File: comm.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (152 lines) | stat: -rw-r--r-- 4,456 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include <torch/csrc/autograd/functions/comm.h>

#include <ATen/core/functional.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/cuda/comm.h>

#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/Optional.h>

#include <cstddef>
#include <memory>
#include <vector>

namespace torch {
namespace autograd {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
Scatter::Scatter(
    std::vector<at::Device> devices,
    // NOLINTNEXTLINE(modernize-pass-by-value)
    const c10::optional<std::vector<int64_t>>& chunk_sizes,
    int64_t dim,
    // NOLINTNEXTLINE(modernize-pass-by-value)
    const c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>>&
        streams,
    bool unsqueeze_scalars)
    : devices_(std::move(devices)),
      chunk_sizes_(chunk_sizes),
      dim_(dim),
      streams_(streams),
      unsqueeze_scalars_(unsqueeze_scalars) {}

Scatter::~Scatter() = default;

variable_list Scatter::apply(variable_list&& inputs) {
  AT_ASSERT(inputs.size() == 1);
  auto& input = inputs.front();

  std::shared_ptr<Node> grad_fn;
  if (compute_requires_grad(input)) {
    grad_fn =
        std::make_shared<Gather>(/*destination_device=*/input.device(), dim_);
    grad_fn->set_next_edges(collect_next_edges(input));
  }

  auto device_indices = fmap(devices_, [](const at::Device& device) -> int64_t {
    return device.index();
  });
  auto tensors = torch::cuda::scatter(
      // NOLINTNEXTLINE(performance-move-const-arg)
      std::move(input),
      device_indices,
      chunk_sizes_,
      dim_,
      streams_);

  std::vector<Variable> variables;
  variables.reserve(tensors.size());
  for (auto& tensor : tensors) {
    AT_ASSERT(tensor.defined());
    if (unsqueeze_scalars_) {
      AT_ASSERT(tensor.dim() == 1 && tensor.numel() == 1);
      variables.push_back(tensor[0]);
    } else {
      variables.push_back(std::move(tensor));
    }
  }

  if (grad_fn) {
    set_history(variables, grad_fn);
  }

  return variables;
}

Gather::Gather(const at::Device& destination_device, int64_t dim)
    : destination_device_(destination_device), dim_(dim) {}

Gather::~Gather() = default;

variable_list Gather::apply(variable_list&& inputs) {
  bool all_are_zero_dim = true;
  for (const auto& input : inputs) {
    TORCH_CHECK(
        input.is_cuda(),
        "All inputs to Gather must be CUDA tensors, got ",
        input.toString());
    if (input.dim() > 0) {
      all_are_zero_dim = false;
    }
  }

  const bool unsqueeze_scalars = all_are_zero_dim && dim_ == 0;
  if (unsqueeze_scalars) {
    TORCH_WARN(
        "Was asked to gather along dimension 0, but all "
        "input tensors were scalars; will instead unsqueeze "
        "and return a vector.");
  }

  std::shared_ptr<Node> grad_fn;
  // compute this before moving variables from `inputs`
  if (compute_requires_grad(inputs)) {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::vector<at::Device> source_devices;
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::vector<int64_t> input_sizes;
    for (auto& input : inputs) {
      source_devices.push_back(input.device());
      input_sizes.push_back(input.size(dim_));
    }
    grad_fn = std::make_shared<Scatter>(
        std::move(source_devices),
        std::move(input_sizes),
        dim_,
        /*streams=*/c10::nullopt,
        /*unsqueeze_scalars=*/unsqueeze_scalars);
    grad_fn->set_next_edges(collect_next_edges(inputs));
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<at::Tensor> tensors;
  tensors.reserve(inputs.size());
  for (auto& variable : inputs) {
    if (unsqueeze_scalars) {
      tensors.push_back(variable.view(1));
    } else {
      tensors.push_back(std::move(variable));
    }
  }

  // Disable the autograd during the actual computation
  // torch::cuda::gather does not return a view or change things inplace
  // so no need for extra logic here
  at::Tensor variable;
  {
    at::AutoDispatchBelowAutograd mode;
    // This is special logic for torch::cuda::gather!
    const auto destination_index =
        destination_device_.is_cpu() ? -1 : destination_device_.index();
    variable = torch::cuda::gather(tensors, dim_, destination_index);
  }
  if (grad_fn) {
    set_history(variable, grad_fn);
  }
  return {variable};
}

} // namespace autograd
} // namespace torch