1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <c10/util/irange.h>
#include <torch/csrc/autograd/variable.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/_has_same_storage_numel.h>
#include <ATen/ops/_new_zeros_with_same_feature_meta.h>
#include <ATen/ops/zeros.h>
#endif
namespace torch {
namespace autograd {
using at::Tensor;
// [Forward Grad View/inplace]
// It is important to us to allow view and inplace to work with dual Tensors.
// These operations should either compute the right gradient or raise a
// user-friendly error.
// The basic case where all Tensors are dual Tensors is as follows:
// # Have:
// # foo is a dual Tensor that is not a view
// # bar is a dual Tensor of appropriate size (depending on cases) that is
// not a view
//
// # Case 1: no view
// foo.copy_(bar)
//
// # Case 2: with view, propagate from view to base
// view = foo[0]
// view.copy_(bar)
//
// # Case 3: with view, propagate from base to view
// view = foo[0]
// foo.copy_(bar)
//
// # In both cases, the forward grad of foo must be properly updated.
// # In the second and third cases, the forward grad of view must match
// # the one of foo for the subset they have in common.
//
// All these cases can be handled by the following layout constraint on the
// forward grad:
// - A Tensor and its forward grad (for all levels) must have the same
// metadata (size, stride
// conj/neg bit and storage offset). Storage offset must be in this metadata
// because of as_strided. conj/neg bit must be part of this metadata because
// of ops like `real`.
// - View operations must create a forward grad that is a view of the base's
// forward grad.
// - Inplace operations must modify the input's forward grad inplace.
//
// This layout constraint is ensured in the `set_fw_grad` function below
// More complex cases arrise when non-dual Tensor interact with dual Tensors.
// The two most important cases are:
//
// # Have:
// # foo is a regular Tensor that is not a view
// # bar is a dual Tensor of appropriate size (depending on cases) that is
// not a view
//
// # Case 4: Changes on the view must propagate to its base
// view = foo[0]
// # view is still a regular Tensor here
// view.copy_(bar)
// # Now both view and foo are dual Tensor with appropriate forward grad
//
// # Case 5: Changes on the base must propagate on all its views
// view = foo[0]
// # view is still a regular Tensor here
// base.copy_(bar)
// # Now both view and foo are dual Tensor with appropriate forward grad
//
// # NB there is a case 6 involving changes on a view propagating to other
// views # but it is fully described by the two others and is skipped in
// this discussion.
//
// Case 4 is handled by set_fw_grad by properly setting the forward grad of the
// base if needed. Case 5 is handled in fw_grad by reading the forward grad from
// the base if needed.
namespace {
// Enforcing that the metadata between the primal and tangent are same has two
// goals:
// - When properties of the primal are checked in composite op's to determine
// control flow, the code path decided upon is also reasonable for the tangent
// - Make sure that when the same as_strided is applied to both primal and
// and tangent, it behaves similarly.
//
// We do that by checking:
// 1) the storages have same properties: size and conj/neg-ness
// 2) the same indices refer to the same elements in storage
// (we are more strict than necessary here to satisfy the goal 1)
bool has_same_meta(const Variable& base, const Variable& other) {
if (!base.defined() || !other.defined()) {
return false;
}
// 1) The storages have the same properties
if (!at::_has_same_storage_numel(base, other)) {
return false;
}
if (base.is_conj() != other.is_conj() || base.is_neg() != other.is_neg()) {
return false;
}
// Technically dim and size belong as part of (2), so we shouldn't really care
// if a zero-numel tensor violates these. But since these properties
// (unlike offset and strides) often determine control flow in composite ops
// it is useful to enforce that they match for primal and tangent here so
// nothing funny happens later (See goal 1).
if (base.dim() != other.dim()) {
return false;
}
for (const auto i : c10::irange(base.dim())) {
if (base.sizes()[i] != other.sizes()[i]) {
return false;
}
}
// The check below will always be vacuously true for 0-element tensors
if (base.numel() == 0 && other.numel() == 0) {
return true;
}
// 2) The same indices refer to the same elements in storage
if (base.storage_offset() != other.storage_offset()) {
return false;
}
for (const auto i : c10::irange(base.dim())) {
if (base.strides()[i] != other.strides()[i] && base.sizes()[i] != 1 &&
base.sizes()[i] != 0) {
return false;
}
}
return true;
}
} // anonymous namespace
// This function is will ensure that the fw_grad_ is properly a view of the base
// for inplace ops on Tensors that do not have forward grad originally.
void AutogradMeta::set_fw_grad(
const at::TensorBase& new_grad_base,
const at::TensorBase& self_base,
uint64_t level,
bool is_inplace_op) {
TORCH_CHECK(
!new_grad_base._fw_grad(level).defined(),
"Setting a forward grad that "
"itself has a forward gradient at the same level",
level,
" is not supported.");
TORCH_INTERNAL_ASSERT(
(new_grad_base.is_floating_point() || new_grad_base.is_complex()) &&
(self_base.is_floating_point() || self_base.is_complex()),
"Expected both tensor and its forward grad to be floating point or complex");
// Lazy initialization
{
std::lock_guard<std::mutex> lock(mutex_);
if (!fw_grad_) {
fw_grad_ = std::make_shared<ForwardGrad>();
}
}
if (fw_grad_->contains(level)) {
// Setting the forward grad again is only allowed if it is a no-op.
// We do allow this case to simplify writing codegen for inplace ops.
TORCH_INTERNAL_ASSERT(
new_grad_base.defined(),
"Cannot set a forward grad that is an undefined Tensor. Use "
"_fw_primal(level) to get a new Tensor with this forward grad unset.");
TORCH_INTERNAL_ASSERT(
is_inplace_op,
"Only inplace operations can re-set the forward grad of a Tensor that "
"already has one.");
TORCH_INTERNAL_ASSERT(
fw_grad_->value(level).is_same(new_grad_base),
"Cannot set a value of a forward grad if it "
"already exists. Inplace operations should modify it inplace.");
} else {
// TODO(alband) remove this spurious version counter bump
Tensor new_grad(new_grad_base);
at::OptionalTensorRef self_ref(self_base);
const Tensor& self = *self_ref;
TORCH_CHECK(
self.is_same_size(new_grad),
"Trying to set a forward gradient that has a different size than that "
"of the original Tensor, this is not supported. Tensor is of size ",
self.sizes(),
" while the given "
"forward gradient is of size ",
new_grad.sizes(),
".");
if (is_inplace_op && is_view_) {
auto this_view_meta = static_cast<DifferentiableViewMeta*>(this);
// For inplace ops on a Tensor that does not already have a forward grad
// and is a view, we propagate the tangent to the base and ensure that the
// new_grad is a view of that base's tangent. This ensure that case 4 from
// [Forward Grad View/inplace] above works fine What happens in this long
// if statement is:
// - Check if the base already has a grad
// - If not, set a new fw_grad for it full of zeros
// - Take a view of the base's forward grad
// - Copy the given new_grad into this view
// - Use this view as the new new_grad
if (this_view_meta->has_fw_view()) {
auto view_info = this_view_meta->get_forward_view();
auto& base = view_info.base_;
if (!base._fw_grad(level).defined()) {
// Enforce same meta here to make sure that the view op below is
// always valid
Tensor new_base_fw_grad;
if (has_same_meta(new_grad, base) && has_same_meta(new_grad, self)) {
// TODO extend this special case to when the underlying storage of
// new_grad can be re-used.
new_base_fw_grad = new_grad;
} else {
new_base_fw_grad =
at::_new_zeros_with_same_feature_meta(new_grad, base);
new_base_fw_grad._set_conj(base.is_conj());
new_base_fw_grad._set_neg(base.is_neg());
// Update new_grad to be a view of the base
Tensor new_fw_grad_value;
if (view_info.has_view_fn()) {
new_fw_grad_value = view_info.view_fn()(new_base_fw_grad);
} else {
new_fw_grad_value = new_base_fw_grad.as_strided(
self.sizes(), self.strides(), self.storage_offset());
}
new_fw_grad_value.copy_(new_grad);
new_grad = new_fw_grad_value;
}
base._set_fw_grad(new_base_fw_grad, level, /* is_inplace_op */ false);
}
}
}
// Enforce the basic layout constraint
if (!has_same_meta(new_grad, self)) {
if (is_view_) {
auto this_view_meta = static_cast<DifferentiableViewMeta*>(this);
TORCH_INTERNAL_ASSERT(
!this_view_meta->has_fw_view(),
"Expected the output of forward differentiable view operations to have the tangent have the same layout as primal")
}
auto res = at::_new_zeros_with_same_feature_meta(new_grad, self);
res._set_conj(self.is_conj());
res._set_neg(self.is_neg());
res.copy_(new_grad);
new_grad = res;
}
fw_grad_->set_value(new_grad, level);
}
}
const Variable& AutogradMeta::fw_grad(
uint64_t level,
const at::TensorBase& self) const {
// TLS that disables forward AD
// This is only used for custom Function implementation
if (!c10::AutogradState::get_tls_state().get_fw_grad_mode()) {
return ForwardGrad::undef_grad();
}
// Ensure that concurent fw_grad() "reads" are thread safe
std::lock_guard<std::mutex> lock(mutex_);
const auto& direct_fw_grad =
fw_grad_ ? fw_grad_->value(level) : ForwardGrad::undef_grad();
if (!direct_fw_grad.defined() && is_view_) {
// For view that don't have a forward grad, check if their base has one that
// has been defined by an inplace operation.
// This ensure that case 5 from [Forward Grad View/inplace] above works fine
auto const_view_meta =
static_cast<const torch::autograd::DifferentiableViewMeta*>(this);
// This is ok to do as we ONLY modify fw_grad_ and this field is properly
// locked in all methods
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto this_view_meta =
const_cast<torch::autograd::DifferentiableViewMeta*>(const_view_meta);
if (this_view_meta->has_fw_view()) {
const auto& view_info = this_view_meta->get_forward_view();
const auto& base = view_info.base_;
const auto& base_val = base._fw_grad(level);
if (base_val.defined()) {
// Lazy initialization of fw_grad_
this_view_meta->fw_grad_ = std::make_shared<ForwardGrad>();
Variable new_val;
if (view_info.has_view_fn()) {
new_val = view_info.view_fn()(base_val);
} else {
new_val = base_val.as_strided(
self.sizes(), self.strides(), self.storage_offset());
}
this_view_meta->fw_grad_->set_value(new_val, level);
return this_view_meta->fw_grad_->value(level);
}
}
}
return direct_fw_grad;
}
} // namespace autograd
} // namespace torch
|