1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
#include <torch/csrc/autograd/autograd_not_implemented_fallback.h>
#include <c10/util/irange.h>
#include <ATen/core/TorchDispatchUtils.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/core/ivalue.h>
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <torch/csrc/autograd/VariableTypeUtils.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <vector>
namespace torch {
namespace autograd {
namespace {
template <typename F>
void _foreach_tensor(
F fn,
torch::jit::Stack* stack,
size_t stack_start,
size_t size) {
// Enumerate over tensors in a stack, including ones in TensorLists
int idx_tensor = 0;
for (const auto idx_arg : c10::irange(size)) {
auto& ivalue = (*stack)[stack_start + idx_arg];
if (ivalue.isTensor()) { // true for optional tensor that has value
const auto& tensor = ivalue.toTensor();
fn(idx_tensor, idx_arg, tensor);
idx_tensor++;
} else if (ivalue.isTensorList()) {
for (const auto& iv : ivalue.toListRef()) {
const auto& tensor = iv.toTensor();
fn(idx_tensor, idx_arg, tensor);
idx_tensor++;
}
}
}
}
} // namespace
void autogradNotImplementedFallbackImpl(
const c10::OperatorHandle& op,
c10::DispatchKeySet dispatch_keys,
torch::jit::Stack* stack) {
// Mimics a subset of the logic of a VariableType NotImplemented kernel
// See gen_variable_type.py
const auto& schema = op.schema();
const auto& op_name = schema.operator_name().name;
const auto num_arguments = schema.arguments().size();
const auto num_returns = schema.returns().size();
const auto stack_start = stack->size() - num_arguments;
const bool grad_mode = GradMode::is_enabled();
std::vector<const at::Tensor*> tensors_requiring_grad_on_stack;
// Keep track of which outputs are output of in-place modification
// so we can rebase_history if necessary
std::vector<bool> is_inplace_output(num_returns, false);
bool any_is_inplace_output = false;
std::vector<bool> is_aliased_output(num_returns, false);
int aliased_output_idx = -1;
for (const auto i : c10::irange(num_returns)) {
if (schema.is_aliasing({c10::SchemaArgType::output, i})) {
if (schema.is_mutable({c10::SchemaArgType::output, i})) {
is_inplace_output[i] = true;
any_is_inplace_output = true;
} else {
TORCH_CHECK(
aliased_output_idx == -1,
"Expected only a single output in the operator schema to have a non-write alias annotation (i.e., 'Tensor(a)'). "
"Non-composite functions where multiple outputs are aliased with inputs aren't supported."
"Please rewrite your function as a composite function.");
aliased_output_idx = i;
}
is_aliased_output[i] = true;
}
}
int aliased_input_idx = -1;
for (const auto i : c10::irange(num_arguments)) {
if (schema.is_aliasing({c10::SchemaArgType::input, i}) &&
!schema.is_mutable({c10::SchemaArgType::input, i})) {
TORCH_CHECK(
aliased_input_idx == -1,
"Expected only a single input in the operator schema to have a non-write alias annotation (i.e., 'Tensor(a)'). "
"Non-composite functions where multiple inputs are aliased with outputs aren't supported. "
"Please rewrite your function as a composite function.");
aliased_input_idx = i;
}
}
size_t num_tensor_inputs = 0; // Only used for DEBUG-only checks
_foreach_tensor(
[&](size_t _, size_t idx_arg, const at::Tensor& t) {
if (grad_mode && t.requires_grad()) {
tensors_requiring_grad_on_stack.push_back(&t);
}
num_tensor_inputs++;
TORCH_CHECK_NOT_IMPLEMENTED(
!isFwGradDefined(t),
"Trying to use forward AD with ",
op_name,
" that does not support it.");
},
stack,
stack_start,
num_arguments);
const bool any_requires_grad = tensors_requiring_grad_on_stack.size() > 0;
_foreach_tensor(
[&](size_t _, size_t i, const at::Tensor& t) {
if (schema.is_mutable({c10::SchemaArgType::input, i})) {
check_inplace(t, any_requires_grad);
}
},
stack,
stack_start,
num_arguments);
std::shared_ptr<NotImplemented> grad_fn;
if (any_requires_grad) {
grad_fn = std::shared_ptr<NotImplemented>(
new NotImplemented(op_name), deleteNode);
grad_fn->set_next_edges(
collect_next_edges(tensors_requiring_grad_on_stack));
}
#ifndef NDEBUG
// See NOTE [ TensorImpl and Storage Pointer Sanity Checks ]
auto stack_args_copy =
std::vector<c10::IValue>(stack->begin() + stack_start, stack->end());
std::vector<c10::intrusive_ptr<c10::TensorImpl>> impl_saved;
impl_saved.reserve(num_tensor_inputs);
std::vector<c10::optional<c10::Storage>> storage_saved;
storage_saved.reserve(num_tensor_inputs);
_foreach_tensor(
[&](size_t idx, size_t _, const at::Tensor& t) {
storage_saved.push_back(
t.has_storage() ? c10::optional<c10::Storage>(t.storage())
: c10::nullopt);
impl_saved.push_back(t.getIntrusivePtr());
},
&stack_args_copy,
0,
num_arguments);
#endif
if (aliased_input_idx != -1 || any_is_inplace_output) {
at::AutoDispatchBelowAutograd guard;
op.redispatchBoxed(dispatch_keys & c10::after_autograd_keyset, stack);
} else {
// If neither in-place nor view
at::AutoDispatchBelowADInplaceOrView guard;
op.redispatchBoxed(
dispatch_keys & c10::after_ADInplaceOrView_keyset, stack);
}
#ifndef NDEBUG
_foreach_tensor(
[&](size_t idx_tensor, size_t _, const at::Tensor& t) {
if (storage_saved.at(idx_tensor).has_value())
TORCH_INTERNAL_ASSERT(
storage_saved.at(idx_tensor).value().is_alias_of(t.storage()),
op_name);
if (impl_saved.at(idx_tensor))
TORCH_INTERNAL_ASSERT(
impl_saved.at(idx_tensor) == t.getIntrusivePtr(), op_name);
},
&stack_args_copy,
0,
num_arguments);
_foreach_tensor(
[&](size_t idx_tensor, size_t idx_ret, const at::Tensor& t) {
if (at::impl::tensor_has_dispatch(t) ||
at::impl::dispatch_mode_enabled())
return;
if (!is_inplace_output[idx_ret])
TORCH_INTERNAL_ASSERT(
t.use_count() <= 1, op_name); // Okay to return undefined tensor
if (!is_aliased_output[idx_ret] && t.has_storage())
TORCH_INTERNAL_ASSERT(t.storage().use_count() == 1);
},
stack,
stack->size() - num_returns,
num_returns);
// There should be only a single base-view pair, make sure their storage is
// aliased.
if (aliased_input_idx != -1 && aliased_output_idx != -1) {
const c10::IValue& aliased_input_iv = stack_args_copy[aliased_input_idx];
const c10::IValue& aliased_output_iv =
(*stack)[stack->size() - num_returns + aliased_output_idx];
TORCH_INTERNAL_ASSERT(aliased_input_iv.isTensor(), op_name);
TORCH_INTERNAL_ASSERT(
aliased_output_iv.isTensor() || aliased_output_iv.isTensorList(),
op_name);
const at::Tensor& aliased_input = aliased_input_iv.toTensor();
if (aliased_input.has_storage()) {
if (aliased_output_iv.isTensor()) {
const at::Tensor& aliased_output = aliased_input_iv.toTensor();
TORCH_INTERNAL_ASSERT(
aliased_input.storage().is_alias_of(aliased_output.storage()),
op_name);
} else {
const auto aliased_output_vec = aliased_output_iv.toTensorVector();
for (const auto& aliased_output : aliased_output_vec) {
TORCH_INTERNAL_ASSERT(
aliased_input.storage().is_alias_of(aliased_output.storage()),
op_name);
}
}
}
}
#endif
if (any_requires_grad) {
_foreach_tensor(
[&](size_t idx_tensor, size_t idx_ret, const at::Tensor& t) {
if (isDifferentiableType(t.scalar_type())) {
if (is_inplace_output[idx_ret]) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
rebase_history(const_cast<at::Tensor&>(t), grad_fn);
} else {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
set_history(const_cast<at::Tensor&>(t), grad_fn);
}
}
},
stack,
stack->size() - num_returns,
num_returns);
}
}
torch::CppFunction autogradNotImplementedFallback() {
return torch::CppFunction::makeFromBoxedFunction<
&autogradNotImplementedFallbackImpl>();
}
void autogradNotImplementedInplaceOrViewFallbackImpl(
const c10::OperatorHandle& op,
c10::DispatchKeySet dispatch_keys,
torch::jit::Stack* stack) {
// Mimics a subset of the logic from ADInplaceOrViewType kernel:
// - see gen_inplace_or_view_type.py
// - this should only be used with autogradNotImplementedFallback above
// - For more information see
// https://pytorch.org/tutorials/advanced/dispatcher
//
// NOTE [ Limitations of ADInplaceOrView boxed kernel ]
//
// This op should only be used with autogradNotImplementedFallback kernel
// because there is some logic we need specifically to enforce that even
// if we do in-place on view's created in this kernel, the proper "derivative
// is not implemented" error is still raised.
//
// Just like the codegened kernel, we try to enforce some things:
// - For views: we enforce that the view relationship is between the first
// input
// and the first output (which may be either Tensor or vec of Tensors
// - For inplace (TODO?): enforce that the same op cannot be both a view and
// inplace
// that is not allowed in the gen_inplace_or_view logic
const auto& schema = op.schema();
const auto& op_name = schema.operator_name().name;
const auto num_arguments = schema.arguments().size();
const auto num_returns = schema.returns().size();
const auto stack_start = stack->size() - num_arguments;
at::Tensor aliased_input;
int64_t aliased_output_idx = -1;
for (const auto i : c10::irange(num_returns)) {
if (schema.is_aliasing({c10::SchemaArgType::output, i}) &&
!schema.is_mutable({c10::SchemaArgType::output, i})) {
TORCH_CHECK(
aliased_output_idx == -1,
"Fallback ADInplaceOrView kernel expects only a single output in the operator schema to have a "
"non-write alias annotation (i.e., 'Tensor(a)'). "
"Non-composite functions where multiple outputs are aliased with inputs aren't supported."
"Please rewrite your function as a composite function.");
aliased_output_idx = i;
}
}
int64_t aliased_input_idx = -1;
for (const auto i : c10::irange(num_arguments)) {
if (schema.is_aliasing({c10::SchemaArgType::input, i}) &&
!schema.is_mutable({c10::SchemaArgType::input, i})) {
TORCH_CHECK(
aliased_input_idx == -1,
"Fallback ADInplaceOrView kernel expects only a single input in the operator schema to have a "
"non-write alias annotation (i.e., 'Tensor(a)'). "
"Non-composite functions where multiple inputs are aliased with outputs aren't supported. "
"Please rewrite your function as a composite function.");
aliased_input_idx = i;
const c10::IValue& aliased_input_iv =
(*stack)[stack_start + i]; // get a reference to an ivalue on the
// stack
TORCH_CHECK(aliased_input_iv.isTensor());
aliased_input =
aliased_input_iv.toTensor(); // TODO: Can we avoid saving this tensor
// and incurring the refcount bump?
}
}
// See NOTE [ Limitations of ADInplaceOrView boxed kernel ] above
TORCH_CHECK(
(aliased_input_idx == -1 && aliased_output_idx == -1) ||
(aliased_input_idx == 0 && aliased_output_idx == 0),
"Fallback ADInplaceOrView kernel can only create view relationships between the first "
"input and the first output (the output can be a vector of tensors). Please change the "
"order of your operator's parameters so that this is the case.");
const bool is_view = aliased_input_idx != -1;
{
at::AutoDispatchBelowADInplaceOrView guard;
op.redispatchBoxed(
dispatch_keys & c10::after_ADInplaceOrView_keyset, stack);
}
for (const auto i : c10::irange(num_returns)) {
if (schema.is_mutable({c10::SchemaArgType::output, i})) {
increment_version((*stack)[stack->size() - num_returns + i].toTensor());
}
}
if (is_view) {
c10::IValue& aliased_output_iv =
(*stack)[stack->size() - num_returns + aliased_output_idx];
if (aliased_output_iv.isTensorList()) {
auto aliased_output = aliased_output_iv.toTensorVector();
// Only allow rebasing of the history if we return a single Tensor that is
// why we don't have to care about the view_func logic below.
// See NOTE [ View + Inplace detection ] for more details about this logic
auto result = as_view(
/* base=*/aliased_input,
/* tensors=*/aliased_output,
/* is_bw_differentiable=*/true,
/* is_fw_differentiable=*/true,
/* creation_meta=*/
InferenceMode::is_enabled()
? CreationMeta::INFERENCE_MODE
: (at::GradMode::is_enabled() ? CreationMeta::MULTI_OUTPUT_NODE
: CreationMeta::NO_GRAD_MODE));
// ^ pass in creation meta unecessarily even if not isDifferentiableType,
// but we don't have that
// information here anyway.
stack->at(stack->size() - num_returns + aliased_output_idx) = result;
} else {
TORCH_CHECK(aliased_output_iv.isTensor());
auto result = as_view(
/* base=*/aliased_input,
/* tensor=*/std::move(aliased_output_iv).toTensor(),
/* is_bw_differentiable=*/true,
/* is_fw_differentiable=*/true,
/* view_func=*/
[op_name = op_name](const at::Tensor&) {
// We always need this view_func because otherwise if we do in-place
// on this view, we would implicitly use AsStridedBackward instead
// of the NotImplemented node. For the cross-dtype/non-strided
// cases, we would create something like this anyway
TORCH_CHECK(
false,
"Mutating the view ",
op_name,
" which does not have a derivative implemented is forbidden.");
return at::Tensor();
},
/* creation_meta=*/
InferenceMode::is_enabled()
? CreationMeta::INFERENCE_MODE
: (at::GradMode::is_enabled() ? CreationMeta::DEFAULT
: CreationMeta::NO_GRAD_MODE));
stack->at(stack->size() - num_returns + aliased_output_idx) = result;
}
}
}
torch::CppFunction autogradNotImplementedInplaceOrViewFallback() {
return torch::CppFunction::makeFromBoxedFunction<
&autogradNotImplementedInplaceOrViewFallbackImpl>();
}
} // namespace autograd
} // namespace torch
|