File: basic_ops.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (59 lines) | stat: -rw-r--r-- 1,684 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <torch/csrc/autograd/functions/basic_ops.h>

#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/variable.h>

#include <ATen/ATen.h>

#include <memory>
#include <utility>

namespace torch {
namespace autograd {

auto Error::apply(variable_list&& inputs) -> variable_list {
  throw std::runtime_error(msg);
}

auto DelayedError::apply(variable_list&& inputs) -> variable_list {
  tensor_list outputs;
  outputs.reserve(inputs.size());
  for (auto& var : inputs) {
    // FIXME: share version counters
    outputs.emplace_back(var.defined() ? var.tensor_data() : at::Tensor());
  }
  return wrap_outputs(inputs, std::move(outputs), [&](edge_list&& next_edges) {
    return std::make_shared<Error>(msg, std::move(next_edges));
  });
}

auto UndefinedGrad::apply(variable_list&& inputs) -> variable_list {
  tensor_list outputs;
  outputs.reserve(inputs.size());
  for (auto& var : inputs) {
    outputs.emplace_back(
        var.defined() ? var.clone().tensor_data() : at::Tensor());
  }
  return wrap_outputs(inputs, std::move(outputs), [&](edge_list&& next_edges) {
    return std::make_shared<UndefinedGradBackward>(std::move(next_edges));
  });
}

auto UndefinedGradBackward::apply(variable_list&& output_grads)
    -> variable_list {
  tensor_list input_grads;
  output_grads.reserve(input_grads.size());
  for (auto& grad : output_grads) {
    (void)grad; // Suppress unused variable warning
    input_grads.emplace_back(at::Tensor());
  }
  return input_grads;
}

auto Identity::apply(variable_list&& grads) -> variable_list {
  return std::move(grads);
}

} // namespace autograd
} // namespace torch