File: input_buffer.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (51 lines) | stat: -rw-r--r-- 1,581 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#pragma once

// The InputBuffer class accumulates a list of Variables for use by a
// function. It implements logic to avoid modifying the passed
// values in-place (adding an input twice will accumulate the result).
// This behaviour is needed and used only in backward graphs.

#include <memory>
#include <utility>
#include <vector>

#include <c10/core/Stream.h>
#include <c10/util/Optional.h>
#include <torch/csrc/autograd/variable.h>

namespace torch {
namespace autograd {

struct InputBuffer {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  explicit InputBuffer(size_t size) : buffer(size) {}
  InputBuffer(const InputBuffer& other) = delete;
  InputBuffer(InputBuffer&& other) = default;
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)){};
  InputBuffer& operator=(InputBuffer&& other) = default;

  // Accumulates the variable at a specified index.
  // The optional CUDA streams determine which stream the accumulation
  // is run on and how the addition is synchronized.
  void add(
      size_t pos,
      Variable&& var,
      const c10::optional<c10::Stream>& opt_producer_stream,
      const c10::optional<c10::Stream>& opt_consumer_stream);

  at::Device device() const;

  Variable operator[](size_t pos) {
    return buffer[pos];
  }

  // Returns the inputs as a list of variables. Destroys given InputBuffer.
  static std::vector<Variable> variables(InputBuffer&& g);

 private:
  std::vector<Variable> buffer;
};

} // namespace autograd
} // namespace torch