1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
|
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/memory.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <ATen/detail/CUDAHooksInterface.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/isnan.h>
#endif
#include <c10/core/DeviceGuard.h>
#include <c10/core/Event.h>
#include <c10/core/Stream.h>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/ThreadLocal.h>
#include <c10/util/irange.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstdint>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <typeinfo>
#include <unordered_set>
namespace torch {
namespace autograd {
namespace {
static bool in_bad_autograd_fork =
false; // True for children forked after engine's thread pool init
// Called in the forked child if engine's thread pool has already been
// initialized
static void forked_autograd_child() {
in_bad_autograd_fork = true;
}
// Should be called before unsafe for forks (thread pool) calls
static void track_bad_autograd_forks() {
#if !defined(WIN32)
static c10::once_flag flag;
c10::call_once(
flag, [&] { pthread_atfork(nullptr, nullptr, forked_autograd_child); });
#endif
}
inline bool should_run_in_cpu_ready_queue(c10::DeviceType device) {
if (device == c10::kCPU || device == c10::kMeta || device == c10::kLazy) {
return true;
} else {
return false;
}
}
} // namespace
// Threads spawned by the engine are assigned a 'worker_device' specifying
// what device they process work for. This variable is initialized at:
// 1. thread creation time for CUDA, XLA device threads, as they are
// spinning threads waiting for works on their device.
// 2. before the graph task execution for CPU threads, as for each
// backward call we use the caller thread to drive engine execution.
// This is used when handling reentrant backwards calls;
// See Note [Reentrant backwards]
static thread_local int worker_device = NO_DEVICE;
// This variable is true if ALL invocations in the stack of re-entrant engine
// invocations are imperative backwards. This special variable is needed for the
// gradient checkpointing feature only.
static thread_local bool checkpoint_valid = true;
// Number of nested reentrant backwards calls currently on this thread
static thread_local int current_depth = 0;
// For all device threads (i.e. CUDA, XLA), total_depth represents the total
// nested
// reentrant backwards depths over all device threads.
// For CPU devices, it is the total depth associated with the original backward
// call.
static thread_local int total_depth = 0;
// The current GraphTask being executed by this thread. This helps
// queue_callback() to find the target GraphTask to append final callbacks.
C10_DEFINE_TLS_static(std::shared_ptr<GraphTask>, tls_current_graph_task);
#define current_graph_task (tls_current_graph_task.get())
// Every autograd worker thread is associated with a ready queue, which
// specifies the stream of work of this thread to do. This shared_ptr is a
// thread_local pointer to each thread's ready_queue, and it should be
// initialized via the Engine::init_local_ready_queue() call in each
// corresponding thread before execution.
//
// The CUDA, XLA threads are shared among all invocations of backwards via
// device_ready_queues_, while the caller thread is dedicated to processing work
// for devices returning true in should_run_in_cpu_ready_queue (most notably the
// CPU device). So any given graph task maintains its own cpu_ready_queue_ where
// you should send work for it to be done.
//
// For reentrant backward calls, if we spawn new thread from the current thread
// because we reached the maximum depth, the new thread will just reuse the same
// ReadyQueue with the parent thread for performance improvement.
// see Note [Reentrant backwards] for more details.
C10_DEFINE_TLS_static(std::shared_ptr<ReadyQueue>, tls_local_ready_queue);
#define local_ready_queue (tls_local_ready_queue.get())
// Note [Reentrant backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// To understand the reentrant backwards problem, we have to notice two
// aspects of how the autograd engine is implemented today:
//
// 1. When you call Engine::execute(), you want to block until
// differentiation finishes so that you can get the final result variables
// of the backwards pass.
//
// 2. The engine operates by having a single worker thread per work queue,
// and every work queue is pinned to a specific device where the
// operation is executed.
//
// The problem is, suppose that you call backward() inside of a worker
// thread. By property (1), we're supposed to block until the nested task
// finishes. However, by property (2), this worker thread is on the
// hook for processing the tasks assigned to it; we better not block,
// because then all of our backward executions (including the one we
// just started) will deadlock!
//
// We maintain a pool of threads waiting for work to do
// When a reentrant backwards call occurs, the current thread blocks
// and a thread from the pool is woken up to complete the blocking tasks and an
// any other tasks that would have been assigned to that worker. If there are no
// threads available, a new thread is spawned. The new thread will continue
// processing tasks from the same ReadyQueue as the parent worker
//
// When the GraphTask is finished, the parent worker thread that is waiting on
// the task is notified and the current thread returns to the pool.
// Note [Streaming backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// On CUDA devices the autograd engine's device operations are run on the
// same stream that ran them in forward. This requires automatically
// syncing the streams so that function A finishes producing its
// output before function B consumes it.
//
// This synchronization occurs when outputs are placed into input buffers.
// The functions corresponding to input buffer positions have metadata
// recording their streams from forward, and during backward this
// data is used to sync the producer's stream with the consumer's.
//
// When a CUDA function is run either all its inputs were accumulated on the
// stream used to run the function OR the inputs are on different devices
// and the function is responsible for properly acquiring them.
//
// User-facing stream semantics of a backward() (or torch.autograd.grad())
// call with respect to surrounding ops are the same as for any other call.
// See "Stream semantics of backward passes" on
// https://pytorch.org/docs/stable/notes/cuda.html
//
// Internally, backward() runs ops (including leaf nodes) on side threads.
// And streams are thread local. So GraphTask achieves the above semantics by
// 1. remembering the current streams on all active CUDA devices
// in the user-facing thread (aka, the thread that called execute() to
// launch the GraphTask)
// 2. remembering the "leaf streams" (streams each backward leaf node ran on)
// 3. during exec_post_processing, for each leaf stream, sync the remembered
// current streams (on the leaf stream's device) with that
// leaf stream.
int NodeTask::getReentrantDepth() const {
std::shared_ptr<GraphTask> graph_task = base_.lock();
if (graph_task) {
return graph_task->reentrant_depth_;
} else {
// The graph task is no longer valid indicating an error. As a result, we
// try to move this to the front of the queue to ensure the autograd
// engine threads pick up this error soon.
return std::numeric_limits<int>::max();
}
}
CheckpointValidGuard::CheckpointValidGuard(
const std::shared_ptr<const GraphTask>& graph_task) {
prev_checkpoint_valid_state = checkpoint_valid;
checkpoint_valid =
graph_task->can_checkpoint() && prev_checkpoint_valid_state;
}
CheckpointValidGuard::~CheckpointValidGuard() {
checkpoint_valid = prev_checkpoint_valid_state;
}
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
{
// Lock mutex for writing to heap_
std::lock_guard<std::mutex> lock(mutex_);
if (incrementOutstandingTasks) {
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
TORCH_INTERNAL_ASSERT(graph_task, "GraphTask is no longer valid!");
++graph_task->outstanding_tasks_;
}
heap_.push(std::move(item));
}
not_empty_.notify_one();
}
auto ReadyQueue::pushShutdownTask() -> void {
{
std::lock_guard<std::mutex> lock(mutex_);
heap_.push(NodeTask({}, nullptr, InputBuffer(0), true));
}
not_empty_.notify_one();
}
size_t ReadyQueue::size() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.size();
}
auto ReadyQueue::pop() -> NodeTask {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
not_empty_.wait(lock, [this] { return !heap_.empty(); });
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto task = std::move(const_cast<NodeTask&>(heap_.top()));
heap_.pop();
return task;
}
bool ReadyQueue::empty() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.empty();
}
Engine::Engine()
: max_recursion_depth_(MAX_DEPTH), non_reentrant_device_thread_count_(0) {}
Engine::~Engine() {
stop();
}
// Send shutdown tasks to all device_ready_queues_ if no backward tasks are
// running Even though readyQueue should be empty, shutdown tasks have the
// highest priority
void Engine::stop() {
if (stopped_) {
return;
}
stopped_ = true;
// Under some conditions, autograd threads can hang on shutdown
// Do not wait for them to shutdown indefinitely but rely on timeout
auto wait_duration_str = getenv("TORCH_AUTOGRAD_SHUTDOWN_WAIT_LIMIT");
if (!wait_duration_str) {
wait_duration_str = "10.0";
}
auto wait_duration = std::atof(wait_duration_str);
bool noBackward = true;
for (auto& queue : device_ready_queues_) {
noBackward = noBackward && queue->empty();
}
if (noBackward && wait_duration > 0.0f) {
for (auto& queue : device_ready_queues_) {
queue->pushShutdownTask();
}
// Do not wait for termination of global threads on Windows
// Because CRT terminates DLL threads before calling
// global object destructors
#if !defined(_WIN32) || defined(C10_USE_MSVC_STATIC_RUNTIME)
using namespace std::chrono_literals;
// Set a deadline for how long it is OK to wait device threads to shutdown
auto wait_deadline =
std::chrono::steady_clock::now() + wait_duration * 1.0s;
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
while (non_reentrant_device_thread_count_.load() != 0) {
if (non_reentrant_device_thread_condvar_.wait_until(lk, wait_deadline) ==
std::cv_status::timeout) {
break;
}
}
#endif
}
// Otherwise threads are leaked
}
void Engine::release_workers() {
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
non_reentrant_device_thread_count_.store(0);
non_reentrant_device_thread_condvar_.notify_one();
}
void Engine::increment_non_reentrant_thread_count() {
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
non_reentrant_device_thread_count_.fetch_add(1);
non_reentrant_device_thread_condvar_.notify_one();
}
void Engine::decrement_non_reentrant_thread_count() {
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
non_reentrant_device_thread_count_.fetch_sub(1);
non_reentrant_device_thread_condvar_.notify_one();
}
void Engine::thread_init(
int device,
const std::shared_ptr<ReadyQueue>& ready_queue,
bool should_increment) {
if (should_increment) {
increment_non_reentrant_thread_count();
}
at::init_num_threads();
// Note [Allocating GPUs to autograd threads]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What's our strategy here? Originally, the autograd engine was written
// with only CUDA in mind. We allocate one thread to handle all CPU
// operations, and a thread per CUDA device.
//
// But what if we have OTHER devices? There are two plausible
// strategies:
//
// - We can allocate threads equal to max(num_cuda_devices, num_xla_devices,
// ...) and colocate cuda device 0 with xla device 0
// - We can allocate threads equal to sum(num_cuda_devices, num_xla_devices,
// ...) keeping everyone separate.
//
// We don't have any good reason to prefer one or the other, so we've
// arbitrarily picked to colocate devices. Maybe the other approach is
// better.
set_device(device);
// initialize each device thread's thread local ready queue with the ready
// queue that is created before the thread initialization
init_local_ready_queue(ready_queue);
std::shared_ptr<GraphTask> graph_task = nullptr;
thread_main(graph_task);
if (should_increment) {
// Decrement the count during shutdown if we incremented earlier.
decrement_non_reentrant_thread_count();
}
}
GraphTaskGuard::GraphTaskGuard(std::shared_ptr<GraphTask> graph_task) {
last_graph_task_ = std::move(current_graph_task);
current_graph_task = std::move(graph_task);
}
GraphTaskGuard::~GraphTaskGuard() {
restore_current_graph_task();
}
void GraphTaskGuard::restore_current_graph_task() {
current_graph_task = std::move(last_graph_task_);
}
// The current graph task's exec_info is being used to trim unnecessary edegs
// during node evaluation, see `Node.task_should_compute_output()` function.
const std::unordered_map<Node*, GraphTask::ExecInfo>*
get_current_graph_task_exec_info() {
return current_graph_task ? ¤t_graph_task->exec_info_ : nullptr;
}
const std::unordered_set<Node*>* get_current_graph_task_nodes_in_graph() {
return current_graph_task ? ¤t_graph_task->nodes_in_graph_ : nullptr;
}
bool get_current_graph_task_keep_graph() {
return current_graph_task ? current_graph_task->keep_graph_ : true;
}
void add_node_to_current_graph_task_exec_info(Node* fn) {
current_graph_task->exec_info_[fn].needed_ = true;
}
// NOTE: graph_tasks do not necessarily form a stack. Imagine this
// case:
//
// +----> Eval1
// Root
// +----> Eval2
//
// Once Root is executed, both Eval1 and Eval2 are added to the ready queue.
// Next, Eval1 is run and this causes the worker to enter thread_main again.
// Then, it pops the next task from the queue, but at this point it is Eval2.
// It enters thread_main once again, but now with graph_task of Eval2, which is
// completely unrelated to that of Eval1 (it's not a recursive call).
// It's all ok and is handled right now, but it should be accounted for
// in case this code is to be changed.
//
// thread_main is used by:
// 1). autograd threads for devices (i.e. CUDA, XLA)
// 2). the caller/owning thread of the backward call on CPU (sync mode)
// 3). Renetrant backward that invoked by either 1) or 2)
// The exit conditions are different for the above three cases.
// For 1), we are spinning on running the thread_main on device autograd
// threads throughout the Engine lifetime, thread_main will get
// terminated during Engine destruction by pushing shutdown tasks
// For 2), the owning thread of the backward call drives the thread_main
// synchronously until the graph_task of that owning thread is
// completed and exit the thread_main to continue executing the
// result of caller's code.
// For 3), the reentrant backward that invokes
// thread_main, either from 1) or 2), will not spin and will exit as
// long as graph_task is completed and notify the owning thread as
// needed.
auto Engine::thread_main(const std::shared_ptr<GraphTask>& graph_task) -> void {
// When graph_task is nullptr, this is a long running thread that processes
// tasks (ex: device threads). When graph_task is non-null (ex: reentrant
// backwards, user thread), this function is expected to exit once that
// graph_task complete.
// local_ready_queue should already been initialized when we get into
// thread_main
TORCH_INTERNAL_ASSERT(local_ready_queue != nullptr);
while (graph_task == nullptr || !graph_task->future_result_->completed()) {
// local_graph_task represents the graph_task we retrieve from the queue.
// The outer graph_task represents the overall graph_task we need to execute
// for reentrant execution.
std::shared_ptr<GraphTask> local_graph_task;
{
// Scope this block of execution since NodeTask is not needed after this
// block and can be deallocated (release any references to grad tensors
// as part of inputs_).
NodeTask task = local_ready_queue->pop();
// This will only work if the worker is running a non backward task
// TODO Needs to be fixed this to work in all cases
if (task.isShutdownTask_) {
C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
break;
}
if (!(local_graph_task = task.base_.lock())) {
// GraphTask for function is no longer valid, skipping further
// execution.
continue;
}
if (task.fn_ && !local_graph_task->has_error_.load()) {
// Set the ThreadLocalState before calling the function.
// NB: The ThreadLocalStateGuard doesn't set the grad_mode because
// GraphTask always saves ThreadLocalState without grad_mode.
at::ThreadLocalStateGuard tls_guard(local_graph_task->thread_locals_);
c10::Warning::WarningHandlerGuard warnings_guard(
&local_graph_task->warning_handler_);
try {
// The guard sets the thread_local current_graph_task on construction
// and restores it on exit. The current_graph_task variable helps
// queue_callback() to find the target GraphTask to append final
// callbacks.
GraphTaskGuard guard(local_graph_task);
NodeGuard ndguard(task.fn_);
{
RECORD_FUNCTION(
c10::str(
"autograd::engine::evaluate_function: ",
task.fn_.get()->name()),
c10::ArrayRef<const c10::IValue>());
evaluate_function(
local_graph_task,
task.fn_.get(),
task.inputs_,
local_graph_task->cpu_ready_queue_);
}
} catch (std::exception& e) {
thread_on_exception(local_graph_task, task.fn_, e);
}
}
}
// Decrement the outstanding tasks.
--local_graph_task->outstanding_tasks_;
// Check if we've completed execution.
if (local_graph_task->completed()) {
local_graph_task->mark_as_completed_and_run_post_processing();
auto base_owner = local_graph_task->owner_;
// The current worker thread finish the graph_task, but the owning thread
// of the graph_task might be sleeping on pop() if it does not have work.
// So we need to send a dummy function task to the owning thread just to
// ensure that it's not sleeping, so that we can exit the thread_main.
// If it has work, it might see that graph_task->outstanding_tasks_ == 0
// before it gets to the task, but it's a no-op anyway.
//
// NB: This is not necessary if the current thread is the owning thread.
if (worker_device != base_owner) {
// Synchronize outstanding_tasks_ with queue mutex
std::atomic_thread_fence(std::memory_order_release);
ready_queue_by_index(local_graph_task->cpu_ready_queue_, base_owner)
->push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
}
}
}
}
// Reentrant call will re-use the graph_task's owner thread ready_queue for
// queueing tasks (NOTE: this is not true in the async_mode of the engine).
// While we can create separate ready queue for each new reentrant
// thread, but sharing the same cpu_ready_queue with parent thread is a
// performance improvement and cuda thread still have to do the same thing.
void Engine::reentrant_thread_init() {
at::init_num_threads();
auto tp_shared = thread_pool_shared_;
while (true) {
std::unique_lock<std::mutex> lk(tp_shared->mutex_);
++thread_pool_shared_->num_workers_;
tp_shared->work_.wait(
lk, [&tp_shared] { return !tp_shared->graphtasks_queue_.empty(); });
--thread_pool_shared_->num_workers_;
auto task = tp_shared->graphtasks_queue_.front();
tp_shared->graphtasks_queue_.pop();
lk.unlock();
std::shared_ptr<GraphTask> graph_task;
if (!(graph_task = task.lock())) {
LOG(INFO) << "GraphTask has expired, skipping reentrant execution";
continue;
}
set_device(graph_task->owner_);
// set the local_ready_queue to the ready queue on the graph_task->owner_
// device
local_ready_queue =
ready_queue_by_index(graph_task->cpu_ready_queue_, graph_task->owner_);
total_depth = graph_task->reentrant_depth_;
thread_main(graph_task);
}
}
void Engine::thread_on_exception(
std::shared_ptr<GraphTask> graph_task,
const std::shared_ptr<Node>& fn,
std::exception& e) {
graph_task->set_exception(std::current_exception(), fn);
}
bool GraphTask::completed() {
return outstanding_tasks_.load() == 0 ||
(exit_on_error_ && has_error_.load());
}
void GraphTask::mark_as_completed_and_run_post_processing() {
// Allow only one thread one attempt to process this logic.
if (future_completed_.exchange(true)) {
// Future is already marked complete, or being marked as such.
// In case the marking complete is only in progress, we add a
// wait() to guarantee the future is marked complete on exit.
future_result_->wait();
return;
}
try {
// Run post processing, before marking the future as complete.
// Drop lock prior to completing, to avoid holding across callbacks.
std::unique_lock<std::mutex> lock(mutex_);
exec_post_processing();
std::vector<Variable> vars = std::move(captured_vars_);
// Need to unlock before we call markCompleted to avoid holding locks
// when the callbacks are called.
lock.unlock();
// NOLINTNEXTLINE(performance-move-const-arg)
future_result_->markCompleted(std::move(vars));
} catch (std::exception& e) {
future_result_->setErrorIfNeeded(std::current_exception());
}
}
void GraphTask::exec_post_processing() {
if (!not_ready_.empty()) {
throw std::runtime_error("could not compute gradients for some functions");
}
// set the thread_local current_graph_task_ as more callbacks can be installed
// by existing final callbacks.
GraphTaskGuard guard(shared_from_this());
// Lock mutex during each iteration for accessing final_callbacks.size()
// Unlocking is necessary, because the callback can register
// more callbacks (or they can be registered from other threads
// while it's waiting.
std::unique_lock<std::mutex> cb_lock(final_callbacks_lock_);
// caller_current_streams_ with nullopt entries removed
std::vector<c10::Stream> caller_current_streams_filtered;
// See Note [Streaming backwards].
// Syncs caller_current_stream with leaf streams, so final_callbacks may use
// any grad on its device's current stream.
if (leaf_streams.size() > 0) {
for (const auto& leaf_stream : leaf_streams) {
// stash_current_streams() stashed streams for all device IDs that already
// had a CUDA context before the GraphTask executed. For inactive devices,
// it stashed a c10::nullopt. I don't expect GraphTask's backward pass ran
// leaf nodes on any new devices, so the stashed streams should be enough.
// If leaf_stream.device_index() happens to be for a new device,
// operator* on the c10::nullopt should throw an error.
const auto caller_current_stream =
*caller_current_streams_[leaf_stream.device_index()];
if (caller_current_stream != leaf_stream) {
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(leaf_stream);
caller_current_stream.wait(event);
}
}
caller_current_streams_filtered.reserve(caller_current_streams_.size());
for (const auto& opt_stream : caller_current_streams_) {
if (opt_stream.has_value()) {
caller_current_streams_filtered.push_back(*opt_stream);
}
}
}
{
// final_callbacks run on the per-device caller_current_streams (the ambient
// streams surrounding the user's call to backward()). This has two
// benefits:
// 1. caller_current_streams have been synced with leaf_streams, so
// callbacks may
// safely access any grad.
// 2. The callback's results can safely be used on (user-facing)
// caller_current_streams
// after backward().
c10::MultiStreamGuard g(caller_current_streams_filtered);
// Set the ThreadLocalState before calling the function.
// NB: The ThreadLocalStateGuard doesn't set the grad_mode because GraphTask
// always saves ThreadLocalState without grad_mode.
at::ThreadLocalStateGuard tls_guard(this->thread_locals_);
// WARNING: Don't use a range-for loop here because more callbacks may be
// added in between callback calls, so iterators may become invalidated.
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t i = 0; i < final_callbacks_.size(); ++i) {
cb_lock.unlock();
final_callbacks_[i]();
cb_lock.lock();
}
}
}
void GraphTask::set_exception_without_signal(const std::shared_ptr<Node>& fn) {
if (!has_error_.exchange(true)) {
if (AnomalyMode::is_enabled() && fn) {
fn->metadata()->print_stack(fn->name());
}
}
}
void GraphTask::set_exception(
std::exception_ptr eptr,
const std::shared_ptr<Node>& fn) {
set_exception_without_signal(fn);
if (!future_completed_.exchange(true)) {
// NOLINTNEXTLINE(performance-move-const-arg)
future_result_->setError(std::move(eptr));
}
}
static variable_list call_pre_hooks(Node& fn, variable_list inputs) {
for (const auto& hook : fn.pre_hooks()) {
inputs = (*hook)(inputs);
}
return inputs;
}
static variable_list call_post_hooks(
Node& fn,
variable_list outputs,
const variable_list& inputs) {
for (const auto& hook : fn.post_hooks()) {
outputs = (*hook)(outputs, inputs);
}
return outputs;
}
void set_device(int device) {
// NB: We MUST NOT construct the guard for device CPU,
// as in some settings we compile with cuda, but
// have lazy stubs for CUDA functionality (so actually
// attempting to setup a guard(CPU_DEVICE) will cause an
// error, because it will still query cudaGetDevice).
//
// Don't use DeviceGuard here because its destructor may be called before the
// device is reset. This is fine because the device is thread local.
if (device != CPU_DEVICE) {
for (const auto i : c10::irange(static_cast<size_t>(
c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES))) {
auto* impl = c10::impl::device_guard_impl_registry[i].load();
if (impl && device < impl->deviceCount()) {
impl->setDevice(at::Device(static_cast<c10::DeviceType>(i), device));
}
}
}
worker_device = device;
}
void validate_outputs(
const edge_list& edges,
variable_list& grads,
const std::function<std::string(const std::string&)>& format_error) {
if (grads.size() != edges.size()) {
std::stringstream ss;
ss << "invalid number of gradients - expected ";
ss << edges.size() << ", but got " << grads.size();
AT_ERROR(format_error(ss.str()));
}
for (const auto i : c10::irange(grads.size())) {
const auto& edge = edges[i];
if (!edge.is_valid())
continue;
const auto& metadata = edge.function->input_metadata(edge.input_nr);
auto& grad = grads[i];
if (!grad.defined()) {
// FIXME: TestJit.test_ge_optimized fails this assertion.
// std::stringstream ss;
// ss << "undefined gradient at index " << i;
// AT_ERROR(format_error(ss.str()));
continue;
}
if (!metadata.is_same_shape(grad)) {
if (metadata.is_expandable_to_shape(grad)) {
grad = metadata.reduce_grad(grad);
} else {
const auto message = metadata.incompatible_shape_error_message(i, grad);
AT_ERROR(format_error(message.str()));
}
}
bool input_is_complex =
isComplexType(c10::typeMetaToScalarType(metadata.options().dtype()));
bool grad_is_complex = isComplexType(grad.scalar_type());
TORCH_CHECK(
isFloatingType(grad.scalar_type()) ||
(input_is_complex == grad_is_complex));
if (c10::typeMetaToScalarType(metadata.options().dtype()) !=
grad.scalar_type()) {
grad = grad.to(c10::typeMetaToScalarType(metadata.options().dtype()));
}
if (grad.dtype() != metadata.dtype()) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected dtype ";
ss << metadata.dtype() << " but got " << grad.dtype();
AT_ERROR(format_error(ss.str()));
}
if (grad.layout() != metadata.layout()) {
// TODO: Currently we only support (*, Sparse) combination for
// (tensor.layout(), tensor.grad.layout()) In future, there will be an
// oppportunity to support more combinations of layouts if they are
// composable (example., operations like addition etc., are well defined
// between tensors of different layouts.), as well as all parts of
// autograd like AccumulateGrad correctly handle this. We allow grad to be
// Strided when metadata is SparseCsr
if (!grad.is_sparse() &&
!(grad.layout() == at::kStrided &&
metadata.layout() == at::kSparseCsr)) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected layout ";
ss << metadata.layout() << " but got " << grad.layout();
AT_ERROR(format_error(ss.str()));
}
}
if (grad.device() != metadata.device()) {
// quick hack for: https://github.com/pytorch/pytorch/issues/65016 but
// should be eventually removed
if (!(metadata.is_tensor_subclass() ||
grad.unsafeGetTensorImpl()->is_python_dispatch())) {
if (grad.dim() == 0) {
grad = grad.to(metadata.device());
} else {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected device ";
ss << metadata.device() << " but got " << grad.device();
AT_ERROR(format_error(ss.str()));
}
}
}
// We should not build graph for Tensors that are not differentiable
TORCH_INTERNAL_ASSERT(isDifferentiableType(grad.scalar_type()));
}
}
static variable_list call_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputBuffer) {
CheckpointValidGuard cpvguard(graph_task);
auto& fn = *func;
auto inputs =
call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));
if (!graph_task->keep_graph_) {
fn.will_release_variables();
}
const auto has_post_hooks = !fn.post_hooks().empty();
variable_list outputs;
if (has_post_hooks) {
// In functions/accumulate_grad.cpp, there is some logic to check the
// conditions under which the incoming gradient can be stolen directly
// (which elides a deep copy) instead of cloned. One of these conditions
// is that the incoming gradient's refcount must be 1 (nothing else is
// referencing the same data). Stashing inputs_copy here bumps the
// refcount, so if post hooks are employed, it's actually still ok for
// accumulate_grad.cpp to steal the gradient if the refcount is 2.
//
// "new_grad.use_count() <= 1 + !post_hooks().empty()" in
// accumulate_grad.cpp accounts for this, but also creates a silent
// dependency between engine.cpp (ie, this particular engine
// implementation) and accumulate_grad.cpp.
//
// If you change the logic here, make sure it's compatible with
// accumulate_grad.cpp.
auto inputs_copy = inputs;
outputs = fn(std::move(inputs_copy));
} else {
outputs = fn(std::move(inputs));
}
validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
std::ostringstream ss;
ss << "Function " << fn.name() << " returned an " << msg;
return ss.str();
});
if (has_post_hooks) {
// NOLINTNEXTLINE(bugprone-use-after-move)
return call_post_hooks(fn, std::move(outputs), inputs);
}
return outputs;
}
void Engine::evaluate_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputs,
const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
// The InputBuffer::adds that supplied incoming grads took pains to
// ensure they're safe to consume in the context of the present
// func's stream (if applicable). So we guard onto that stream
// before working with the grads in any capacity.
const auto opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};
// If exec_info_ is not empty, we have to instrument the execution
auto& exec_info_ = graph_task->exec_info_;
if (!exec_info_.empty()) {
auto& fn_info = exec_info_.at(func);
if (auto* capture_vec = fn_info.captures_.get()) {
// Lock mutex for writing to graph_task->captured_vars_.
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (const auto& capture : *capture_vec) {
auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
captured_grad = inputs[capture.input_idx_];
for (auto& hook : capture.hooks_) {
captured_grad = (*hook)(captured_grad);
}
if (opt_parent_stream) {
// No need to take graph_task->mutex_ here, we already hold it
graph_task->leaf_streams.emplace(*opt_parent_stream);
}
}
}
if (!fn_info.needed_) {
// Skip execution if we don't need to execute the function.
return;
}
}
auto outputs = call_function(graph_task, func, inputs);
auto& fn = *func;
if (!graph_task->keep_graph_) {
fn.release_variables();
}
int num_outputs = outputs.size();
if (num_outputs == 0) { // Note: doesn't acquire the mutex
// Records leaf stream (if applicable)
// See Note [Streaming backwards]
if (opt_parent_stream) {
std::lock_guard<std::mutex> lock(graph_task->mutex_);
graph_task->leaf_streams.emplace(*opt_parent_stream);
}
return;
}
if (AnomalyMode::is_enabled() && AnomalyMode::should_check_nan()) {
AutoGradMode grad_mode(false);
for (const auto i : c10::irange(num_outputs)) {
auto& output = outputs[i];
at::OptionalDeviceGuard guard(device_of(output));
if (output.defined() && isnan(output).any().item<uint8_t>()) {
std::stringstream ss;
ss << "Function '" << fn.name() << "' returned nan values in its " << i
<< "th output.";
throw std::runtime_error(ss.str());
}
}
}
// Lock mutex for the accesses to GraphTask dependencies_, not_ready_ and
// cpu_ready_queue_ below
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (const auto i : c10::irange(num_outputs)) {
auto& output = outputs[i];
const auto& next = fn.next_edge(i);
if (!next.is_valid())
continue;
// Check if the next function is ready to be computed
bool is_ready = false;
auto& dependencies = graph_task->dependencies_;
auto it = dependencies.find(next.function.get());
if (it == dependencies.end()) {
auto name = next.function->name();
throw std::runtime_error(std::string("dependency not found for ") + name);
} else if (--it->second == 0) {
dependencies.erase(it);
is_ready = true;
}
auto& not_ready = graph_task->not_ready_;
auto not_ready_it = not_ready.find(next.function.get());
if (not_ready_it == not_ready.end()) {
// Skip functions that aren't supposed to be executed
if (!exec_info_.empty()) {
auto it = exec_info_.find(next.function.get());
if (it == exec_info_.end() || !it->second.should_execute()) {
continue;
}
}
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs());
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(
next.input_nr, std::move(output), opt_parent_stream, opt_next_stream);
if (is_ready) {
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
} else {
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else {
// The function already has a buffer
auto& input_buffer = not_ready_it->second;
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(
next.input_nr, std::move(output), opt_parent_stream, opt_next_stream);
if (is_ready) {
auto queue = ready_queue(cpu_ready_queue, input_buffer.device());
queue->push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it);
}
}
}
}
inline static uint64_t compute_min_topological_nr(const edge_list& outputs) {
// Computes the mininum topological number among all the outputs
if (outputs.empty()) {
return 0;
}
auto min_topo_nr = std::numeric_limits<uint64_t>::max();
for (auto& output_edge : outputs) {
auto topo_nr = output_edge.function.get()->topological_nr();
min_topo_nr = (min_topo_nr < topo_nr) ? min_topo_nr : topo_nr;
}
return min_topo_nr;
}
auto Engine::compute_dependencies(
Node* root,
GraphTask& task,
uint64_t min_topo_nr) -> void {
// Computes the number of dependencies for each function which requires grad
std::vector<Node*> queue{root};
bool might_use_cuda = at::globalContext().hasCUDA();
bool will_use_cuda = false;
// Queue contains all nodes that will start propagating gradients.
// We no longer have to expand functions that don't require grad.
auto& dependencies = task.dependencies_;
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
if (fn->topological_nr() < min_topo_nr) {
continue;
}
if (might_use_cuda && !will_use_cuda) {
will_use_cuda = fn->stream(c10::DeviceType::CUDA).has_value();
}
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
dependencies[next_ptr] += 1;
const bool was_inserted = task.nodes_in_graph_.insert(next_ptr).second;
if (was_inserted)
queue.push_back(next_ptr);
}
}
}
if (will_use_cuda) {
// Collects current streams for devices where this process has a context,
// so GraphTask::exec_post_processing can sync them with leaf_streams.
task.stash_current_streams();
}
}
auto Engine::execute(
const edge_list& roots,
const variable_list& inputs,
bool keep_graph,
bool create_graph,
bool accumulate_grad,
const edge_list& outputs) -> variable_list {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
validate_outputs(
roots, const_cast<variable_list&>(inputs), [](const std::string& msg) {
return msg;
});
if (accumulate_grad && create_graph) {
TORCH_WARN_ONCE(
"Using backward() with create_graph=True will create a reference cycle "
"between the parameter and its gradient which can cause a memory leak. "
"We recommend using autograd.grad when creating the graph to avoid this. "
"If you have to use this function, make sure to reset the .grad fields of "
"your parameters to None after use to break the cycle and avoid the leak.");
}
// accumulate_grad is true if and only if the frontend call was to
// grad(), not backward(). grad() returns the sum of the gradients
// w.r.t. the inputs and thus needs the inputs to be present.
TORCH_CHECK_VALUE(
accumulate_grad || !outputs.empty(), "grad requires non-empty inputs.");
// A fresh first time Engine::execute call should start on the CPU device,
// initialize a new thread local ready queue on CPU or reuse the existing one
// (if there is one allocated already, i.e. consecutive backward calls,
// re-entrant backward calls), then memoize the local_ready_queue in GraphTask
init_local_ready_queue();
bool not_reentrant_backward_call = worker_device == NO_DEVICE;
auto graph_task = std::make_shared<GraphTask>(
/* keep_graph */ keep_graph,
/* create_graph */ create_graph,
/* depth */ not_reentrant_backward_call ? 0 : total_depth + 1,
/* cpu_ready_queue */ local_ready_queue);
// If we receive a single root, skip creating extra root node
bool skip_dummy_node = roots.size() == 1;
auto graph_root = skip_dummy_node
? roots.at(0).function
: std::make_shared<GraphRoot>(roots, inputs);
auto min_topo_nr = compute_min_topological_nr(outputs);
// Now compute the dependencies for all executable functions
compute_dependencies(graph_root.get(), *graph_task, min_topo_nr);
if (!outputs.empty()) {
graph_task->init_to_execute(
*graph_root, outputs, accumulate_grad, min_topo_nr);
}
// Queue the root
if (skip_dummy_node) {
InputBuffer input_buffer(roots.at(0).function->num_inputs());
auto input = inputs.at(0);
const auto input_stream = InputMetadata(input).stream();
const auto opt_next_stream =
roots.at(0).function->stream(c10::DeviceType::CUDA);
input_buffer.add(
roots.at(0).input_nr, std::move(input), input_stream, opt_next_stream);
execute_with_graph_task(graph_task, graph_root, std::move(input_buffer));
} else {
execute_with_graph_task(
graph_task, graph_root, InputBuffer(variable_list()));
}
// Avoid a refcount bump for the Future, since we check for refcount in
// DistEngine (see TORCH_INTERNAL_ASSERT(futureGrads.use_count() == 1)
// in dist_engine.cpp).
auto& fut = graph_task->future_result_;
fut->wait();
graph_task->warning_handler_.replay_warnings();
return fut->value().toTensorVector();
}
void Engine::initialize_device_threads_pool() {
TORCH_CHECK(
!in_bad_autograd_fork,
"Unable to handle autograd's threading in combination with fork-based multiprocessing. "
"See https://github.com/pytorch/pytorch/wiki/Autograd-and-Fork");
c10::call_once(
start_device_threads_flag_, &Engine::start_device_threads, this);
}
c10::intrusive_ptr<at::ivalue::Future> Engine::execute_with_graph_task(
const std::shared_ptr<GraphTask>& graph_task,
std::shared_ptr<Node> graph_root,
InputBuffer&& input_buffer) {
initialize_device_threads_pool();
// Lock mutex for GraphTask.
std::unique_lock<std::mutex> lock(graph_task->mutex_);
auto queue = ready_queue(graph_task->cpu_ready_queue_, input_buffer.device());
// worker_device == NO_DEVICE it's a CPU thread and it's trying to drive the
// autograd engine with corresponding GraphTask, and its NOT a re-entrant call
if (worker_device == NO_DEVICE) {
// We set the worker_device to CPU_DEVICE only if worker_device was
// previously NO_DEVICE. Setting it to CPU afterwards allow us to detect
// whether this is a re-entrant call or not.
set_device(CPU_DEVICE);
// set the graph_task owner to the current device
graph_task->owner_ = worker_device;
// Now that all the non-thread safe fields of the graph_task have been
// populated, we can enqueue it.
queue->push(
NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
// The owning thread start to drive the engine execution for any CPU task
// that was just pushed or will be added later from other worker threads
lock.unlock();
thread_main(graph_task);
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
// reset the worker_device after the completion of the graph_task, this is
// so that the initial state of the engine remains the same across every
// backward() or grad() call, we don't need to reset local_ready_queue as we
// could possibly reuse it for new backward calls.
worker_device = NO_DEVICE;
} else {
// If worker_device is any devices (i.e. CPU, CUDA): this is a re-entrant
// backward call from that device.
graph_task->owner_ = worker_device;
// Now that all the non-thread safe fields of the graph_task have been
// populated, we can enqueue it.
queue->push(
NodeTask(graph_task, std::move(graph_root), std::move(input_buffer)));
if (current_depth >= max_recursion_depth_) {
// See Note [Reentrant backwards]
// If reached the max depth, switch to a different thread
add_thread_pool_task(graph_task);
} else {
// Total depth needs to be updated only in this codepath, since it is
// not used in the block above (when we call add_thread_pool_task).
// In the codepath above, GraphTask.reentrant_depth_ is used to
// bootstrap total_depth in the other thread.
++total_depth;
// Get back to work while we wait for our new graph_task to
// complete!
++current_depth;
lock.unlock();
thread_main(graph_task);
--current_depth;
--total_depth;
// The graph task should have completed and the associated future should
// be marked completed as well since 'thread_main' above is a call
// blocking an autograd engine thread.
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
}
}
// graph_task_exec_post_processing is done when the Future is marked as
// completed in mark_as_completed_and_run_post_processing.
return graph_task->future_result_;
}
// note that when python is present, this base engine will be overriden
// with a PythonEngine. Because this typically happens before get_default_engine
// is called, this base engine will never be created.
Engine& Engine::get_base_engine() {
static Engine engine;
return engine;
}
std::atomic<EngineStub> engine_stub(Engine::get_base_engine);
void set_default_engine_stub(EngineStub stub) {
engine_stub.store(stub);
}
Engine& Engine::get_default_engine() {
return engine_stub.load()();
}
void Engine::queue_callback(std::function<void()> callback) {
TORCH_CHECK(
current_graph_task,
"Final callbacks can only be installed during backward pass.");
std::lock_guard<std::mutex> lock(current_graph_task->final_callbacks_lock_);
current_graph_task->final_callbacks_.emplace_back(std::move(callback));
}
bool Engine::is_checkpoint_valid() {
return checkpoint_valid;
}
void Engine::init_local_ready_queue(std::shared_ptr<ReadyQueue> ready_queue) {
if (ready_queue) {
// if ready_queue provided in the caller, use the caller's ready_queue to
// initialize local_ready_queue
local_ready_queue = std::move(ready_queue);
} else if (!local_ready_queue) {
// otherwise if local_ready_queue not allocated, allocate a new ready_queue
local_ready_queue = std::make_shared<ReadyQueue>();
}
}
// CPU ready queue is per GraphTask, but CUDA device ready queues are shared
// across all graph tasks
auto Engine::ready_queue(
std::shared_ptr<ReadyQueue> cpu_ready_queue,
at::Device device) -> std::shared_ptr<ReadyQueue> {
if (should_run_in_cpu_ready_queue(device.type())) {
// return the cpu ready queue passed in
TORCH_INTERNAL_ASSERT(cpu_ready_queue);
return cpu_ready_queue;
} else {
TORCH_INTERNAL_ASSERT(
0 <= device.index() &&
device.index() <
static_cast<c10::DeviceIndex>(device_ready_queues_.size()));
// See Note [Allocating GPUs to autograd threads]
return device_ready_queues_.at(device.index());
}
}
auto Engine::ready_queue_by_index(
std::shared_ptr<ReadyQueue> cpu_ready_queue,
int device_index) -> std::shared_ptr<ReadyQueue> {
if (device_index == CPU_DEVICE) {
// return the cpu ready queue passed in
TORCH_INTERNAL_ASSERT(cpu_ready_queue);
return cpu_ready_queue;
} else {
TORCH_INTERNAL_ASSERT(
0 <= device_index &&
device_index <
static_cast<c10::DeviceIndex>(device_ready_queues_.size()));
// See Note [Allocating GPUs to autograd threads]
// NB: This function would become obsolete if we truly allocated a CPU
// thread per device, rather than colocate.
return device_ready_queues_.at(device_index);
}
}
auto Engine::start_device_threads() -> void {
// First always initialize the thread pool for re-entrant threads
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
// Second, create special threads for each non-CPU device
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
// Only record the number of devices for device that don't run on the
// cpu ready queue.
if (impl && !should_run_in_cpu_ready_queue(impl->type())) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// If there are no device except cpu, no need to create worker threads
if (num_devices == 0) {
return;
}
// Since we're about to create threads, forking is not possible anymore
track_bad_autograd_forks();
// allocate one thread for every GPU device (but colocate GPUs of different
// types), and pre-allocate the device_ready_queues_ to ensure safe reading on
// it.
device_ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_devices);
for (auto& queue : device_ready_queues_) {
queue = std::make_shared<ReadyQueue>();
}
for (const auto i : c10::irange(num_devices)) {
std::thread t(&Engine::thread_init, this, i, device_ready_queues_[i], true);
t.detach();
}
// Wait for the threads to start
{
std::unique_lock<std::mutex> lk(non_reentrant_device_thread_mutex_);
while (non_reentrant_device_thread_count_.load() !=
static_cast<uint32_t>(num_devices)) {
non_reentrant_device_thread_condvar_.wait(lk);
}
}
}
void Engine::add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task) {
std::unique_lock<std::mutex> lck(thread_pool_shared_->mutex_);
// There may already be some items on the graphtasks_queue_ added by other
// threads but not enough workers to get to the new task that will be
// added
bool create_thread =
(thread_pool_shared_->num_workers_ <=
thread_pool_shared_->graphtasks_queue_.size());
thread_pool_shared_->graphtasks_queue_.push(graph_task);
// Don't need to be holding the lock while actually creating the thread
lck.unlock();
if (create_thread) {
// If we're creating a new thread, forking is not allowed anymore
track_bad_autograd_forks();
std::thread t(&Engine::reentrant_thread_init, this);
t.detach();
}
// This works even if new thread is created because wait() will test the
// predicate before waiting
thread_pool_shared_->work_.notify_one();
}
// Remembers current streams on all devices where a context has been created.
// Only called if Engine::execute detects at least one node runs on a cuda
// stream.
void GraphTask::stash_current_streams() {
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
auto num_gpus = guard.deviceCount();
caller_current_streams_.resize(num_gpus);
if (num_gpus > 0) {
for (c10::DeviceIndex idx = 0; idx < num_gpus; idx++) {
#if defined(USE_ROCM) && (ROCM_VERSION < 50000)
// If the build targets ROCM, stash streams for all visible devices
// unconditionally, to work around
// https://github.com/pytorch/pytorch/issues/59750.
// TODO: Remove ROCM-specific behavior when
// https://github.com/pytorch/pytorch/issues/59750 is fixed.
if (true) {
#else
if (at::detail::getCUDAHooks().hasPrimaryContext(idx)) {
#endif
caller_current_streams_[idx] =
guard.getStream({c10::DeviceType::CUDA, idx});
} else {
caller_current_streams_[idx] = c10::nullopt;
}
}
}
}
void GraphTask::init_to_execute(
Node& graph_root,
const edge_list& outputs,
bool accumulate_grad,
uint64_t min_topo_nr) {
// Populates exec_info so nodes that should be executed have
// `exec_info[node].needed_ = true` Only nodes that have a path to any edge in
// `outputs` should be executed. The code below populates exec_info using
// recursion, but the actual code does this iteratively. Refer to the
// numbering to see how the actual code corresponds. A difference to note is
// that in the iterative version, when you are working with the current Node,
// you are reponsible to update your parent's is_needed after all your
// children have been updated.
//
// is_needed = {fn: True for fn in outputs} # (0)
// seen = {}
// def compute_is_needed(fn):
// for next_edge in fn.next_edges:
// child_fn = next_edge.fn
// if child_fn in seen and is_needed[child_fn]: # (1)
// is_needed[fn] = true
// else:
// seen.add(child_fn)
// if compute_is_needed(child_fn):
// is_needed[fn] = true # (2)
// # (3) exit for-loop
// return is_needed[fn]
// compute_is_needed(graph_root)
//
// NB: you might be wondering why we don't populate `seen` with outputs. We
// cannot because in the case where two outputs lie on the same path, we still
// need to explore past the first output or we would miss the nodes that are
// required to compute the second output.
int output_idx = 0;
for (auto& output_edge : outputs) {
// (0) `is_needed` above corresponds to `exec_info_[fn].needed_`
Node* output = output_edge.function.get();
auto& info = exec_info_[output];
if (accumulate_grad) {
// if called through `.backward()` we directly set `needed_` for all the
// outputs to true
info.needed_ = true;
} else {
// otherwise it is `.grad()` and we set exec_info[fn].captures_ instead
// In terms of populating the rest of exec_info though, you can basically
// think of this as the same as setting `needed_` is true directly.
if (!info.captures_) {
info.captures_ = make_unique<std::vector<ExecInfo::Capture>>();
}
info.captures_->emplace_back(output_edge.input_nr, output_idx++);
}
}
captured_vars_.resize(output_idx);
struct Frame {
Frame(Node* fn) : fn_(fn), next_next_fn_(0) {}
Node* fn_;
size_t next_next_fn_;
Node* get_next_fn() {
const auto& next = fn_->next_edges();
auto num_next = next.size();
while (next_next_fn_ < num_next) {
auto fn = next[next_next_fn_++].function.get();
if (fn)
return fn;
}
return nullptr;
}
};
auto nodeShouldExecute = [this](Node* fn) {
auto it = exec_info_.find(fn);
return it != exec_info_.end() && it->second.should_execute();
};
std::vector<Frame> stack;
std::unordered_set<Node*> seen;
stack.emplace_back(&graph_root);
exec_info_.emplace(stack.back().fn_, ExecInfo());
while (!stack.empty()) {
auto& frame = stack.back();
const auto fn = frame.fn_;
Node* child_fn = nullptr;
while ((child_fn = frame.get_next_fn()) && !seen.emplace(child_fn).second) {
// (1) next child exists AND has already been seen
if (nodeShouldExecute(child_fn)) {
exec_info_[fn].needed_ = true;
}
}
if (child_fn) {
// (2) next child exists but has not been seen
if (child_fn->topological_nr() < min_topo_nr) {
// child created before the first output means this child cannot have
// an edge to output
continue;
}
stack.emplace_back(child_fn);
} else {
// (3) no next child exists for `fn` means its `needed` has already been
// finalized. pop stack and update parent
stack.pop_back();
if (nodeShouldExecute(fn) && !stack.empty()) {
exec_info_[stack.back().fn_].needed_ = true;
}
}
}
}
} // namespace autograd
} // namespace torch
|