File: Dtype.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (154 lines) | stat: -rw-r--r-- 4,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include <torch/csrc/Dtype.h>

#include <structmember.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_dtypes.h>
#include <torch/csrc/utils/tensor_types.h>
#include <cstring>

#include <torch/csrc/Exceptions.h>

PyObject* THPDtype_New(at::ScalarType scalar_type, const std::string& name) {
  AT_ASSERT(name.length() < DTYPE_NAME_LEN);
  auto type = (PyTypeObject*)&THPDtypeType;
  auto self = THPObjectPtr{type->tp_alloc(type, 0)};
  if (!self)
    throw python_error();
  auto self_ = reinterpret_cast<THPDtype*>(self.get());
  self_->scalar_type = scalar_type;
  std::strncpy(self_->name, name.c_str(), DTYPE_NAME_LEN);
  return self.release();
}

PyObject* THPDtype_is_floating_point(THPDtype* self, PyObject* noargs) {
  if (at::isFloatingType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

PyObject* THPDtype_is_complex(THPDtype* self, PyObject* noargs) {
  if (at::isComplexType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

PyObject* THPDtype_is_signed(THPDtype* self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  if (at::isSignedType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

PyObject* THPDtype_reduce(PyObject* _self, PyObject* noargs) {
  /*
   * For singletons, a string is returned. The string should be interpreted
   * as the name of a global variable.
   */
  auto self = (THPDtype*)_self;
  return THPUtils_packString(self->name);
}

typedef PyObject* (*getter)(PyObject*, void*);

// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static struct PyGetSetDef THPDtype_properties[] = {
    {"is_floating_point",
     (getter)THPDtype_is_floating_point,
     nullptr,
     nullptr,
     nullptr},
    {"is_complex", (getter)THPDtype_is_complex, nullptr, nullptr, nullptr},
    {"is_signed", (getter)THPDtype_is_signed, nullptr, nullptr, nullptr},
    {nullptr}};

// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
static PyMethodDef THPDtype_methods[] = {
    {"__reduce__", THPDtype_reduce, METH_NOARGS, nullptr},
    {nullptr} /* Sentinel */
};

PyObject* THPDtype_repr(THPDtype* self) {
  std::string name = self->name;
  return THPUtils_packString("torch." + name);
}

PyTypeObject THPDtypeType = {
    PyVarObject_HEAD_INIT(nullptr, 0) "torch.dtype", /* tp_name */
    sizeof(THPDtype), /* tp_basicsize */
    0, /* tp_itemsize */
    nullptr, /* tp_dealloc */
    0, /* tp_vectorcall_offset */
    nullptr, /* tp_getattr */
    nullptr, /* tp_setattr */
    nullptr, /* tp_reserved */
    (reprfunc)THPDtype_repr, /* tp_repr */
    nullptr, /* tp_as_number */
    nullptr, /* tp_as_sequence */
    nullptr, /* tp_as_mapping */
    nullptr, /* tp_hash  */
    nullptr, /* tp_call */
    nullptr, /* tp_str */
    nullptr, /* tp_getattro */
    nullptr, /* tp_setattro */
    nullptr, /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT, /* tp_flags */
    nullptr, /* tp_doc */
    nullptr, /* tp_traverse */
    nullptr, /* tp_clear */
    nullptr, /* tp_richcompare */
    0, /* tp_weaklistoffset */
    nullptr, /* tp_iter */
    nullptr, /* tp_iternext */
    THPDtype_methods, /* tp_methods */
    nullptr, /* tp_members */
    THPDtype_properties, /* tp_getset */
    nullptr, /* tp_base */
    nullptr, /* tp_dict */
    nullptr, /* tp_descr_get */
    nullptr, /* tp_descr_set */
    0, /* tp_dictoffset */
    nullptr, /* tp_init */
    nullptr, /* tp_alloc */
    nullptr, /* tp_new */
};

void THPDtype_init(PyObject* module) {
  // Set a __dict__ with `__module__` = `torch`. This means
  // `__module__` value will be inherited by instances
  // (i.e. `torch.float32.__module__ == "torch"`). This will prevent
  // Pickle from having to search all of sys.modules in order to find
  // the module when pickling a dtype instance.
  //
  // We have to do this in C++ because extension types are not mutable
  // from Python code.
  //
  // See https://github.com/pytorch/pytorch/issues/65077
  TORCH_INTERNAL_ASSERT(THPDtypeType.tp_dict == nullptr);
  auto dict = THPObjectPtr(PyDict_New());
  if (!dict)
    throw python_error();
  auto torch = THPUtils_packString("torch");
  if (!torch)
    throw python_error();
  if (PyDict_SetItemString(dict, "__module__", torch) < 0) {
    throw python_error();
  }
  THPDtypeType.tp_dict = dict.release();

  if (PyType_Ready(&THPDtypeType) < 0) {
    throw python_error();
  }
  Py_INCREF(&THPDtypeType);
  if (PyModule_AddObject(module, "dtype", (PyObject*)&THPDtypeType) != 0) {
    throw python_error();
  }
}