File: function.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (103 lines) | stat: -rw-r--r-- 3,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include <torch/csrc/autograd/function.h>

#include <c10/util/ThreadLocal.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/variable.h>

#include <ATen/ATen.h>

#include <algorithm>
#include <cstdint>
#include <memory>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>

namespace torch {
namespace autograd {

// The current evaluating node. This is useful to assign the current node as a
// parent of new nodes created during the evaluation of this node in anomaly
// mode.
C10_DEFINE_TLS_static(std::shared_ptr<Node>, tls_current_evaluating_node);
#define current_evaluating_node (tls_current_evaluating_node.get())

NodeGuard::NodeGuard(std::shared_ptr<Node> node) {
  last_evaluating_node_ = std::move(current_evaluating_node);
  current_evaluating_node = std::move(node);
}
NodeGuard::~NodeGuard() {
  // restore the previous evaluating node
  current_evaluating_node = std::move(last_evaluating_node_);
}

void Node::assign_parent() {
  metadata()->assign_parent(current_evaluating_node);
}

auto Node::name() const -> std::string {
  return c10::demangle(typeid(*this).name());
}

AnomalyMetadata* Node::metadata() noexcept {
  if (!anomaly_metadata_) {
    anomaly_metadata_ = Engine::get_default_engine().make_anomaly_metadata();
  }
  return anomaly_metadata_.get();
}

static void gatherFunctions(
    Node* func,
    std::vector<std::shared_ptr<Node>>& stack) {
  func->release_variables();

  for (auto& edge : func->next_edges()) {
    if (edge.function.use_count() == 1) {
      stack.emplace_back(std::move(edge.function));
    } else {
      edge.function.reset();
    }
  }
}

/*
 * Fix for #5534: prevent stack overflow on deletion of deep computation graph
 *
 * Sometimes one can end up with a very big computation graph of Nodes
 * and Edges. Each std::shared_ptr<Node> contains a list of Edge, and
 * each Edge contains a std::shared_ptr<Node>. Deleting a
 * std::shared_ptr<Node> can trigger the recursive deletion of other
 * std::shared_ptr<Node>'s: this can stack overflow if the graph
 * is deep enough. Here is an example of such a graph:
 *
 * shared_ptr<Node> -> Edge -> shared_ptr<Node> -> Edge -> ... ->
 * shared_ptr<Node>
 *
 * The solution here is to detect when we are decrementing away the last
 * reference to a Node, and when doing so to buffer up the Node's
 * that will be recursively decremented.  We can then decrement (and free)
 * the original Node without causing a recursive cascade, before
 * draining the buffer applying the same behavior.  This is, in effect,
 * converting recursion to a loop, using a heap buffer in place of the
 * recursive call stack.
 */
void deleteNode(Node* function) {
  // To avoid stack overflow on large computational graphs,
  // we need to track reference decrementing and freeing
  // on the heap.
  function->release_variables();
  std::vector<std::shared_ptr<Node>> stack;
  gatherFunctions(function, stack);
  delete function;

  while (!stack.empty()) {
    auto func = std::move(stack.back());
    stack.pop_back();
    gatherFunctions(func.get(), stack);
    // Reference count is decremented on the loop backedge.
  }
}

} // namespace autograd
} // namespace torch