1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
#pragma once
#include <ATen/core/ivalue.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <vector>
namespace torch {
namespace autograd {
using optional_variable_list = std::vector<c10::optional<Variable>>;
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
TORCH_API std::vector<c10::optional<Variable>> _wrap_outputs(
const variable_list& input_vars,
const std::unordered_set<at::TensorImpl*>& non_differentiable,
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node>& cdata,
_jvp_fn_t jvp_user_function);
TORCH_API void check_variable_result(
const at::TensorBase& original,
const at::TensorBase& result,
std::string hook_name);
// Get the return type of the forward function of the custom Function class X
template <typename X, typename... Args>
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
/// To use custom autograd operations, implement a Function subclass with
/// static forward and backward functions:
///
/// `forward` can take as many arguments as you want and should return either a
/// variable list or a Variable. Use of any direct Variable arguments will be
/// registered in the graph but no vectors/sets or any other data structures
/// will be traversed. You can use c10::optional<Tensor> as one of the arguments
/// and it will be registered as a variable in the graph if the argument has a
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
/// first argument. Variables can be saved in the `ctx` using
/// `ctx->save_for_backward`
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
/// can be saved in the `ctx->saved_data` map
/// (see `torch::autograd::AutogradContext::saved_data`)
/// in the form of `<std::string, at::IValue>` pairs.
///
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
/// and a variable list containing as many Variables as there were outputs from
/// `forward` as arguments. It should return as many Variables as there were
/// inputs with each of them containing the gradient w.r.t. its corresponding
/// input. Variables saved in `forward` can be accessed with
/// `ctx->get_saved_variables` (see
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
/// data can be accessed from `ctx->saved_data`.
///
/// For example:
/// ```
/// class MyFunction : public Function<MyFunction> {
/// public:
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
/// // Save data for backward in context
/// ctx->saved_data["n"] = n;
/// var.mul_(2);
/// // Mark var as modified by inplace operation
/// ctx->mark_dirty({var});
/// return {var};
/// }
///
/// static variable_list backward(AutogradContext *ctx, variable_list
/// grad_output) {
/// // Use data saved in forward
/// auto n = ctx->saved_data["n"].toInt();
/// return {grad_output[0]*n};
/// }
/// };
/// ```
///
/// To use `MyFunction`:
/// ```
/// Variable x;
/// auto y = MyFunction::apply(6, x);
/// // Example backward call
/// y[0].sum().backward();
/// ```
template <class T>
struct TORCH_API Function {
// We need to use a different template parameter than T here because T will
// inherit from Function, and when Function<T> is instantiated, T::forward
// is not declared yet.
// The enable_if check is to ensure that the user doesn't explicitly provide
// the parameter X.
template <typename X = T, typename... Args>
static auto apply(Args&&... args)
-> std::enable_if_t<std::is_same<X, T>::value, forward_t<X, Args...>>;
};
/// Context to save information during `forward` that can be accessed in
/// `backward` in custom autograd operations (see `torch::autograd::Function`
/// for details).
struct TORCH_API AutogradContext {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AutogradContext() : materialize_grads_(true) {}
AutogradContext(const AutogradContext& other) = delete;
AutogradContext& operator=(const AutogradContext& other) = delete;
/// Can be used to save non-variable data for `backward`.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ska::flat_hash_map<std::string, at::IValue> saved_data;
/// Saves the list of variables for a future call to `backward`. This
/// should be called at most once from inside of `forward`.
void save_for_backward(variable_list to_save);
/// Marks variables in the list as modified in an in-place operation. This
/// should be called at most once from inside of `forward` and all arguments
/// should be inputs.
void mark_dirty(const variable_list& inputs);
/// Marks outputs in the list as not requiring gradients. This should be
/// called at most once from inside of `forward` and all arguments should be
/// outputs.
void mark_non_differentiable(const variable_list& outputs);
// Sets whether undefined output grad tensors should be expanded to tensors
// full of zeros before calling backward function. Default value is true.
void set_materialize_grads(bool value);
/// Get the list of variables that were saved in `forward` using
/// `save_for_backward()`. Before returning them to the user, a check is made
/// to ensure that they were not modified by any in-place operations.
variable_list get_saved_variables() const;
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
/// Expose the Node's `task_should_compute_output` method to the cpp
/// custom autograd Function as `needs_input_grad`.
bool needs_input_grad(size_t output_edge_index) const;
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
private:
std::unordered_set<at::TensorImpl*> non_differentiable_;
std::unordered_set<at::TensorImpl*> dirty_inputs_;
std::vector<torch::autograd::SavedVariable> saved_variables_;
variable_list to_save_;
bool materialize_grads_;
// The CppNode in the autograd graph that owns this AutogradContext. We need a
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
// will always be alive when we want to use it.
std::weak_ptr<Node> grad_fn_;
bool has_freed_buffers_;
void save_variables();
template <class T>
friend struct CppNode;
};
struct TORCH_API VariableInfo {
explicit VariableInfo();
explicit VariableInfo(const Variable& var);
Variable zeros(at::OptionalDeviceGuard& device_guard) const;
at::Layout layout = at::Layout::Strided;
at::Device device = at::kCPU;
at::ScalarType scalar_type = at::kFloat;
std::vector<int64_t> size;
bool requires_grad;
bool is_empty;
};
// CppNode<T> is the Node in the autograd graph that represents the user defined
// backward function for Function<T>. Calls to CppNode::apply are forward to
// T::backward().
template <class T>
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct CppNode : public Node {
variable_list apply(variable_list&& inputs) override;
AutogradContext ctx_;
std::vector<bool> is_variable_input_;
std::vector<VariableInfo> input_info_;
std::vector<VariableInfo> output_info_;
void release_variables() override;
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
void save_variables_to_ctx();
};
struct ExtractVariables : IterArgs<ExtractVariables> {
std::vector<bool>& is_var_;
variable_list& list_;
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
: is_var_(is_var), list_(list) {}
void operator()(const c10::optional<at::Tensor>& x) {
// NOLINTNEXTLINE(bugprone-branch-clone)
if (x.has_value() && x.value().defined()) {
is_var_.push_back(true);
list_.emplace_back(x.value());
} else {
is_var_.push_back(false);
}
}
void operator()(const at::Tensor& x) {
is_var_.push_back(true);
list_.emplace_back(x);
}
void operator()(const at::TensorList& list) {
for (const at::Tensor& x : list) {
is_var_.push_back(true);
list_.emplace_back(x);
}
}
template <typename T>
void operator()(const T& x) {
is_var_.push_back(false);
}
};
template <typename... Args>
inline void extract_vars(
std::vector<bool>& is_var,
variable_list& list,
Args&&... args) {
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
}
template <typename T>
typename std::enable_if<std::is_same<T, variable_list>::value, T>::type
to_output_type(std::vector<c10::optional<Variable>>& output_list) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list result;
std::transform(
output_list.begin(),
output_list.end(),
std::back_inserter(result),
[](const c10::optional<Variable>& var) { return *var; });
return result;
}
template <typename T>
typename std::enable_if<std::is_same<T, Variable>::value, T>::type
to_output_type(std::vector<c10::optional<Variable>>& output_list) {
return *output_list[0];
}
inline std::vector<c10::optional<Variable>> to_optional(Variable& output) {
return std::vector<c10::optional<Variable>>{output};
}
inline std::vector<c10::optional<Variable>> to_optional(variable_list& output) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<c10::optional<Variable>> result;
std::transform(
output.begin(),
output.end(),
std::back_inserter(result),
[](const Variable& var) { return var; });
return result;
}
template <class T>
template <typename X, typename... Args>
auto Function<T>::apply(Args&&... args)
-> std::enable_if_t<std::is_same<X, T>::value, forward_t<X, Args...>> {
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list input_vars;
const size_t num_inputs = sizeof...(Args);
input_vars.reserve(num_inputs);
node->is_variable_input_.reserve(num_inputs);
// TODO Add tracing here
extract_vars(node->is_variable_input_, input_vars, args...);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool is_executable =
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
auto next_edges =
(is_executable ? collect_next_edges(input_vars) : edge_list());
node->set_ctx_grad_fn(node);
node->set_next_edges(std::move(next_edges));
node->clear_input_metadata();
node->input_info_.reserve(input_vars.size());
for (auto& var : input_vars) {
node->input_info_.emplace_back(var);
}
using forward_return_t = forward_t<X, Args...>;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
forward_return_t outputs;
{
AutoGradMode grad_mode(false);
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
}
_jvp_fn_t jvp_fn = [](variable_list inputs,
variable_list gI) -> variable_list {
TORCH_CHECK(
false,
"jvp is not implemented for the c++ API of custom Function yet.",
"Please open a feature request on Github if you need this.");
};
auto wrapped_outputs = _wrap_outputs(
input_vars,
node->ctx_.get_non_differentiable(),
node->ctx_.get_and_bump_dirty(),
to_optional(outputs),
is_executable ? node : nullptr,
jvp_fn);
node->output_info_.reserve(wrapped_outputs.size());
for (auto& output : wrapped_outputs) {
if (is_executable && output.has_value()) {
node->output_info_.emplace_back(output.value());
} else if (is_executable) {
node->output_info_.emplace_back();
}
}
if (is_executable) {
node->save_variables_to_ctx();
}
// wrapped_outputs will be a variable_list so, convert it to the correct
// return type. Only Variable and variable_list are accepted as return types.
return to_output_type<forward_return_t>(wrapped_outputs);
}
// The logic here is the same as PyNode::apply, so changes to it should be done
// in both the places
template <class T>
variable_list CppNode<T>::apply(variable_list&& inputs) {
at::OptionalDeviceGuard _device_guard;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int num_inputs = inputs.size();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list backward_inputs;
backward_inputs.reserve(num_inputs);
for (const auto i : c10::irange(num_inputs)) {
if (inputs[i].defined() || !ctx_.materialize_grads_) {
backward_inputs.emplace_back(inputs[i]);
} else {
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
}
}
// Acquire lock to here protect thread safety on custom C++ Autograd Node
// This is needed for the custom Autograd Node since we don't know if the
// user defined Node will write to the shared data during backward.
// see Note [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
auto outputs = T::backward(&ctx_, backward_inputs);
const auto num_forward_inputs =
static_cast<int64_t>(is_variable_input_.size());
auto num_outputs = static_cast<int64_t>(outputs.size());
// Returning too many results is ok, but only as long as they're all
// undefined. Truncate the result vector in that case.
if (num_outputs > num_forward_inputs) {
bool all_undef = true;
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
all_undef &= (!outputs[i].defined());
}
if (all_undef) {
outputs.resize(num_forward_inputs);
num_outputs = num_forward_inputs;
}
}
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += c10::to_string(num_forward_inputs) + ", got ";
msg += c10::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list results;
results.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
if (!is_variable_input_[i]) {
if (outputs[i].defined()) {
std::string msg("function ");
msg += name() +
" returned a gradient different that is defined at position ";
msg += c10::to_string(i + 1) +
", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
results.emplace_back(outputs[i]);
}
return results;
}
template <class T>
void CppNode<T>::release_variables() {
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
ctx_.saved_variables_.clear();
ctx_.has_freed_buffers_ = true;
}
template <class T>
void CppNode<T>::save_variables_to_ctx() {
ctx_.save_variables();
}
template <class T>
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
ctx_.grad_fn_ = node;
}
} // namespace autograd
} // namespace torch
|