self, name):
        return getattr(self[torch.cuda.current_device()], name)

    def __setattr__(self, name, value):
        if self.__initialized:
            return setattr(self[torch.cuda.current_device()], name, value)
        else:
            return super(cuFFTPlanCacheManager, self).__setattr__(name, value)


class cuBLASModule:
    def __getattr__(self, name):
        if name == "allow_tf32":
            return torch._C._get_cublas_allow_tf32()
        elif name == "allow_fp16_reduced_precision_reduction":
            return torch._C._get_cublas_allow_fp16_reduced_precision_reduction()
        raise AssertionError("Unknown attribute " + name)

    def __setattr__(self, name, value):
        if name == "allow_tf32":
            return torch._C._set_cublas_allow_tf32(value)
        elif name == "allow_fp16_reduced_precision_reduction":
            return torch._C._set_cublas_allow_fp16_reduced_precision_reduction(value)
        raise AssertionError("Unknown attribute " + name)

_LinalgBackends = {
    'default': torch._C._LinalgBackend.Default,
    'cusolver': torch._C._LinalgBackend.Cusolver,
    'magma': torch._C._LinalgBackend.Magma,
}
_LinalgBackends_str = ', '.join(_LinalgBackends.keys())

def preferred_linalg_library(backend: Union[None, str, torch._C._LinalgBackend] = None) -> torch._C._LinalgBackend:
    r'''
    .. warning:: This flag is experimental and subject to change.

    When PyTorch runs a CUDA linear algebra operation it often uses the cuSOLVER or MAGMA libraries,
    and if both are available it decides which to use with a heuristic.
    This flag (a :class:`str`) allows overriding those heuristics.

    * If `"cusolver"` is set then cuSOLVER will be used wherever possible.
    * If `"magma"` is set then MAGMA will be used wherever possible.
    * If `"default"` (the default) is set then heuristics will be used to pick between
      cuSOLVER and MAGMA if both are available.
    * When no input is given, this function returns the currently preferred library.

    Note: When a library is preferred other libraries may still be used if the preferred library
    doesn't implement the operation(s) called.
    This flag may achieve better performance if PyTorch's heuristic library selection is incorrect
    for your application's inputs.

    Currently supported linalg operators:

    * :func:`torch.linalg.inv`
    * :func:`torch.linalg.inv_ex`
    * :func:`torch.linalg.cholesky`
    * :func:`torch.linalg.cholesky_ex`
    * :func:`torch.cholesky_solve`
    * :func:`torch.cholesky_inverse`
    * :func:`torch.linalg.lu_factor`
    * :func:`torch.linalg.lu`
    * :func:`torch.linalg.lu_solve`
    * :func:`torch.linalg.qr`
    * :func:`torch.linalg.eigh`
    * :func:`torch.linalg.eighvals`
    * :func:`torch.linalg.svd`
    * :func:`torch.linalg.svdvals`
    '''

    if backend is None:
        pass
    elif isinstance(backend, str):
        if backend not in _LinalgBackends:
            raise RuntimeError("Unknown input value. "
                               f"Choose from: {_LinalgBackends_str}.")
        torch._C._set_linalg_preferred_backend(_LinalgBackends[backend])
    elif isinstance(backend, torch._C._LinalgBackend):
        torch._C._set_linalg_preferred_backend(backend)
    else:
        raise RuntimeError("Unknown input value type.")

    return torch._C._get_linalg_preferred_backend()


def flash_sdp_enabled():
    r"""
    .. warning:: This flag is experimental and subject to change.

    Returns whether flash sdp is enabled or not.
    """
    return torch._C._get_flash_sdp_enabled()


def enable_flash_sdp(enabled: bool):
    r"""
    .. warning:: This flag is experimental and subject to change.

    Enables or disables flash sdp.
    """
    torch._C._set_sdp_use_flash(enabled)


def math_sdp_enabled():
    r"""
    .. warning:: This flag is experimental and subject to change.

    Returns whether math sdp is enabled or not.
    """
    return torch._C._get_math_sdp_enabled()


def enable_math_sdp(enabled: bool):
    r"""
    .. warning:: This flag is experimental and subject to change.

    Enables or disables math sdp.
    """
    torch._C._set_sdp_use_math(enabled)


@contextlib.contextmanager
def sdp_kernel(enable_flash: bool = True, enable_math: bool = True):
    r"""
    .. warning:: This flag is experimental and subject to change.

    This context manager can be used to temporarily enable or disable flash sdp and math sdp.
    Upon exiting the context manager, the previous state of the flags will be restored.
    """
    previous_flash: bool = flash_sdp_enabled()
    previous_math: bool = math_sdp_enabled()
    try:
        enable_flash_sdp(enable_flash)
        enable_math_sdp(enable_math)
        yield{}
    except RuntimeError as err:
        raise err
    finally:
        enable_flash_sdp(previous_flash)
        enable_math_sdp(previous_math)

cufft_plan_cache = cuFFTPlanCacheManager()
matmul = cuBLASModule()